## On Some Geometric Transformation of t-norms\*

Erich Peter Klement<sup>1</sup>, Radko Mesiar<sup>2</sup> and Endre Pap<sup>3</sup>

<sup>1</sup> Dept. Mathematics, Johannes Kepler University,

A-4040 Linz. Austria

<sup>2</sup> Dept. Mathematics, Fac. Civil Engineering,
Slovak Tech. Univ., SK-81368 Bratislava, Slovakia and

UTIA AV CR Prague, Czech Republic

<sup>3</sup> Inst. of Mathematics, Univ. of Novi Sad

YU-21000 Novi Sad, Yugoslavia

#### Abstract

Given a triangular norm T, its t-reverse  $T^*$ , introduced by C. Kimberling ( $Publ.\ Math.\ Debrecen\ 20,\ 21\text{-}39,\ 1973$ ) under the name invert, is studied. The question under which conditions we have  $T^{**}=T$  is completely solved. The t-reverses of ordinal sums of t-norms are investigated and a complete description of continuous, self-reverse t-norms is given, leading to a new characterization of the continuous t-norms T such that the function G(x,y)=x+y-T(x,y) is a t-conorm, a problem originally studied by M.J. Frank ( $Aequationes\ Math.\ 19,\ 194\text{-}226,\ 1979$ ). Finally, some open problems are formulated.

#### 1 Introduction

Triangular norms (t-norms) and the corresponding t-conorms play a fundamental role in several branches of mathematics, e.g., in probabilistic metric spaces [6], in the theory of generalized measures and games [1] and in fuzzy logic [5]. In [3], the t-reverse  $T^*$  of a t-norm T was introduced (under the name invert). We somewhat extend and complete the study of t-reverses done there.

A triangular norm (t-norm for short) is a function  $T:[0,1]^2 \to [0,1]$  which is commutative, associative, non-decreasing in both components, and satisfies the boundary condition T(x,1)=x for each  $x\in[0,1]$ . Given a t-norm T, its dual t-conorm  $S_T$  is defined by

$$S_T(x,y) = 1 - T(1-x,1-y).$$

The most important t-norms, together with their dual t-conorms are

<sup>\*</sup>The second and the third author would like to thank the Department of Mathematics of the Johannes Kepler University, Linz, Austria, for the financial support of their visits; most of the paper was written there.

$$\begin{split} T_{\mathbf{M}}(x,y) &= \min(x,y), & S_{\mathbf{M}}(x,y) &= \max(x,y); \\ T_{\mathbf{P}}(x,y) &= xy, & S_{\mathbf{P}}(x,y) &= x+y-xy; \\ T_{\mathbf{L}}(x,y) &= \max(0,x+y-1), & S_{\mathbf{L}}(x,y) &= \min(1,x+y); \\ T_{\mathbf{W}}(x,y) &= \begin{cases} \min(x,y) & \text{if } \max(x,y) &= 1, \\ 0 & \text{otherwise}, \end{cases} & S_{\mathbf{W}}(x,y) &= \begin{cases} \max(x,y) & \text{if } \min(x,y) &= 0, \\ 1 & \text{otherwise}. \end{cases} \end{split}$$

It is obvious that these t-norms satisfy the inequality  $T_{\mathbf{W}} \leq T_{\mathbf{L}} \leq T_{\mathbf{P}} \leq T_{\mathbf{M}}$ . Moreover, for each t-norm T we have  $T_{\mathbf{W}} \leq T \leq T_{\mathbf{M}}$ . A continuous t-norm is called Archimedean if for each  $x \in ]0,1[$  we have T(x,x) < x

An interesting family of t-norms  $\{T_s^{\mathbf{F}}\}_{s\in[0,+\infty]}$  was studied in [2]:

$$T_{s}^{\mathbf{F}}(x,y) = \begin{cases} T_{\mathbf{M}}(x,y) & \text{if } s = 0, \\ T_{\mathbf{P}}(x,y) & \text{if } s = 1, \\ T_{\mathbf{L}}(x,y) & \text{if } s = \infty, \\ \log_{s} \left[ 1 + \frac{(s^{x} - 1)(s^{y} - 1)}{s - 1} \right] & \text{otherwise.} \end{cases}$$

These t-norms will be referred to as the Frank t-norms, the family of the dual Frank t-conorms will be denoted  $\{S_s^{\mathbf{F}}\}_{s\in[0,+\infty]}$ . The family  $\{T_s^{\mathbf{F}}\}_{s\in[0,+\infty]}$  of Frank t-norms is decreasing (see [1] and [4]) and continuous in the sense that we have

$$(s_n)_{n\in\mathbb{N}}\uparrow t\Rightarrow (T_{s_n}^{\mathbf{F}})_{n\in\mathbb{N}}\downarrow T_t^{\mathbf{F}}.$$

## 2 Definition of the *t*-reverse

Let T be a t-norm. Then the function  $T^*: [0,1]^2 \to [0,1]$  defined by

$$T^*(x,y) = \max(0, x+y-1+T(1-x, 1-y)) \tag{1}$$

is called the t-reverse of T. This definition goes back to [3] where the name invert was used for  $T^*$ .

Using the dual t-conorm  $S_T$  of T, this definition can be rewritten as

$$T^*(x,y) = \max(0, x + y - S_T(x,y)). \tag{2}$$

The construction of  $T^*$  can be conceived geometrically as follows (it is visualized in Figure 1):

- (i) The graph of T is rotated  $180^o$  around the vertical symmetry axis of the unit cube
- (ii) The plane z = x + y 1 is added to the rotated graph (this implies that the boundary conditions  $T^*(x, 1) = x$  and  $T^*(x, 0) = 0$  are satisfied).
- (iii) Any negative values are replaced by zero.



59

Figure 1: Visualization of the reversion: a t-norm (top left), rotating it around the vertical symmetry axis (top right), adding the plane x+y-1 (bottom left), cutting off negative values (bottom right).

It is clear that  $T^*$  satisfies the symmetry and boundary conditions required for t-norms. The monotonicity and associativity, however, may not hold for  $T^*$ :

**Example 2.1.** (i)  $T_{\mathbf{W}}^* = T_{\mathbf{L}}$ .

- (ii)  $T_{\mathbf{L}}^* = T_{\mathbf{L}}$ .
- (iii) If T is the t-norm given by

$$T(x,y) = \begin{cases} \frac{xy}{x+y-xy}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{otherwise} \end{cases}$$

then  $T^*$  is not associative, since, e.g.,  $T^*(T^*(0.2, 0.9), 0.9) \approx 0.1952$  and  $T^*(0.2, T^*(0.9, 0.9)) \approx 0.1948$ .

(iv) Let T be the ordinal sum  $\{\langle 0, 0.5, T_{\mathbf{W}} \rangle, \langle 0.5, 1, T_{\mathbf{L}} \rangle\}$  (for the general definition of ordinal sums see Section 4). Then  $T^*$  is not non-decreasing, since, e.g.,  $T^*(0.4, 0.6) = 0.4 > 0.2 = T^*(0.6, 0.6)$ .

Examples 2.1 (iii) and (iv) both show that the t-reverse  $T^*$  of a t-norm T not necessarily is a t-norm. We shall say that a t-norm T is t-reversible if its t-reverse  $T^*$  is also a t-norm, and we shall denote the family of all t-reversible t-norms by  $\mathcal{R}$ .

## 3 General properties

In [3] it was conjectured that a t-norm T is t-reversible only if T equals one of the basis t-norms  $T_{\mathbf{M}}$ ,  $T_{\mathbf{P}}$ ,  $T_{\mathbf{L}}$ ,  $T_{\mathbf{W}}$  or a specific ordinal sum (for the general definition of ordinal sums see again Section 4) thereof. However, this conjecture turns out to be incorrect, as a consequence of the following result.

**Theorem 3.1.** For all t-norms T with  $T \leq T_L$  we have  $T^* = T_L$ .

*Proof.* If  $x+y \leq 1$  then  $x+y = S_{\mathbf{L}}(x,y) \leq S_T(x,y)$ , where  $S_T$  is the dual t-conorm of T, in which case we have  $x+y-S_T(x,y) \leq 0$  and, therefore,  $T^*(x,y)=0$ . If x+y>1 then  $1=S_{\mathbf{L}}(x,y) \leq S_T(x,y)$ , implying  $S_T(x,y)=1$  and, consequently,  $T^*(x,y)=x+y-1$ .

Theorem 13 in [3] claims that for a t-norm T we always have  $T^{**} = T$ . This is not true since T may not be t-reversible, in which case  $T^{**} = (T^*)^*$  is not properly defined. Even if T is t-reversible, this claim is wrong: from Example 2.1 (i) and (ii) we have  $T^*_{\mathbf{W}} = T_{\mathbf{L}}$  and  $T^*_{\mathbf{L}} = T_{\mathbf{L}}$ , showing that  $T^{**}_{\mathbf{W}} \neq T_{\mathbf{W}}$ . However, we get the following result:

**Theorem 3.2.** Let T be a t-reversible t-norm. Then  $T^{**} = T$  if and only if  $T \geq T_L$ .

*Proof.* By definition we have

$$T^{**}(x,y) = \max[0, x + y - S_{T^*}(x,y)],$$

where  $S_{T^*}$  is the dual of the t-norm  $T^*$ , for which we get

$$S_{T^*}(x,y) = 1 - T^*(1-x,1-y)$$

$$= 1 - \max[0,1-x+1-y-S_T(1-x,1-y)]$$

$$= 1 - \max[0,T(x,y)+1-x-y]$$

$$= \min[1,x+y-T(x,y)].$$

This implies

$$\begin{array}{rcl} T^{**}(x,y) & = & \max[0,x+y-\min(1,x+y-T(x,y))] \\ & = & \max[0,\max(x+y-1,T(x,y))] \\ & = & \max(T_{\mathbf{L}}(x,y),T(x,y)). \end{array}$$

Now it is clear that  $T^{**} = T$  if and only if  $T \geq T_{\mathbf{L}}$ .

**Corollary 3.3.** Suppose that both T and  $T^*$  are t-reversible t-norms. Then we have  $T^{***} = T^*$ .

*Proof.* This is obvious since we always here

$$T^*(x,y) = \max(0, x+y-S_T(x,y)) > \max(0, x+y-1) = T_L(x,y).$$

**Theorem 3.4.** Let T be a continuous Archimedean, t-reversible t-norm. Then  $T^*$  is a continuous Archimedean t-norm.

*Proof.* Continuity follows from the definition. That  $T^*$  is Archimedean is a consequence of the fact that for all  $x \in ]0,1[$ 

$$T^*(x, x) = \max(0, x + x - S_T(x, x)) < x,$$

since the dual t-conorm  $S_T$  of T satisfies  $S_T(x,x) > x$  for all  $x \in ]0,1[$ .

## 4 t-reverses of ordinals sums

An important way to construct new t-norms from given ones is that of an ordinal sum: let  $\{]\alpha_k, \beta_k[\}_{k \in K}$  be a non-empty countable family of pairwise disjoint open subintervals of [0,1] and let  $\{T_k\}_{k \in K}$  be a family of corresponding t-norms. Then the ordinal sum  $\{\langle \alpha_k, \beta_k, T_k \rangle\}_{k \in K}$  is the function  $T: [0,1]^2 \to [0,1]$  defined by

$$T(x,y) = \begin{cases} \alpha_k + (\beta_k - \alpha_k) \cdot T_k \left( \frac{x - \alpha_k}{\beta_k - \alpha_k}, \frac{y - \alpha_k}{\beta_k - \alpha_k} \right) & \text{if } x, y \in [\alpha_k, \beta_k], \\ \min(x,y) & \text{otherwise,} \end{cases}$$

which is always a t-norm. In order to keep the notation short, we also consider here the trivial ordinal sum  $T = \{\langle 0, 1, T_1 \rangle\}$ , i.e., where  $K = \{1\}$  is a one point set and  $\alpha_1 = 0$  and  $\beta_1 = 1$ , in which case we have  $T = T_1$ .

Ordinal sums of t-conorms are defined in the same way as ordinal sums of t-norms, only replacing min by max. Observe, however, that the dual t-conorm of an ordinal sum  $\{\langle \alpha_k, \beta_k, T_k \rangle\}_{k \in K}$  of t-norms is the ordinal sum  $\{\langle 1 - \beta_k, 1 - \alpha_k, S_{T_k} \rangle\}_{k \in K}$  of t-conorms which, in general, is different from the ordinal sum  $\{\langle \alpha_k, \beta_k, S_{T_k} \rangle\}_{k \in K}$ .

Each continuous t-norm can be written as an ordinal sum  $\{\langle \alpha_k, \beta_k, T_k \rangle\}_{k \in K}$  such that all  $T_k$  are continuous Archimedean t-norms.

Denote by  $\mathcal{F}$  the family of t-norms T such that the function  $G:[0,1]^2\to [0,1]$  given by

$$G(x,y) = x + y - T(x,y) \tag{3}$$

is associative, i.e., a t-conorm.

Each element of  $\mathcal{F}$  can be written as an ordinal sum  $\{\langle \alpha_k, \beta_k, T_k \rangle\}_{k \in K}$  such that all  $T_k$  are Frank t-norms (see [2]). For more details about ordinal sums, see, e.g., [6].

In [3] the class of all t-norms satisfying the condition

$$x \le u \text{ and } y \le v \Rightarrow u + v - T(u, v) \ge x + y - T(x, y)$$
 (4)

was denoted by  $\mathcal{M}$  (in the language of [3], these t-norms are said to be of moderate growth). In [3, Theorem 12] it is shown that, given  $T \in \mathcal{M}$ , then  $T^*$  is necessarily non-decreasing in each component, so only the associativity of the t-reverse can be a problem. Finally, Theorem 16 in [3] proves that if  $T \in \mathcal{M}$  is an ordinal sum of t-reversible t-norms, i.e.,  $T = \{\langle \alpha_k, \beta_k, T_k \rangle\}_{k \in K}$ , with  $T_k$  reversible, then T itself is t-reversible, and  $T^*$  equals the ordinal sum  $\{\langle 1 - \beta_k, 1 - \alpha_k, T_k^* \rangle\}_{k \in K}$ .

An interesting question is now the relation between the three families  $\mathcal{R}, \mathcal{M}$ , and  $\mathcal{F}$ , i.e., of the families of t-norms which are t-reversible, of moderate growth, and which are solutions of the problem of Frank [2], respectively. Here are some simple observations concerning this problem.

**Example 4.1.** (i) The monotonicity of t-conorms implies that all elements of  $\mathcal{F}$  belong to  $\mathcal{M}$ , i.e.,  $\mathcal{F}$  is a subfamily of  $\mathcal{M}$ .

- (ii) Conversely, an element of  $\mathcal{M}$  need not be an element of  $\mathcal{F}$ : the t-norm T mentioned in Example 2.1 (iii) is an example for this, showing that  $\mathcal{F}$  is a proper subfamily of  $\mathcal{M}$ .
- (iii) Not each t-reversible t-norm belongs to  $\mathcal{M}$ :  $T_{\mathbf{W}}$  is an example for this. Hence,  $\mathcal{R}$  is not a subfamily of  $\mathcal{M}$ .

The exact relationship relation between the three families  $\mathcal{R}$ ,  $\mathcal{M}$  and  $\mathcal{F}$  is given as follows.

**Theorem 4.2.** A t-norm T is both t-reversible and an element of  $\mathcal{M}$  if and only if T is an element of  $\mathcal{F}$  (this means that we have  $\mathcal{F} = \mathcal{R} \cap \mathcal{M}$ ).

*Proof.* Assume first that  $T = \{\langle \alpha_k, \beta_k, T_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$  is an element of  $\mathcal{F}$  and, consequently, of  $\mathcal{M}$ . Let  $S_T$  be the dual t-conorm of T, i.e.,  $S_T$  is the ordinal sum  $\{\langle 1 - \beta_k, 1 - \alpha_k, S_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$ . Then from [2] we know that the expression

$$x + y - S_T(x, y)$$

is always nonnegative and defines a t-norm. Taking into account

$$T^*(x,y) = \max(0, x + y - S_T(x,y))$$
  
=  $x + y - S_T(x,y),$ 

it is clear that T is t-reversible.

If, conversely,  $T \in \mathcal{R} \cap \mathcal{M}$ , observe first that (4) implies the inequality

$$1 = 1 + 1 - T(1, 1) > 1 - x + 1 - y - T(1 - x, 1 - y),$$

from which we get

$$0 \le x + y - 1 + T(1 - x, 1 - y) = x + y - S_T(x, y).$$

Now, using  $T \in \mathcal{R}$  and (2), we get

$$T^*(x,y) = x + y - S_T(x,y)$$

or, equivalently,

$$S_T(x, y) = x + y - T^*(x, y),$$

which, as a consequence of the results in [2], means that  $S_T$  can be written as an ordinal sum  $\{\langle \alpha_k, \beta_k, S_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$ , implying that we have  $T = \{\langle 1 - \beta_k, 1 - \alpha_k, T_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$ , i.e.,  $T \in \mathcal{F}$ .

**Remark 4.3.** (i) Note that from the proof of Theorem 4.2 we can conclude that for  $T \in \mathcal{F}$  we have

$$T^*(x,y) = 1 - S(1 - x, 1 - y),$$

where S is the t-conorm defined by S(x, y) = x + y - T(x, y).

(ii) Let T be an ordinal sum of Frank t-norms, i.e.,  $T = \{\langle \alpha_k, \beta_k, T_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$ . Using the fact that for each pair  $(T_{s_k}^{\mathbf{F}}, S_{s_k}^{\mathbf{F}})$  we have

$$T_{s_k}^{\mathbf{F}}(x,y) + S_{s_k}^{\mathbf{F}}(x,y) = x + y$$

(see again [2]), we see that  $T^*$  equals the ordinal sum  $\{\langle 1-\beta_k, 1-\alpha_k, T_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$ , the dual t-conorm  $S_{T^*}$  of which is just given by  $S_{T^*}(x,y) = x + y - T(x,y)$ . (iii) This means that all Frank t-norms are self-reverse, i.e., we have  $(T_s^{\mathbf{F}})^* = T_s^{\mathbf{F}}$ 

for all  $s \in [0, +\infty]$  (for a more detailed discussion see Section 5).

Example 2.1 (iv) and Theorem 3.1 show that ordinal sums of t-reversible t-norms, in general, need not be t-reversible (this fact is visualized in Figure 2). The following proves that a t-reversible ordinal sum can have at most one summand which is smaller than  $T_{\rm L}$ .

Figure 2: Ordinal sum  $\{\langle 0.3, 0.9, T \rangle\}$  with  $T(x,y) = 1 - \min[1 - (\sqrt{1-x} + \sqrt{1-y})^2]$ , i.e.,  $T < T_{\mathbf{L}}$  (top left) whose *t*-reverse (top right) is not monotone and, therefore, not a *t*-norm. The *t*-reverse (bottom right) of the ordinal sum  $\{\langle 0.4, 1, T \rangle\}$  (bottom left), however, is a *t*-norm, namely, the ordinal sum  $\{\langle 0, 0.6, T_{\mathbf{L}} \rangle\}$ .

**Theorem 4.4.** Let T be the ordinal sum  $\{\langle \alpha_k, \beta_k, T_k \rangle\}_{k \in K}$  such that T is treversible and  $T_{k_0} < T_{\mathbf{L}}$  for some  $k_0 \in K$ . Then we have  $\beta_{k_0} = 1$  (as a consequence, there is at most one summand  $T_k$  with  $T_k < T_{\mathbf{L}}$ ).

*Proof.* Let  $(x,y) \in ]0,1[^2$  be a point such that  $T_{k_0}(x,y) < T_{\mathbf{L}}(x,y)$ , i.e.,

$$x + y - 1 - T_{k_0}(x, y) > 0. (5)$$

Assume that  $\beta_{k_0} < 1$  is true. Then, on the one hand, we have

$$T^*(1 - \beta_{k_0}, 1 - \beta_{k_0}) = 1 - \beta_{k_0}. \tag{6}$$

On the other hand, observe that

$$1 - \alpha_{k_0} + (\alpha_{k_0} - \beta_{k_0}) \cdot x > 1 - \beta_{k_0}, \tag{7}$$

$$1 - \alpha_{k_0} + (\alpha_{k_0} - \beta_{k_0}) \cdot y > 1 - \beta_{k_0}, \tag{8}$$

implying that

$$\begin{split} T^*(1 - \alpha_{k_0} + (\alpha_{k_0} - \beta_{k_0}) \cdot x, 1 - \alpha_{k_0} + (\alpha_{k_0} - \beta_{k_0}) \cdot y) \\ &= & \max(0, 1 - \alpha_{k_0} + (\alpha_{k_0} - \beta_{k_0}) \cdot x + 1 - \alpha_{k_0} + (\alpha_{k_0} - \beta_{k_0}) \cdot y - 1 \\ & \quad + \alpha_{k_0}(\alpha_{k_0} - \beta_{k_0}) \cdot T_{k_0}(x, y)) \\ &= & \max(0, 1 - \alpha_{k_0} + (\beta_{k_0} - \alpha_{k_0}) \cdot (T_{k_0}(x, y) - x - y)) \\ &= & \max(0, 1 - \beta_{k_0} - (\beta_{k_0} - \alpha_{k_0}) \cdot (x + y - 1 - T_{k_0}(x, y))) \\ &< & 1 - \beta_{k_0}, \end{split}$$

where the inequality follows from (5). This, together with (6), (7) and (8), violates the monotonicity of the t-norm  $T^*$ , and therefore  $\beta_{k_0} < 1$  cannot be true.

Conversely, it is not difficult to see that the each ordinal sum of some special form is t-reversible allowing us to formulate the following result:

Corollary 4.5. Let the t-norm T be the ordinal sum  $\{\langle \alpha_k, \beta_k, T_k \rangle\}_{k \in K}$  of Frank t-norms up to possibly one summand, say  $T_{k_0}$ , with  $T_{k_0} < T_{\mathbf{L}}$  and  $\beta_{k_0} = 1$ . Then T is t-reversible and its t-reverse  $T^*$  equals the t-reverse of  $\tilde{T}$ , where  $\tilde{T}$  is the ordinal sum  $\{\langle \alpha_k, \beta_k, \tilde{T}_k \rangle\}_{k \in K}$  with  $\tilde{T}_k = T_k$  for all  $k \neq k_0$  and  $\tilde{T}_{k_0} = T_{\mathbf{L}}$ .

#### 5 Self-reverse *t*-norms

We are now interested in studying t-norms which are self-reverse, i.e., satisfy the equality  $T^* = T$ . From Remark 4.3(iii) we know that all Frank t-norms  $T_s^{\mathbf{F}}$ ,  $s \in [0, +\infty]$  have this property. We are now able to characterize all continuous self-reverse t-norms.

**Theorem 5.1.** Let T be a continuous t-norm. Then  $T^* = T$  if and only if T is an ordinal sum  $\{\langle \alpha_k, \beta_k, T_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$  of Frank t-norms such that for each  $k \in K$  with  $T_{s_k}^{\mathbf{F}} \neq T_{\mathbf{M}}$  there is a  $j \in K$  with  $s_j = s_k$ ,  $\alpha_j = 1 - \beta_k$  and  $\beta_j = 1 - \alpha_k$ .

*Proof.* Assuming  $T^* = T$  then we have  $T^{**} = T$  and, by Theorem 3.2,  $T \geq T_L$ . Then for the dual t-conorm  $S_T$  of T we obtain

$$S_T(x,y) \leq S_{\mathbf{L}}(x,y) \leq x+y,$$

implying

$$x + y - S_T(x, y) \ge 0$$

and, taking into account  $T^* = T$ ,

$$T(x,y) = x + y - S_T(x,y).$$

Because of [2], this means that T must be an ordinal sum  $\{\langle \alpha_k, \beta_k, T_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$  of Frank t-norms. From Remark 4.3(ii) we know that T has to be symmetric in the sense that for each  $k \in K$  with  $T_{s_k}^{\mathbf{F}} \neq T_{\mathbf{M}}$  ( $T_{\mathbf{M}}$  acts like a neutral element when constructing ordinal sums and does not influence this symmetry) there exists a  $j \in K$  such that  $s_j = s_k$ ,  $\alpha_j = 1 - \beta_k$  and  $\beta_j = 1 - \alpha_k$ .

Recall that in the trivial case  $K = \{1\}$ ,  $\alpha_1 = 0$  and  $\beta_1 = 1$ , i.e., if T itself is a Frank t-norm, the symmetry condition is always satisfied. In the light of this theorem we can give the following variation of the results of [2]:

**Corollary 5.2**. For a continuous t-norm T the function  $G:[0,1]^2 \to [0,1]$  given by G(x,y)=x+y-T(x,y) is a t-conorm if and only if T is an ordinal sum  $\{\langle \alpha_k, \beta_k, T_{s_k}^{\mathbf{F}} \rangle\}_{k \in K}$  of Frank t-norms, in which case the t-conorm G is dual to the t-reverse  $T^*$ , i.e.,

$$G(x,y) = 1 - T^*(1-x, 1-y).$$

# 6 Concluding remarks

Some questions concerning t-reverses of t-norms remain still open. The most important open problem is the complete characterization of all t-reversible t-norms. Other related questions can be formulated as follows:

Question 1. Is a continuous t-norm T t-reversible if and only if T is an ordinal sum whose summands are Frank t-norms up to possibly one summand in the upper right corner of the unit square which is weaker than  $T_{\mathbf{L}}$ ?

Question 2. If T is a t-reversible t-norm, is  $T^*$  necessarily t-reversible?

Question 3\*. If T is a t-reversible t-norm, is  $T^*$  necessarily continous?

**Question 4.** If T is a t-reversible t-norm, is  $T^*$  necessarily an ordinal sum of Frank t-norms?

We conjecture that there is an affirmative answer to each of these questions. However, we have not proven this claim so far (nor do we have counterexamples). Obviously, if there is a positive answer to Question 4, this would imply positive answers to both Questions 2 and 3.

\* Note added in proof: An affirmative answer to Question 3 was given in M. Šabo, On the continuity of t-reverse of t-norms, Tatra Mountains Math. Publ. 6 (1995), 173-178.

## References

- [1] Butnariu, D.; Klement, E.P. Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer, Dordrecht, 1993.
- [2] Frank, M.J. On the simultaneous associativity of F(x, y) and x + y F(x, y). Aequationes Math. 19 (1979), 194-226.
- [3] Kimberling, C. On a class of associative functions. *Publ. Math. Debrecen*, 20 (1973), 21-39.
- [4] Klement, E.P.; Mesiar, R.; Pap, E. A characterization of the ordering of continuous t-norms. Fuzzy Sets and Systems 86 (1997), 189-195.
- [5] Kruse, R.; Gebhardt, J.; Klawonn, F. Foundations of Fuzzy Systems. J. Wiley & Sons, Chichester, 1994.
- [6] Schweizer, B.; Sklar, A. Probabilistic Metric Spaces. North-Holland, New York, 1983.