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Abstract

This paper contains a result of Cantor-Bernstein type concerning archi-
medean lattice ordered groups.

Sikorski [9] and Tarski [11] (cf. also Sikorski [10]) proved a theorem of Cantor-
Bernstein type for o-complete Boolean algebras.

Further, theorems of such type were proved by the author for some classes of
complete lattice ordered groups (cf. [5, 6]) and for a class of complete MV -algebras
(cf. [7]).

Let GG be a lattice ordered group. The underlying lattice of G will be denoted by
/(G). Next, let GP and G* be the Dedekind completion or the lateral completion
of G, respectively.

An isomorphism 1 of a lattice L; into a lattice Lo is said to be convex if ¢ (L)
is a convex sublattice of Ls.

In the present paper the following result is proved:

(A1) Let G and G5 be archimedean lattice ordered groups. Suppose that

(i) there exists a convex isomorphism of the lattice £(G1) into £(Gs);

(ii) there exists a convex isomorphisms of the lattice £(G2) into £(G1).
Then the lattice ordered groups GPT and GPT are isomorphic.

This generalizes Theorem (A) of [5].

1 Preliminaries

For lattice ordered groups we apply the standard definitions and notations (cf., e.g.,
Darnel [3], Kopytov and Medvedev [8]). The group operation in a lattice ordered
group will be written additively.

In this section we recall some relevant notions and results.

Let G be a lattice ordered group. G is called complete (o-complete) if each
nonempty bounded subset of G (or each nonempty denombrable bounded subset
of G) has the supremum and the infimum in G.
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A nonempty subset {z;};cr of G is said to be disjoint (or orthogonal) if z; = 0
for each i € I, and z;(1) A z;(2) = 0 whenever i(1),i(2) € I and z;1) # T;(2)-

G is called orthogonally complete if each disjoint subset of G has the supremum
in G.

1.1. Theorem (Cf. [5], Theorem (A).) Let Gy and G2 be lattice ordered groups
which are complete and orthogonally complete. Suppose that

(i) there ezists a convex isomorphism of £(G1) into ((G2);
(i) there ezists a convex isomorphism of £(G3) into ((Gy).

Then G1 and G5 are isomorphic.

If G is an subgroup of a lattice ordered group H such that for each h € H with
0 < h there exists g € G with 0 < g £ h, then G is called a dense f-subgroup of H.

We recall (cf. Conrad [2]) that a lattice ordered group H is said to be a lateral
completion of GG if the following conditions are satisfied:

(i) H is orthogonally complete;
(ii) G is a dense f-subgroup of H;

(iii) if Hy is an f-subgroup of H such that G C H; and H; is orthogonally com-
plete, then Hy = H.

If H is a lateral completion of G then we express this fact by writing H = GT.
In view of Bernau [1], each lattice ordered group possesses a lateral completion.

For the notion of the Dedekind completion G of a lattice ordered group G cf.,
e.g., Darnel [3].

2 Auxiliary results

Let L be a lattice. For X C L we denote by X* and X the set of all upper bounds
or the set of all lower bounds of X in L, respectively.

Next let £ be the system of all subsets X of L such that X # () and X # 0.
Put

D(L)={X":X e L}).

The system D(L) is partially ordered by inclusion.

It is easy to verify that D(L) is a conditionally complete lattice. If {X;};er is
a nonempty subsystem of D(L) and if it is bounded in D(L), then

Nier Xi = NierXi,  VierXi = (Uier Xi)".

Suppose that M is a convex sublattice of the lattice L. For X C M let X (M) =
XN M, X“M) = Xt M. Further let £y, be defined analogously as £ (with L
replaced by M), and

D(M) = {X“MUM) . X e £/},
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Similarly as in the case of D(L) we consider D(M) as to be partially ordered by
inclusion.
If X € Ly, then there exists m € M such that z < m for each z € X. Thus
for each t € X™ we have
mAte XM,

and this yields that
(i) X" is a filter of L which is generated by the set X (™),
(i) X*(M) is an ideal of X%,
From (i) and (ii) we obtain the relation
Xul = xu(ne (1)

whence
XUMEM) — yul (2)

Clearly D(L) C £ and D(M) C Lps. Further, if X € D(M), then
uMUM) _

)

hence according to (2) we have
X =X“nM. (3)
We define a mapping ¢ : D(M) — D(L) such that
P(X) = X

for each X € D(M).

Let X,Y € D(M). If X £V, then celarly ¢(X) £ ¢(Y), hence the mapping
1 is isotone. If ¢(X) < ¢(Y), then in view of (3) we get X < Y, thus ¢ is an
isomorphism of D (M) onto the partially ordered subset ¥ (D(M)) of D(L).

Let X,Y € D(M), Z € D(L) and suppose that

Xuf é 7 é Yuf-

Put Z; = ZN M. We have X C Z N M, whence Z; # (). There exists yg € M
such that y < yo for each y € Y. Further, in view of (3) we have

Y=Y“NMDZnM,

whence 21 < yo for each z; € Z;. Therefore Z; € L and thus Zf(M)l(M) € D(M).
By using (1) we get Y/ = Y*()¢  Thus if t € Y, then t < s for each
s € YuM) hence, in particular, t < yo. Thus z < yo for each z € Z.
Let 21 € Z1,v € Z{ and z € Z. Then

21 £z21Vz <y,



52 J. Jakubik

whence 21 V z € M. From the relation Z € D(L) we infer that Z is a sublattice of
L, thus z1 V z € Z. We obtain 21 V z € Z;, which yields that z < z; V2 < v. Then

VAR AN
Since Z; C Z, the relation Z* 2 Z* holds. Therefore Z}* = Z* and so
Zw =z = 7.

In view of (2) we have
Zf(M)E(M) — Z{M N M,
hence
ZUODEM) — 70 M = 7.
Therefore Z; € D(M). At the same time, ¢(Z1) = Z. We conclude that (D (M))
is a convex subset of the lattice L.

Let ¢(P) = P, ¥(Q) = Q1. Since D(M) is a lattice, there are U,V € D(M)
such that both P and @ belong to the interval [U, V] of D(M). Then ¢(U) < (V)
for T € {P;,Q1}. In view of the convexity of ¢ (D(M)) in D(L) we infer that
Y(D(M)) is a sublattice of D(L).

By summarizing, we obtain

2.1. Lemma Let M be a convezr sublattice of a lattice L. Then there exists a
convex isomorphism of the lattice D(M) into the lattice D(L).

2.2. Lemma Let Ly and Ly be lattices such that there exists a convex isomorphism
of Ly into Ly. Then there exists a convex isomorphism of D(Ly) into D(Ls).

Proof This is an immediate consequence of 2.1. O

2.3. Lemma Let G be an archimedean lattice ordered group. Then the underlying
lattice of its Dedekind completion G is equal to D({(G)).

This is well-known; cf., e.g., Darnel [3].

For a lattice ordered group G' we denote by £(G™) the underlying lattice of the
lattice ordered semigroup G+.

2.4. Lemma Let Gy and G5 be lattice ordered groups. Then the following condi-
tions are equivalent:

(i) There exists a convex isomorphisms of the lattice £(G1) into £(G2).

(ii) There exists a convex isomorphism of the lattice {(GT) into ((GF).

Proof This is a consequence of Lemma 1.4 in [6]. O
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3 Archimedean lattice ordered groups

3.1. Lemma Let Gy and Gy be archimedean lattice ordered groups. Assume that
there exists a convex isomorphism of the lattice £(G1) into £(G2). Then there exists
a conver isomorphism of the lattice £{(GP) into the lattice ((GT).

Proof The assertion follows from 2.2 and 2.3. O

3.2. Lemma Let G be a complete lattice ordered group and H =GY, 0 < h € H.
Then there ezists a disjoint subset {x;}icr of G such that the relation h = V;ecrh;
is valid in H.

Proof Cf. [4], Section 2. O
The following lemma is easy to verify, the proof will be omitted.

3.3. Lemma Let G be a lattice ordered group. Suppose that {x;}icr and {y;}jes
are disjoint subsets of G and that * = Vicrxi, y = Vjeyy;. Then the following
conditions are equivalent:

(i) z < y;
(ii) for each i € I the relation
z; = Vies (@i Nyj)

18 valid.

Now assume that G; and G5 are complete lattice ordered groups and that ¢ is
a convex isomorphism of the lattice £(G7) into ¢(GZ). Put

for each t € G. Then ¢y is a convex isomorphism of £(G) into £(G¥) such that

©0(0) = 0.
Denote H; = GF (i = 1,2). Let z € G¥, x > 0. In view of 3.2 there exists a
disjoint subset {z;};c; of G such that

T = Vicr;

is valid in H;. If, at the same time, there is another disjoint subset {z};cs in G
such that
T = Vjesx]

holds in Hy, then according to 3.3 we have in (G; the relations

r; = Vjes(zi Nx’;) foreach i€ [,
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xy = Vier(zj Aw;) for each j € J.
We obtain that {¢o(2i)}ier and {po(2})};es are disjoint subsets of Ga such
that the relations

¢(xi) = Vies(po(xi) A po(x)) for eachi€ I,

wo(z}) = Vier(po(x}) A wo(x;)) for each j € J

are valid in G3. Then in view of 3.3,

Vieryo(ri) = Viespo(z))

holds in HQ.

We put ¥(z) = Vierpo(x;). Then according to the above mentioned relations,
¢ is a correctly defined mapping of the set H;" into H, such that (t) = ¢o(t) for
each t € GG;.

Further, from 3.3 we infer that if z,y € H; and = < y, then ¢(z) < ¥(y).

Moreover, from the fact that g is a convex isomorphism and by using 3.3 again
we obtain that

(z) SP(y) =z sy

Thus, in particular, ¢ is a monomorphism.
Let {z;};cr and let x be as above. Suppose that z € Ha, 0 £ z £ ¢)(x). Hence

z =2 ANPp(x) = Vier(z A po(z:)).
The element z can be expressed in the form
z = VieK %k,
where {zj }rek is a disjoint subset of G2. Hence in Hy we have
z = Vier Vier (2 A po(T:))-

Denote ti; = 2z, A po(z;) for each k € K and each i € I. We have t;; € [0, po(z;)]
(where the interval is taken with respect to G2), whence there is zy; € Gy such
that @o(zr;) = tri. Moreover, {tg;}rek icr is a disjoint system in Go and thus
{Zri}trek,icr is a disjoint system in G7. Hence there exists ¢ € Hy such that

t = Viek,icITki
is valid in Hy, and then we have
Y(t) = Viek,ier1po(Tri) = 2.

In this way we verified that ¢(H;) is a convex subset of Hy. It is easy to show that
for 21,22 € Y(H;) there exists z3 € ¢(H;) with 23 2 21, 23 2 2. By using this
and the convexity of ¢)(H;) we obtain that ¢ is a convex isomorphism of ¢(H;")
into £(H; ).
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Hence we have

3.4. Lemma Let Gy and Go are complete lattice ordered groups. Suppose that
there exists a convex isomorphism of ((G7) into ((GY). Then there exists a conver
isomorphism of L(H;") into ((H), where H; = GF (i = 1,2,).

3.5. Lemma Let Gy and G2 be archimedean lattice ordered groups. Suppose that
there exists a convex isomorphism of the lattice £(G1) into £(G2). Then there exists
a convex isomorphism of {(Hy) into ((H>), where H; = GPL (i =1,2).

Proof This is a consequence of 2.4, 3.1 and 3.4. O

Proof of (A1)
Let Gy and G5 be as in (A;). From 3.5 we obtain that

(i) there exists a convex isomorphism of /(GPT) into ¢(GPT);
(ii) there exists a convex isomorphism of £(GPL) into £(GPL).

Both GPE and GPL are laterally complete lattice ordered groups. Moreover, since
GP and G are complete lattice ordered groups, according to [4], Section 2, both
GPL and GPT are complete lattice ordered groups as well. Now it suffices to apply
Theorem 1.1. O

If G; and G5 are complete and orthogonally complete, then GP = G = GF,
hence GPL = Gy, and similarly for Go. Thus (A;) is a generalization of (A).

We remark that each o-complete lattice ordered group is archimedean; therefore
in (A1) the archimedean property can be replaced by o-completeness.
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