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Abstract

The Shaffer’s definition of the upper and lower expectations of fuzzy vari-
ables is considered with respect to randomized fuzzy sets. The notion of
randomized fuzzy sets is introduced in order to evaluate fuzzy statistical in-
dices for an arbitrary chosen fuzzy variable. Provided the distribution of
the mathematical expectation of a randomized fuzzy variable is known, it is
possible to adopt the traditional methods of testing statistical hypotheses for
fuzzy variables.

We show that this distribution has a specific analytical structure and
may be represented by means of Wan-der-Mond determinant derivatives. The
relation between the notions of expectations of fuzzy variables and the Pareto
optimality is demonstrated.

The mathematical expectation of the upper and lower expected values of
a randomized fuzzy variable and their asymptotics are calculated.

1 The expected value of a fuzzy variable
By the Dempster definition [1] of the fuzzy variable v is a mapping v : S — R of
the finite support set S of the fuzzy set A into the set of real numbers R. Two

Shafer’s expectation of a fuzzy variable are defined as:

1) the lower expectation E.y with respect to the measure {PL(A), A C S} of
plausibililty of the crips set A to be a subset of the fuzzy set A is

By = [ wdPl({s:5(5) < o) (1)

2) the upper expectation E*~y with respect to the measure {CR(A), A C S} of
credibility of te crisp set A to be a subset of the fuzzy set A is

E*y= /der(s :y(s) < v}). (2)
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According to the Shafert theory of evidence [4] these two measures are seen
as upper and lower probability measures, i.e. the probability space (2,0, P) and
the mapping ¥ : Q — 29 of measurable sets form Q onto the power set of S are
assumed to be specified. Then by the definition:

PI(A) P*(w:y(w)NA#0) (3)
Cr(4) = Pi(w:vy(w)CA) (4)

If the mapping 7 is not a function then the right parts of the equations (3) and (4)
should be normalized (divided by

Plw:y(w)NS#B or Pw:vyw)CA)

correspondingly). Thus, PI(A) = P*(A) and Cr(A) = P.(A).

The membership function of a fuzzy set A is the projection of the plausibility
measure over the set of the singletons of the set S : u(s) = PI({s}).

If the family F = {F : P(w : v(w) = F) > 0} of focal elements [3] is the
collection of imbedded subsets of the set S then the plausibility measure PI(.) is
the meausre of possibility - Poss(.) introduced by L. Zadeh [3]. Only in this case
the plausibility measure may be inferred from the membership function p(s) of the
fuzzy set A.

Let’s consider the fuzzy variable v on the finite set S and arrange the values
{~(s),s € S}, in non-decreasing order:

v1 <ve <...<w,, where v;=7(s;);i=1,..,n;|S|=n.

The definitions of the fuzzy variable expected values (1) and (2) imply

B = Fuee (e o) ©

where pp = u(sg) = Poss({sr}).

Definition 1 The upper (lower) expectation of a fuzzy set A (defined on S C R')
is the Shafer expectation of the Dempster identical fuzzy variable v(s) = s.

In case the mapping -y is a function we may use the extension principle of L.
Zadeh [2] and change the support set S by the set V = {v: v =~(s), s € S} with
the associated membership function v(v) = p(y~!(v)), and hence v; = v(v;) =
1(si) = pi.

In general case

v(v) = sup pu(s).
siy(s)=v

Let’s define the partial order > on the graph
G ={(v,v(v)) ;v eV}:

=: (v,v) = (V',v) iff v>v andv >V, (7)
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2 The Pareto set of a fuzzy variable

A non-zero contribution to the value of the upper expectation E*v is only of those
variables v; for which points (v;, ;) are in the Pareto set II (the set-theoretical
maximum with respect to the partial order (7). Let’s renumber the Pareto points

I = {(wj, 2)} 72,

in the increasing order of the values of memberships v(v). Then the equation (5)
for the upper expectation of the fuzzy set A implies

E(y") = Zwi(aei — ®it1). (8)

That means the value of the upper expectation of the fuzzy set A is equal by
the Euclidean measure of the area (in the first quadrant of the plane V' x [0, 1].
Pic.1) dominated by the points of the Pareto set II- the union of the partial order
(7) main filters.

v
1 X1 =
X2 =
o[ ®o — Ea

v3

X3 =V

X4 = U7
V1
Ve

V1 VU2 = w1 V3 V4 =wW2 V5=W3 V8 V7 = V4

Pic. 1. The expectation as the mesure of the union of the Pareto filters
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Proposition 1 When the mapping v is not a bijection but a function then the
equation (7) holds true. The expectation of the fuzzy variable is the same as the
expectation of the fuzzy set 7 generated by the extension principle over the set of
different images of the mapping ~v:

= {vhits ={v:v=1(s),s €5}

while corresponding membership function is

v(v) = Mazx p(s), S= Sk
©) = Ma u). S=Js

To prove the Proposition let’s partition the set S by level-sets with levels

v = v(vg), S = Uiy Sk, Sk = arg 1\(/[;)1}( |(s)| and accordingly decompose
s:y(8)=vg
the definition (5) of the upper expectation

m
= Zv Z <Max,u] 1\]{[>azxuj> .

k=1 i€S

The set S is ordered non-increasingly with respect to y(s). Thus,

Sk) — {Sl}zk—l—mk 1

1=

where my, = | S| is the number of the elements of the level k and iy + mg = ijy1.
Since

Ma, Max Ma, Max v

k>z§('u >zX zeskxm kz‘]x k>

then

E*y = Zk: <1\/£a:kxuj — ]1;/[231;1 ,u]> 1= ;vk Max vj — ]1;/[133(1 v;) = E*4.

3 Randomized fuzzy sets

The set of all fuzzy sets § on the finite universum of the cardinality m is isomorphic
to the llattice [0,1]™, i.e., the unit cube R™. Let’s consider the borelian subsets
of the set § which are the inverse imges of the borellian sets in [0, 1]™ under the
isomorphism § — [0,1]™ and provide the measurable space < §,%B > with the
probability measure P. The ellement of § may be treated as the realization of the
randomized fuzzy set A which is identified with the random vector

A= (/\1,/\2, ...,/\m),

PACV =) uvls) = / dP(\).
i=1 (A:xi<vi)
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Note: The term of the randomize fuzzy set A is used to clarify the difference
from the well-known notion of the random fuzzy set (F), [3]. L. Zadeh assigned
the probability measure not to the measurable space § but to the measurable space
& : (S,4, P) defined on the universal set S. The class of the random fuzzy sets is a
class of measurable mappings {p : S — [0, 1]}, i.e. membership functions over the
set V. Thus, the membership function p of the random fuzzy set F' is considered
as a random variable and the probability P(F = V) is a mathematical expectation
of this variable pu(.).

The mapping E* : § — R' which maps each fuzzy set V to its expected value
E*(V) is measurable. The expected value of the randomized fuzzy set A is a random
variable E*A. Now we are ready to calculate the distribution

) =rEn < = /{z (Mepcu-Maxy ) <u

ikF1

dP(v) (9)

4 The sample ranking and the probability of the
identical permutation

Our aim is to calculate the distribution (9) with the uniform measure over V :
dP(v) = dv. In this case all the variables {v;} of the membership function v are
independent and uniformly distributed over [0, 1] random variables.

Let’s introduce the set of hypothesis about the ordering of these variables using
the notion of a rank.

The rank r(i) of the membership function value v; is a serial number of the
element »; in the non-increasingly ordered array of all values v;, r(i) =RANK ;.

The definition of ranks of membership function values is correct for the events
with non-zero probability of occurrence (and only such events are considered further
on). Every realization of the randomized fuzzy set A corresponds the permutation
r:m — m, an element of symmetrical group S, such that r(i) =RANK v;, (n
denotes an ordinal {1,2,...,n}).

Let’s consider n! hypothesis {H,.;r € S,,} about the ranking of the membership
function values H, = {RANK v; = (i), i =n}. Then

F(u)= Y P((E*A<u)&H,).

PESH

Let’s calculate the probability F.(u) = P((E*A < u)&H.) for the identical
permutation r = e, (e : e(i) =RANK v; = 7). F,(u) is equal to the volume of the
intersection of the unique cube [0, 1]" with two simplexes:

1) {z: Y (v —vic1)z; <uy; Vi €n:a; > 0;v9 =0}

i=1

N {z:iz; >z Vien x; >0; (2 <1, 2041 =0)}.
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Changing the variables n; = v;(v; — v;11), 1 € n we reduce the problem to the
calculation of the volume of intersection of regions o, and o, cut from the first
quadrant of R" =[]}, ¥;, by two planes:

n
Y yi—u=0,
i—1

i=1

~
S
—~
<
~
I

Since the volume element A, dz; is equal to A dy;/ ]\, v; then

n
F,(u) = Measure (6, Noy) / H V4

i=1

The sought probability may be written in the form of the polynomial with
respect to u of the order n, the type of which is determined by the interval (v;, viy1)
covering the value u.

If w < oy then o, C 0, and Measure (o, N o,) =Measure o, = u™/n!.

If v; < u < vy then among vertices of the simplex o, only the vertex u - e;
(where e; = (1,0, ...,0) and in general e; denotes jth basic vector in R™) turns out
to be outside of the simplex o,. The simplex o, cuts off from the simplex o, the
simplex o! with the vertices viei, uie; and with n — 1 vertices located in the plane
L=0,:

U — v; U; — U1 .
v1eq + v;e; , 1=1{2,3,...,n}.
V1 v

— Y Ui — U1

The volume of the simplex ¢' which is equal to

1 Vi n
= U — s
n!ll;[lvl—vi( i)

has to be subtracted from the volume of the simplex o,

1 .
Measure (o, Noy) = — | u" — H Vi (u—vp)"
n! 1 Vi — U1

If vo < u < v3 then the vertex uey of the simplex o, is not in o,. The volume of
the simplex o2 (with the vertices vaes, ues and n — 1 vertices located in the plane
L,=0:

V2 — VU; V; — U2

u— v; U—v )
{UQ Les+v; 282, z;él}
has to be subtracted from the volume of the simplex o'. Hence

v

2
1

Measure (o, Noy) = p u” — Z H

) J=11i#j

v AN
Ui_vj(u v;)
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This result is a hint on a more general answer:

Fe(U): m Un—ZH Yi ‘Xj(u)(u—vj)" (10)

Vi — U
s

where x;(u) is the characteristic function of the interval {u : u > v;}. It may be
proved by the method of inclusion-exclusiion and we have already made the first
two steps in this direction.

5 The coinciding variables

A general denominator of the summonds in the above written sum (10) is equal to
the value [];. ;(v; — v;) of the Wan-der-Mond’s determinant Det W of the matrix

1 1 e 1

U1 V2 Un,
2 2 2

v v v
1 2

W = n

n—1 —1 n—1

U1 Uy Un

Let’s substitute the row of units (the first row in W) by the row

x1(u)(u —v1)", x2(u)(u —02)", -y xn(u)(u —vn)"
and denote the result as W, = W, (v), then rewrite the expression (10) for the
probability F,(u) using the matrix W, (v):

F.(u)

. Det Wu> (1)

1
Conl[, v <u ~ Det W

If u > vy, then all characteristic functions for the sets {u : w > v;} are units,
xi(u) = 1, and the simplest o, is included in o0,. Hence, F.(u) = 1/n! and the
following identity holds true:

n
Det W, (v)
= " — Det ———— %\
g”’ b Dt W

By the statement of the problem all the variables v; are different but to calculate
the probabilities F,(u) under hypotheses H, for non-identical permutations p € S,
it will be useful to known the distribution in the case v; = v;4; and even in more
general cases

Vi =Vig1 = ... =Vjgp, t>1, i+k=m<n.

The inclusion-exclusion method is inapplicable now: for not all regions needed for
inference are the simplexes. We have to use the other idea.
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The distribution Fi(u) = F.(u,v) is continuous with respect to u,v and the
problem is solved by taking the limit

lim F.(u).

Vi41—>V4

By the eliminating the first order uncertainty (of the type 0/0) in the ratio of the

. Detw u,v
determinants %T(W) we get
F.(u,v) ! " Det W,/ 9 Det W
U, V) |ps=viqy = —=—— | U — 57— —
€ viTvitt n! H?:l Vi avi+1 v aviH

Vi=Ui+1

where v = (v1,v2,...,v,). Since the variable v;y; appears only in the (7 + 1)th
column of the matrix W' (any of the matrices W or W (u,v)) then
0 0

Det W' = Det
Ovis1 Ovit1

WI

The limit as v;42 tends to v; is equal to F,(u,v) with v; = v;y1 = v;y2. But now

Detw (u,v)

the ratio of the determinants has the uncertainty of the second order.

Det w
The matrices 5 5
[ W- ]
6’Ui+2 aviH Vit1=0i Vi42=0;

have two identical columns: (i + 1)th and (i + 2)th.
In order to get the general formula we introduce the strictly increasing step
function v over n = {1,2,... ,n},

v : n—o R
k

vi =) vijxa, (i), (12)
i=1

where xa; is the characteristic function of the set Aj, A; = {i}j;ij_l+1 and 0 =

io < 1?1 < ... <ip =n. Hence n = U§:1 Aj. Denote as 0A; the operator of taking
mixed derivative in the points v; = ¢ € A; (if A; is not singleton, i.e. A; # {i}):

oA - 00
7= Bvijavi].,l...avi
where A; = |A;| = i; —ij_q is the number of the elements in A;. If A; is a

singleton {i;} then A; = 1. In this case 0A; is the identity operator 0A; Wy = W.
Let’s introduce an another differential operator @ defined as the superposition of &
operators (j € k)

0= *ﬁzlaAj = 8A1 (8A2(8Ak)) .
Thus, for the case of the coinciding points of the support set for the fuzzy set A
(when this coincidence is determined by the function v, (12)) the distribution F, (u)

is
1 Det OW,
Fo(u)| = —— (u" - —=2 . 1
(U) v n' H‘I;:l Uij <u Det BW > ( 3)
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In particular when v; = v for all j the determinant Det 0, in the numerator of
(13) is equal to x1(u)/D,, where

(w—v)" —nu—-v)""' nn-1)w-v)""2 - (=) nl(u—wv)
v 1! 0 0
D, = v? 20 2! S 0
o=l (= D2 (n—1)(n — 2 .. (n—1)!

The recurrence of its principal minors is
D1 =jD; + ( " 1) (u— )" T 7 G — 1)1 - 2)!,
j—

where (”) is the binomial coefficient.
Solving the inferred recurrence we arrive at

D, = 1:Iy' > (1) - or - t[llj!(u" o),

m=0

The factor [] j! is equal to the multiple derivative of Wan-der-Mond’s determinant
which appears in the denominator in the left part of the equation (13), (with the
parameters A; =1 and v; = v)

1 0 0 0
v 1! 0 0
2 |
detow = | 7 2v 2! 0
vt (=12 (n—-1Dn-2)"3 - (n—1)!

Hence, for the v; = v (constant) we get

) :{ {Z}/n' ifu <w.

F.(u
(u) 1/n! else

6 The conditional probabilities under the hypoth-
esis of non-identical permutations. The abso-
lute distribution

To calculate the conditional distribution Fp(u) under the hypothesis H, we need

a proper replica of the function 12) v : n — n. For this purpose let’s partition the

set n = {1,2,...,n} to “segments” A; = Aj(p), wich right points i; =i;(p), j € k
(the maxima of the segments) are defined recursively:

iy = 0,

i; = p~'(min p(m)),

m>ij_1
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where p~! is inverse permutation of p. Then A; = {i l’ i;_141 and n =J; A; are

in full accordance with the recent notations.

The number k of segments is equal to the cardinality of the Pareto set [[ =
{vi;,v(vs;)} in any realization of the membership function of the randomized fuzzy
set A under the hypothesis H,,.

The conditional distribution F),(u) may be rewritten by means of the equation
(13), but for the step function v, : m = n

Z 'Uz] XA (p) )

By gathering the hypothesis we prove the following theorem.

Theorem. The absolute probability distribution of the randomized fuzzy set A is

det avak Aj(p)
n! Z ( det@va>/H Uy

pES,

7 The mathematical expectation of the upper ex-
pectation of a normal fuzzy set

The randomization of the fuzzy set defined on the finite support V = {v}7, (as it
have been done above) implies all realizations of the randomized fuzzy set A to be
subnormal fuzzy sets almost certainly (with the probability 1). And to be precise
we shell call it a subnormal randomized fuzzy set. If we are to consider the normal
case then we have to classify all normal fuzzy sets RF(V) as factor-sets Fi(V),
0 < k < n} with fixed cardinality Card V; = k of their subsets V; C V of the level
1.

Definition 2.
1) Any fuzzy set of the class Fi(V') is called a k-normal fuzzy set.
2) An.k s k-normal uniformly randomized fuzzy set over the finite set V' iff

- only strict subset of cardinality k may be a subset of level 1 in the realization
of the randomized fuzzy set.

- any strict subset (of V') of cardinality k may be equiprobably found as a subset
of the level 1 among the realizations of the randomized fuzzy set.

- for any element of the complement V\V1 any grade of the membership func-

tion is an independent uniformly distributed over [0,1] random variable.

The definition 2 is correct if we are not paying attention to the events of prob-
ability 0. We still assume the linear order over V' is v; < vs... < vy,.



The Distribution of Mathematical Expectations of a Randomized... 109

Theorem 2. The mathematical expectation of the upper expectation of k-normal
uniformly randomized fuzzy set is equal to

=3 ( n+l1-(1-1/km (7))

— n—m+1)(n —m+2) (Z) Um-

To prove the Theorem 2 we are in need of the next Lemma which is interesting
by itself..

Lemma 1.The mathematical expectation of the upper expectation of the uniformly
randomized subnormal fuzzy set vy, is equal to

n

" = Z (n—m+1)rzn—m+2)'

m=1

Proof. Note if the set V] is a singleton then

n

&1 = (1+1/n) Z

m=1

1, ...
_m+1(n—m+2) = +ﬁ)g "

Every fuzzy set over V which has no elements with the same grade of the
membership function has been mapped to some permutation p € S,,. Let’s define
the function &, : n = n, 2&,(i) = min;>; p(j) and use it for writing the expression
of the upper expectation

= Zyae,,(i)wi = Yow,
i=1
where
Yo = (yaep(l)ayaep(Q)a ey yae,,(n)) y W= (w17w27 sy wn)7
w; =v; —v;—1, v =0.
The variables y; of the uniformly distributed subnormal fuzzy set 4 are rank-

test statistics. Their mathematical expectations are equal to 1 — n+_1 The random

permutation p is an element of measured space S,, (the uniform measure of Haar:
P(p=r) =L, re€S,). Taking all this into consideration we get

. wr 1 ‘x
£ = EEy=— ) EElp=r)=

" resS,

- G E) e (T )

res, i=1 res
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where Xp = (&r(l)a ,&T(n))
Let’s note that £* is the function of the elements of the support £* = £*(v) = v,
v = (v1,...,U,). Introducing the notation

/\”:Za“

res,

we may write

Let’s show that
An(i) = (n+1)/(n+2-1),

by induction over n:
- The case n = 1 is trivial: Ai(1) = 1.
- Assume the equation A\, 1 = nﬁti holds true.
Let’s consider some permutation r € S;,, with which we relate n permutations

si(r) € Sy, © € n defined as

siimy=0M)+1,r2)+1,..,7rG—-1)+1,1,r@G +1,...,7(n—1)+ 1),

i.e. every element of r is increased by 1 and unite ith element is added. The

mapping is a covering of S,, = (J,¢cg. _, Sr. Denote

/\;"(7’) = Z s, (1) (Z)a
m=1

then

n

M) = 3wy = 30 N).

SESH r€Sn—1

The function ae,(,., (i) with respect to sp, (1) € Sy is

. 1, if i <J,
@, () (1) = { n(i—1)+1, ifi>j.
Then m
ML) =Y @, m(1) =n
m=1
and
(1) = 0l = (2:11)!.

In general case

No(i) = (i — D(aer(i— 1)+ 1) +n—(i—1) = (i — Daen(i — 1) + 7
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and we get the recurrence
Ar(D) = (i — D) Ap—1(i — 1) + nl.

Now ise the inductive assumption about the values of A,,_ (i) to get
n'
An(i) = (i — I)HT +nl=mn+1)/(n+2-1).

Hence
n n

. _ n+1—1
£ =n = Zn+2—z ;n-i—Q—z

and after substitution of v; —v;—; for w(i) and some simplification of the resulting
expression the Lemma is proved.

The proof of the Theorem 1. Let’s introduce the complete set of hypotheses {H,,},
m € {k,k+ 1,..,n} about the maximum of the 1-level set V; of the uniformly
randomized k-normal fuzzy set A, j:

H,, : Max v; = m.

v; EV1

The probability of this event is equal to

o (22)10)

Since the hypothesis H,, are disjunctive and |J,,_, Hp, is a certain event then

k
S N
nk—gE Tnk = E < 1>8(E Yok | Him)-

=1

Then m = n, (i.e. u(v,) =1) then
E(E Y k| Hp) = vp.

If m < n then the conditional mathematical expectation £(E*~y, x| H,,) is expressed
by the mathematical expectation of the subnormal randomized fuzzy set over the
support
Vin = {Um+1 — UmsUm+t2 — Um, <oy Up — U },
ie.
E (E* vk |Hpn) = vn — E{Umt1 — Umy oo, Un — U -

n—1

e B0 (1) oo £ (2 )

m=k j=m+1
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The expression in the square brackets might be simplified

Um + Z _Um n+1—])(n+2—j):

j=m+1

n n
1 1 v}

= [1-— ( - — > Vo — .J :

j:%l n+l—j n+2-—j " j:;rl(n—i-l—])(n—i-Q—])
_n—l-l— Z n+1—](n+2—j)'

Thus

. zn: m—1 U, _Ti:l m—1 zn: vj /n
T k-1 nr 1= T 2 \k-1) 2 et j)n+2-) | k)

(14)

Changing the order of summation of the multiple ) we get

> 2(1)%5(?:;): > <j;1>(n+1—j1>)fn+2—j>'

j=k+1 2 m=k j=k+1

After changing j to m and substituting this expression into (14) we get

o () ")
En,k—n+1_ +mzk:+1 n+l-m (n—-m+1)(n—m+2)

The expression in the square brackets may be rewritten as

n+1—(1-1/k)m <7Z_1>

m—-m+1)n-m+2)\k-1

and if m = k then it is equal to 1/(n — k + 1). Thus

= nt+l1—(1-1/k)/m (m-1
me Zk(n—m-i-l)(n—m‘i'Q)(k_l)vm

The Theorem 2 is proved.

8 The mathematical expectation of the lower ex-
pectation of a subnormal fuzzy set

Lemma 1. The mathematical expectation of the lower expectation of subnormal
uniformly randomized fuzzy set may be found by substituting vn41—; instead of v;,
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1 €n, in Lemma 1, and is equal to

n

- [
SE*%L = ; m

Proof. According to the definition of the lower expectation for the realization of
the randomized fuzzy set A under the hypothesis H, : p = r € S,, we have

E.(r) = zn: <Maka — Max vk>

. k<t
i=1

(where it is assumed that 1>€/[<ag( v, := 0 and Rank v, = rp, k € n.

Using the Abel formula of summation we get
n
IUGRED]
i=1

where h = max vy, k € n, is the height of the randomized fuzzy set A. The expected
value of the stochastic variable v is

r(j)
Ev,=1-—
Vi n+1’

and thus

crm =0 - z (e - 220) -
nw; +Zwl min r( 1)] .

Let ming<_y ry = n + 1. Then using the function 2, : n = n,

&, (i) = klélzllll r(k) —1,

we get
1 n
g* =¢£ Eh &p = i ——— i r.
(1) = EEpep =1) = fpgyy D wiee i)
and the unconditional mathematical expectation is equal to

1
EBAn =Y Eur) SACEST WAn,
reS,

where i-th coordinate of the vector A, is defined by the relation

An(i) = > a, (i)

reSy
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Let’s proof that
An (i) =nln+1-1)/i. (15)

To this end as it have been done previously let’s consider the permutation r €
Sp—1 and inducing by it n permutations from S, S;(r), i € n. Let’s express the
coordinates of the vector

Es;(r) = (ESJ‘(’I")(]‘)7 e s (1) (n))

by means of the coordinates &,.(i), i € n — 1,

Ls;(r) (1) = { gﬁr(l) 1 gz E:;’
Since S, = U {Si(r),i € n}, then
r€Sn—1
M) = Y wi)= Y Y (i) =
SESH réSn—1 j=1
= Y +1-i)@@)+1)=(n+1=)A1() - (n—1)!).
r€Sn_1

It is easily to test whether (15) is the resolution of the obtained equation
Thus

- 1< - 1 1
EE*/\ = i 1 —1 = - — — ,
n+1;wz(n+ /i ;w’<i n+1>
and adding on the Abel’s formula we get the Lemma 2.
Let’s note that if w; = 1/n then
Elmn| 1 Inn

n(n +1) n

=& =

The expected value is evaluated by the number of the Pareto points in the
random substitution.
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