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Abstract

Given a triangular norm 7', its ¢-reverse T, introduced by C. Kimberling
(Publ. Math. Debrecen 20, 21-39, 1973) under the name invert, is stud-
ied. The question under which conditions we have T** = T is completely
solved. The t-reverses of ordinal sums of ¢-norms are investigated and a
complete description of continuous, self-reverse ¢-norms is given, leading to
a new characterization of the continuous ¢-norms T such that the function
G(z,y) =z +y—T(x,y) is a t-conorm, a problem originally studied by M.J.
Frank (Aequationes Math. 19, 194-226, 1979). Finally, some open problems
are formulated.

1 Introduction

Triangular norms (¢-norms) and the corresponding t-conorms play a fundamental
role in several branches of mathematics, e.g., in probabilistic metric spaces [6], in
the theory of generalized measures and games [1] and in fuzzy logic [5]. In [3], the
t-reverse T* of a t-norm T was introduced (under the name invert). We somewhat
extend and complete the study of ¢-reverses done there.

A triangular norm (t-norm for short) is a function 7 : [0,1]> — [0, 1] which
is commutative, associative, non-decreasing in both components, and satisfies the
boundary condition T'(z,1) = z for each z € [0,1]. Given a t-norm T, its dual
t-conorm St is defined by

The most important ¢-norms, together with their dual ¢-conorms are
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Tn(x, y) = min(z,y), Swm(z,y) = max(z,y);
Te(z,y) = zy, Se(z,y) =z +y—ay;
Ti(z,y) = max(0,z +y — 1), Stu(z,y) = min(1,z + y);
_ [min(z,y) if max(z,y) =1, _ [max(z,y) if min(z,y)=0,
Tw(z,y)= {0 otherwise, Swz,y) = 1 otherwise.

It is obvious that these t-norms satisfy the inequality Tw < T, < Tp < Tm.
Moreover, for each t-norm T" we have Tw < T' < Tnp. A continuous t-norm is
called Archimedean if for each x €]0,1[ we have T'(z,z) < x

An interesting family of t-norms {77 },cj0,400] Was studied in [2]:

Te(z,y) if s=1,
TsF(way) = Ti(x,y) if s = o0,

log, |1+ %] otherwise.

These t-norms will be referred to as the Frank t-norms, the family of the dual
Frank t-conorms will be denoted {S¥ };¢(0,4+00)- The family {TF},¢(0, 400 Of Frank
t-norms is decreasing (see [1] and [4]) and continuous in the sense that we have

($n)nen Tt => (TE )pen L TF.

2 Definition of the t-reverse
Let T be a t-norm. Then the function T* : [0,1]? — [0, 1] defined by
T*(z,y) =max(0,z +y -1+ T (1 —=z,1-y)) (1)

is called the t-reverse of T'. This definition goes back to [3] where the name invert
was used for T*.
Using the dual ¢-conorm St of T', this definition can be rewritten as

T*(z,y) = max(0,z +y — St(z,y))- (2)

The construction of T* can be conceived geometrically as follows (it is visualized
in Figure 1):

(i) The graph of T is rotated 180° around the vertical symmetry axis of the unit
cube

(ii) The plane z =z + y — 1 is added to the rotated graph (this implies that the
boundary conditions T*(z, 1) =  and T*(z,0) = 0 are satisfied).

(iii) Any negative values are replaced by zero.
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Figure 1: Visualization of the reversion: a t-norm (top left), rotating it around the
vertical symmetry axis (top right), adding the plane z+y —1 (bottom left), cutting
off negative values (bottom right).
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It is clear that T satisfies the symmetry and boundary conditions required for
t-norms. The monotonicity and associativity, however, may not hold for 7™:

Example 2.1. (i) T3y = T

(i) T} = Tv.

(iii) If T is the t-norm given by

it (n,y) £ (0,0)
— +y—zy’ ) )
T(@y) { 0, otherwise
then T* is not associative, since, e.g., T*(7*(0.2,0.9),0.9) ~ 0.1952 and
T+(0.2,7%(0.9,0.9)) ~ 0.1948.

(iv) Let T be the ordinal sum {(0,0.5, Tw), (0.5,1,T1,)} (for the general definition
of ordinal sums see Section 4). Then T™* is not non-decreasing, since, e.g.,
7+%(0.4,0.6) = 0.4 > 0.2 =T7*(0.6,0.6).

Examples 2.1 (iii) and (iv) both show that the t-reverse T* of a t-norm T not
necessarily is a t-norm. We shall say that a t-norm T is t-reversible if its t-reverse
T* is also a t-norm, and we shall denote the family of all ¢-reversible ¢t-norms by
R.

3 General properties

In [3] it was conjectured that a t-norm T is t-reversible only if T equals one of the
basis t-norms T, Te, Tr, Tw or a specific ordinal sum (for the general definition
of ordinal sums see again Section 4) thereof. However, this conjecture turns out to
be incorrect, as a consequence of the following result.

Theorem 3.1. For all t-norms T with T < Ty, we have T* = Ty,.

Proof. lf t4+y < 1then z+y = Si(z,y) < Sr(z,y), where St is the dual ¢-conorm
of T, in which case we have z + y — Sy(z,y) < 0 and, therefore, T*(z,y) = 0. If
x4y >1then 1 = Si(x,y) < Sr(z,y), implying Sr(z,y) = 1 and, consequently,
T*(z,y) =x+y— 1. ]

Theorem 13 in [3] claims that for a t-norm 7" we always have T** = T.This is
not true since T' may not be t-reversible, in which case T** = (T*)* is not properly
defined. Even if T is ¢-reversible, this claim is wrong: from Example 2.1 (i) and
(ii) we have Ty, = Ty, and Tf = T1,, showing that T3y # Tw. However, we get the
following result:

Theorem 3.2. Let T be a t-reversible t-norm. Then T** = T if and only if
T > Ty.
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Proof. By definition we have
T**('Ta y) = max[(), T+y— ST* (l‘, y)]a
where S7+ is the dual of the t-norm 7™, for which we get

ST* ('Ta y)

1-T*Q1—z,1—y)
1-max[0,1—-z4+1—-y—Sr(l—z,1—-y)]
1 —max[0,T(z,y) +1 — 2 — y]

= min[l,z +y - T(z,y)].

This implies

T**(z,y) = max[0,z+y—min(l,z+y—T(x,y))]
= max[0,max(z +y — 1,T(z,y))]
= maX(TL('Tay)aT('Tay))'
Now it is clear that T** =T if and only if T > T,. |

Corollary 3.3. Suppose that both T and T* are t-reversible t-norms. Then we
have T*** = T*.

Proof. This is obvious since we always here
T*(z,y) = max(0,z +y — Sr(z,y)) > max(0,z +y — 1) = Tr(z,y).
|

Theorem 3.4. Let T be a continuous Archimedean, t-reversible t-norm. Then T*
is a continuous Archimedean t-norm.

Proof. Continuity follows from the definition. That 7* is Archimedean is a conse-
quence of the fact that for all z €]0, 1]

T*(z,z) = max(0,z + = — Sr(z,z)) < z,

since the dual ¢-conorm St of T satisfies St (z,z) > z for all z €]0,1]. [ ]

4 t-reverses of ordinals sums

An important way to construct new ¢-norms from given ones is that of an ordinal
sum: let {Jag, Bk[}rekx be a non-empty countable family of pairwise disjoint open
subintervals of [0,1] and let {T}}rek be a family of corresponding t-norms. Then
the ordinal sum {(ax, Bk, Tk) }rex is the function T : [0,1]? — [0, 1] defined by

Ty ={ %+ (Br — o) - T (;,:Z“k : éic__og“k) if 2,y € [ow, Brl,
min(z,y) otherwise,
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which is always a t-norm. In order to keep the notation short, we also consider
here the trivial ordinal sum 7' = {(0,1,T})}, i.e., where K = {1} is a one point set
and a; = 0 and 1 = 1, in which case we have T' = T7.

Ordinal sums of t-conorms are defined in the same way as ordinal sums of t-
norms, only replacing min by max. Observe, however, that the dual ¢t-conorm of an
ordinal sum {(ag, Bk, Tk)}rex of t-morms is the ordinal sum {(1 — Sy,
1 — ag, ST, ) }kex of t-conorms which, in general, is different from the ordinal sum
{{ak, Be, St) trek -

Each continuous t-norm can be written as an ordinal sum {{ag, Bk, Tk) }rek
such that all T}, are continuous Archimedean ¢-norms.

Denote by F the family of t-norms T' such that the function G : [0,1]? — [0, 1]
given by

G(r,y) =z+y—T(z,y) (3)

is associative, i.e., a t-conorm.

Each element of F can be written as an ordinal sum {{a, Bk, Tk)}rek such
that all Ty are Frank ¢t-norms (see [2]). For more details about ordinal sums, see,
e.g., [6].

In [3] the class of all ¢-norms satisfying the condition

r<uvandy<v=>ut+v—T(u,v)>z+y—T(x,y) (4)

was denoted by M (in the language of [3], these t-norms are said to be of moderate
growth). In [3, Theorem 12] it is shown that, given T' € M, then T* is necessarily
non-decreasing in each component, so only the associativity of the ¢-reverse can be
a problem. Finally, Theorem 16 in [3] proves that if T € M is an ordinal sum of
t-reversible t-norms, i.e., T = {(ag, Bk, Tk) trek, with T} reversible, then T itself
is t-reversible, and T* equals the ordinal sum {(1 — 8,1 — ag, T{) brek-

An interesting question is now the relation between the three families R, M,
and F, i.e., of the families of ¢t-norms which are t-reversible, of moderate growth,
and which are solutions of the problem of Frank [2], respectively. Here are some
simple observations concerning this problem.

Example 4.1. (i) The monotonicity of t-conorms implies that all elements of F
belong to M, i.e., F is a subfamily of M.
(ii) Conversely, an element of M need not be an element of F : the t-norm T
mentioned in Example 2.1 (iii) is an example for this, showing that F is a proper
subfamily of M.
(iii) Not each t-reversible t-norm belongs to M: Tw is an example for this. Hence,
R is not a subfamily of M.

The exact relationship relation between the three families R, M and F is given
as follows.

Theorem 4.2. A t-norm T is both t-reversible and an element of M if and only
if T is an element of F (this means that we have F = RN M ).
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Proof. Assume first that 7 = {(ou, Bk, Tr )}rex is an element of F and, con-
sequently, of M. Let St be the dual t-conorm of T, i.e., St is the ordinal sum
{(1 = Bk, 1 — ax, SE )}rex. Then from [2] we know that the expression

z+y—Sr(z,y)
is always nonnegative and defines a t-norm. Taking into account

T*(l',y) = maX(O,x+y—ST(m,y))
= iL'+y—ST(§17,y),

it is clear that T is t-reversible.
If, conversely, T € R N M, observe first that (4) implies the inequality

1=141-T(L,)>1-a4+1-y-T(1-z,1-y),
from which we get
0<z4+y—-1+TQ—-2,1—-y)=z+y— Sr(z,y).
Now, using T' € R and (2), we get
T*(z,y) =z +y— Sr(z,y)

or, equivalently,
ST({I?,y) =T+ Yy - T*(way)a

which, as a consequence of the results in [2], means that St can be written as an or-
dinal sum {{ay, B, Si)}keK, implying that we have T' = {(1—f, 1 —ay, Tsl;:)}keK,
ie, T eF. |

Remark 4.3. (i) Note that from the proof of Theorem 4.2 we can conclude that
for T' € F we have
T*(way) = 1_5(1 _xal _y)7

where S is the t-conorm defined by S(z,y) =z +y — T(x,y)-
(ii) Let T be an ordinal sum of Frank t-norms, i.e., T = {(ag, Bk, Tsl;:)}ke}(- Using
the fact that for each pair (TF , SE ) we have

TE (z,y) + SE (z,y) =z +y

(see again [2]), we see that T* equals the ordinal sum {(1 — 5,1 — ak,Tf,;)}keK,
the dual t-conorm St- of which is just given by St (z,y) =z +y — T'(z,y).

(iii) This means that all Frank t-norms are self-reverse, i.e., we have (T¥)* = TF
for all s € [0,+0o0] (for a more detailed discussion see Section 5).

Example 2.1 (iv) and Theorem 3.1 show that ordinal sums of ¢-reversible ¢-
norms, in general, need not be t-reversible (this fact is visualized in Figure 2). The
following proves that a t-reversible ordinal sum can have at most one summand
which is smaller than T7,.
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Figure 2: Ordinal sum {(0.3,0.9,T)} with T'(z,y) = 1—min[1—(/1 — 2+/T = y)?],
ie., T < TL (top left) whose t-reverse (top right) is not monotone and, therefore,
not a ¢-norm. The t-reverse (bottom right) of the ordinal sum {(0.4,1,T)} (bottom
left), however, is a t-norm, namely, the ordinal sum {(0,0.6,T1)}.

Theorem 4.4. Let T be the ordinal sum {{ag, Bk, Tk)}kex such that T is t-
reversible and Ty, < Ty, for some kg € K. Then we have S, = 1 (as a consequence,
there is at most one summand Ty, with Ty, < Tv,).
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Proof. Let (x,y) €]0,1[> be a point such that Ty, (z,y) < TL(z,v), i-e
x+y—1—"Tg(z,y) >0. (5)

Assume that S, < 1is true. Then, on the one hand, we have

T*(l_ﬁkoal_ﬁko)zl_ﬁko- (6)
On the other hand, observe that

1- Qo + (ako ﬂko) x>1- ﬂkoa (7)

1- Qo + (ako ﬂko) y>1- ﬂkoa (8)

implying that

T*(l — Qpy + (ako Bko) z, 1 —ag, + (ako Bko) )
= maX(O 1—ag, + (ako Bko) r+1—ag + (ako Bko) y—1
+ag, (ako ﬂko) Tko (a:,y))
= max((), 1- Qg + (ﬂko - ako) ’ (Tko ('Tay) —T = y))
= max(ovl_ﬁko _(ﬁko _ako)'(x_‘_y_l_Tko(m:y)))

< 1 - Bko:
where the inequality follows from (5). This, together with (6), (7) and (8), violates
the monotonicity of the t-norm 7%, and therefore 8, < 1 cannot be true. ]

Conversely, it is not difficult to see that the each ordinal sum of some special
form is t-reversible allowing us to formulate the following result:

Corollary 4.5. Let the t-norm T be the ordinal sum {{ax, Bk, Tk)}rex of Frank
t-norms up to possibly one summand, say Ty,, with Ty, < 11, and By, = 1. Then T
is t-reversible and its t-reverse T equals the t-reverse of T, where T is the ordinal
sum {(ak,ﬁk,f’k)}ke;( with Ty, = Ty, for all k # ko and Tko =Ti,.

5 Self-reverse t-norms

We are now interested in studying ¢-norms which are self-reverse, i.e., satisfy the
equality 7% = T. From Remark 4.3(iii) we know that all Frank t-norms TF,
s € [0,+o0] have this property. We are now able to characterize all continuous
self-reverse ¢t-norms.

Theorem 5.1. Let T be a continuous t-norm. Then T = T if and only if T is
an ordinal sum {{a, Bk, T; >}keK of Frank t-norms such that for each k € K with
Ty, ¥ £ T\ there is a j EK wzthsJ =sp,a;j=1—-0 and Bj =1 — oy,

Proof. Assuming T* = T then we have T** = T and, by Theorem 3.2, T > T1,.
Then for the dual ¢-conorm St of T we obtain

St(z,y) < Su(z,y) <z +vy,
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implying
z+y—Sr(r,y) >0

and, taking into account T* =T,
T('Tay) =z+y-— ST(I',]J)

Because of [2], this means that T must be an ordinal sum {(a, Be, Ty, ) beek of
Frank ¢t-norms. From Remark 4.3(ii) we know that 7' has to be symmetric in the
sense that for each k£ € K with TSF; # T (Tm acts like a neutral element when
constructing ordinal sums and does not influence this symmetry) there exists a
J € K such that s; = s;, 0 =1 - and §; =1 — ay. [ |

Recall that in the trivial case K = {1}, a1 = 0 and 8, = 1, i.e., if T itself is
a Frank ¢t-norm, the symmetry condition is always satisfied. In the light of this
theorem we can give the following variation of the results of [2]:

Corollary 5.2 . For a continuous t-norm T the function G : [0,1]*> — [0,1] given
by G(z,y) = z +y — T(z,y) is a t-conorm if and only if T is an ordinal sum
{(ak,ﬁk,T;Z)}keK of Frank t-norms, in which case the t-conorm G is dual to the
t-reverse T, i.e.,

Gz,y)=1-T"(1—=x,1 —y).

6 Concluding remarks

Some questions concerning t-reverses of t-norms remain still open. The most im-
portant open problem is the complete characterization of all t-reversible t-norms.
Other related questions can be formulated as follows:

Question 1. Is a continuous t-norm T t-reversible if and only if T is an ordinal
sum whose summands are Frank t-norms up to possibly one summand in the upper
right corner of the unit square which is weaker than Ty, ¢

Question 2. If T is a t-reversible t-norm, is T* necessarily t-reversible?
Question 3*. If T is a t-reversible t-norm, is T* necessarily continous?

Question 4. If T is a t-reversible t-norm, is T* necessarily an ordinal sum of
Frank t-norms?

We conjecture that there is an affirmative answer to each of these questions.
However, we have not proven this claim so far (nor do we have counterexamples).
Obviously, if there is a positive answer to Question 4, this would imply positive
answers to both Questions 2 and 3.
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* Note added in proof: An affirmative answer to Question 3 was given in M.
Sabo, On the continuity of t-reverse of t-norms, Tatra Mountains Math. Publ. 6
(1995), 173-178.
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