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Abstract

This paper is devoted to characterize monotonicity, conditionality and
transitivity of some rational relations defined in a probabilized Boolean Al-
gebra

1 Introduction.

Given a probabilized Boolean Algebra (E, +, -, p) there are several well known inex-
act relations that are Conditionals. For example I, (b/a) =p(a = b) =p(a’ +b) =
1—p(a) +p(a-b) is basic in Nilsson’s probabilistic logic ([3]); this relation is a
W-preorder (W(a,b) = Maxz (0,2 +y — 1) the Lukasiewicz t-norm), but not a
Prod-preorder. In plausible reasoning, G. Pélya ([5]) used the conditional prob-

ability p* (b/a) = pIE?a'I)’) which is not a T-preorder for any continuous t-norm T’
this relation was also used by J. Pearl ([4]). This paper, on some way inspired in
[7], is devoted to characterize monotonicity, conditionality and transitivity of some
rational relations defined by means of a given probability. The choosen relation
should agree with the problem we are working in, and from which we will induce

the desirable properties.

We will only consider the case in which (E,+,-,p) is a probabilized Boolean
Algebra such that for any a € [0,1] it exists some a € E with p(a) = «, and the
relation has the form

+ +asp(b)+ b
R (b/a) = ftpiarterfisriel) - (y)

Some theorems are enunciated without proof, because of both its easiness and
the limited lengh of this paper. Proofs can be found in [2].
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Let us begin by remembering some definitions to be used in the following sec-
tions. From now on, T will be a continuous t-norm.

Definition. A fuzzy relation R : E x E — [0,1] is reflexive if for all a €
E it is R(a/a) = 1, and it is T-transitive if for all a,b,c in E the inequality
T (R(b/a),R(c/b)) < R(c/a) holds.

A T-preorder is a reflexive and T-transitive fuzzy relation.

For example, relation I, (b/a) = 1 — p(a) + p(a-b) is a W-preorder. The
reflexivity is trivial, and let’s prove that W (R (b/a), R (¢/b)) =
Maz (0,1 —p(a) +p(a-b) —p®) +p(b-c)) < R(c/a)=1-p(a) +p(a-0).

As 0 < R(c/a) it is sufficient to see 1 — p(a) + p(a-b) —p(b) + p(b-¢) <

1-p(a)+p(a-c), Orp(a-b-0)+p(a-b-C’)+p(b-c-a)+p(b-c-a’)Sp(b-a-0)+
pb-a-c)+pb-a-c)+pb-a'-c)+pla-c-b)+p(a-c-b),equivalent to 0 <
pb-a )+ p(a-c-b'), which is always true.

But I, is not a Prod-preorder: Choosing a, b, csuch that p(a) =1,0 <p(b) < 1
and p(c) =0, it is I, (b/a) - I, (¢/b) > I, (¢/a). So, I, is not a T-preorder for any
T > Prod.

The relation p* (b/a) = ((aé)) is not a T-preorder for any 7. Taking a,b,c
with a < b, p(a) > 0, p(a-¢) = 0, p(b-¢) > 0, it is T (p* (b/a),p* (¢/b)) =
p(b-a) p(bo)) _ p(b-c) p(b )
T (5 ) =T (1’ W) = B > v (efa).
Definition. The relation R is monotonic if R (b/a) < R (b/a - ¢) for all a,b and c.
R si T-restricted monotonic if T (R (b/a),R(c/a)) < R(b/a - ¢), for all a,b and c.

Definition. Given a fuzzy set p: E — [0,1], a fuzzy relation R : E x E — [0, 1]
is a p-T-conditional, if for any a,b in E, it is T (u (a), R (b/a)) < p(b). It is also
said that u is a T-Logical State for R.

For instance, the Kleene-Dienes’ Implication R{fD (b/a) = Max (1 — pu(a),u (b))
is a p-W-conditional: W (u(a), REP (b/a)) = Maxz(0,pu(a) + Mazx(l — p(a),
w(b)) — 1) < u(b). Nevertheless it is not u-Prod-conditional: choosing a,b such
that 0 < p(a) <1, u(b) =0, it will be u(a) - Max (1 — p(a), (b)) > p(d). So, it
is not a p-T-conditional for any T' > Prod.

Furthermore, in a probabilized Boolean Algebra (E,p), I, and p* are a p-W-
conditional and a p-Prod-conditional, respectively.

It is well known ([9]) that R is a p-T-conditional if and only if R < I, with
Iy (b/a) = sup{z € [0,1];T (2,1 (a)) < u(b)}.
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2 Some Nilsson’s Pattern probabilistic logics.

If the relation should model the logical implication, it seems addecuate to impose
reflexivity. So,

Theorem 2.1. Given the Algebra (E,p), the relation (%) is reflexive if and only
ifa() = b() and a1 + a2 + as :bl +b2+b3

Proof.- R is reflexive if R (a/a) = 1 for all a, that is, if for any a , ag+ (a1 + a2 + as)

p(a) = bo + (b1 + b2 + b3) p (a), which is true only if ap = by and a; + a2 + as =
by + by + b3.

It should be pointed out that if ag # 0, it always can be taken ag = 1. In this
section it will be studied the case ag = by = 1, and by = by = b3 = 0 ; that is,

R(b/a) = 14 aip (a) + azp (b) + asp (a - b)
and in order to get reflexivity, a; + a2 + ag = 0.
Theorem 2.2. R (b/a) <1 if and only if a;,as < 0.

Proof.- If R(b/a) < 1, it is 1+ ayp(a) + azp (b) + asp(a-b) < 1 for all a,b and
arp (a) + azp (b) + azp(a-b) <O0.

Taking a such that p(a) = 0, then asp (b) < 0 for all b, and as < 0. And,
similarly, with p (b) =0, it is a; < 0.

Conversely, if a1 | ax <0, as a3 = —a1 —as, it is a1p (a) + a2p (b) + azp (a - b) =
ai (p(a) —p(a-b))+az(p(b) —p(a-b)) <0, and R (b/a) = 1+ aip (a) +azp (b) +
asp(a-b) < 1.

Similarly, it follows (]2])

Theorem 2.3. R(b/a) > 0 if and only if a; | az > —1.

Therefore, to work with well defined relations, it should be —1 <a; | as <0.
Let’s now find the relations which are a T'- preorder.
Theorem 2.4. R (b/a) = 1+ ai1p(a) + asp (b) + azp (a - b) is a W-preorder.
Proof.- It should be W (R(b/a), R(¢/b)) < R(e/a) for any a,b, ¢, or equivalently

Maz (0,14 aip(a) + azp (b) + asp(a-b) + 1+ aip (b) + azp () + asp(b-c) — 1)
<1+ aip(a) + azp(c) +azp(a-c).
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R(c/a) is always greater or equal to zero, and then it is sufficient to see that
a1p (a)+azp (b)+azp (a - b)+14 a1p (b)+asp (c)+azp (b - ¢) < 1+ arp (a)+azp (c)+
asp (a - ¢) that is equivalent to (a1 +a2) (p(b) —p(a-b) —p(b-¢)+p(a-c)) <0,
because of ag = —a; —as. But a;+ax <O0and p(b)—p(a-b)—p(-c)+pla-c) =
pb)—pla-b-c)—pla-b-c)=p(b-c)+pla-c) >0(asp(a-b-c)+p(b-c) <p(b)
and p(a-b-c) < p(a-c) ); then (ar +az) (p () — p(a-b) — p(b-€) +p(a-c)) < 0.
]

Theorem 2.5. If R(b/a) = 1+ ai1p(a) + azp (b) + asp (a - b) is a Prod-preorder,
then R (b/a) = 1; that is, a; = as = a3 = 0.

Proof. If R is a Prod-preorder, for all a,b,c it is Prod (R (b/a), R (¢/b)) < R(c/a)
and (14 aip(a) +azp (b) +asp(a-b)) (1 +aip(b) + azp(c) +asp(b-c)) < 1+
arp (a) + azp (¢) + azp (a - ).

Taking a,b, c such that p(a) = 0, b < ¢, 0 < p(b) < p(c), because of az =
—ay — az and simplifying, it is obtained a3p (b) (p(c) —p (b)) < 0. As p(b) > 0,
p(c) —p(b) >0, it is a2 <0 and ay = 0.

Now, choosing a,b and ¢ with p(c) =0, b < a and 0 < p(b) < p(a) , it results
a} <0;thatis,ay =0and a3 =0. N

Corollary 2.6. If R (b/a) = 14+ aip(a) + az2p(b) + agp(a - b) is a Min-preorder,
it is R(b/a) =1, for all a,b.

Corollary 2.7. I,(b/a) = 1—p(a) + p(a-b) is a W-preorder, but it is neither
Prod-preorder nor Min-preorder.

Theorem 2.8. R (b/a) = 1+ a1p(a) +azp (b) +azp (a - b) is monotonic if and only
if as = 0.

Proof. If R(b/a) < R(b/a-c) for all a,b,c, it will be 1+ aip(a) + asp (b) +
asp(a-b) <1+ aip(a-c) + azp(b) + azp(a-b-c). Takinga =b, p(a) # 0 and
p(c) =0, it is —azp(a) <0 and ay > 0, concluding a; = 0.

Reciprocally, if as = 0, it should be proved that 14+ a1p (a) + asp (a-b) < 1+
arp(a-c) +azp(a-c-b), with a3 = —ay; that is, a1 (p(a) —p(a-b) —p(a-c) +
p(a-c-b)) < 0. But this is all right, because of a1 < 0 and p(a) — p(a-b) —
pla-¢)+pla-c-b)>0. A

This result means that the monotonic reflexive relations R (b/a) = 1+ a1p (a) +
asp (b) + asp (a - b) are just those belonging to the pattern R (b/a) = 1— mp (a) +
mp (a-b), with 0 <m < 1.
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What about restricted monotonicity if R is non-monotonic?

Theorem 2.9. ([2]) R (b/a) = 1+ a1p (a) +asp (b) + asp(a - b), with as # 0, is W-
restricted monotonic if and only if a; < as, and it is not Min-restricted monotonic.

Theorem 2.10. R(b/a) = 1+ aip(a) + azp (b) + asp(a - b) is a p-W-conditional
if and only if a1 = —1.

Corollary 2.11. The only relation R (b/a) = 1+ aip(a)+ azp (b) +asp (a - b) that
is monotonic and p-W-conditional, is the R (b/a) = I, (b/a) =1 —p(a) +p(a-b)
for any a, b.

Theorem 2.12. R(b/a) = 1+ aip(a) + azp (b) + agp(a-b) is not a p-Prod-
conditional.

Proof. Let’s suppose p(a) - R(b/a) < p(b) for any a and b. Taking a,b such
that p(a) # 1,0, and p (b) = 0, it results a3 < ﬁj) < —1, in contradiction with
1<a; <0. W

Corollary 2.13. R (b/a) = 1+ aip(a) + azp(b) + azp(a-b) is not a p-Min-
conditional.

3 Some Lukasiewicz’s Pattern probabilistic logics.
Now let’s consider the relations R (b/a) = 1+ aip(a) + azp (b) + aszp(a-b) with
a1 + as + a3 = 0 (so, R is reflexive), and aj,as > —1 (R > 0 ). Without having
ai,az < 0itis not R < 1. In these cases, it is convenient to use the new bounded
relation

R(b/a) = Min (1,14 a1p(a) + azp (b) + azp (a - b)).

It should be pointed out that if aj,as > 0, it is 1+ a1p (a) + asp (b) + azp(a-b) =
1+a;(p(a)—p(a-b))+az(p(d) —p(a-b)) >1and R(b/a) = 1.

On the other hand, if a;,a2 <0, it is R (b/a) =
Min (1,14 a1 (p(a) —p(a-b)) +az (p(b) —p(a-b))) = 1+ ap(a) + azp (b) +
asp (a - b), and these relations were studied in the former section.

Then, let’s consider only the cases a1 > 0, a3 <0ora; <0, ay > 0.

Theorem 3.1. If R(b/a) = Min (1,14 a1p(a) + azp (b) + agp (a - b)), then R is
monotonic if and only if a; < 0 and as > 0.

Proof. Let’s suppose that R is monotonic and a; > 0 ( so, as < 0 ).
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By the monotonicity, for any a, b and c, it will be Min (1,1 + ai1p(a) + azp (b) +
asp(a-b)) < Min(1,14+ a1p(a-c) +azp(b) +asp(a-b-c)).

Choosing a, b, c such that p(a) 0, p(b) #0,p(a-b) =0, p(c) =0, it is
obtained a1p (a) < 0, which is an absurd. So, it should be as > 0 and a; < 0.

Now, let az > 0, a; < 0 be. Let’s see if it is Min (1,1 + aip(a) + azp (b) +
asp(a-b)) < Min(1,14+a1p(a-c)+asp(b) +asp(a-b-c)), for all a,b,c.

If the second term is 1, it is true. If not, it is necessary 1 + a1p (a) + azp (b) +
asp(a-b) <14+ aip(a-c)+ asp(b) + azp(a-b-c), or equivalently, a1 (p(a- ') —
pla-b-c)) —asp(a-b-c) < 0. But this is always true, because of p(a-c') —
pla-b-¢)>0. N

Then, for any relation R (b/a) = Min (1,14 a1p (a) + asp (b) + agp (a - b)), with
a1 > 0 and a» < 0, monotonicity does not hold.

Theorem 3.2. If R(b/a) = Min(1,1+ a1p(a)+ azp(b) +asp(a-b)) is non-
monotonic, then it is not W-restricted monotonic.

Proof.- Let’s suppose W (R (b/a), R (c/a)) < R(b/a-c) for all a,b,c.
Choosing a,b, ¢ such that p(a) =p(b) =1, p(¢) =0, and because of a; > 0,
ay < 0, it is W (R (b/a),R(c/a)) = Max(0,1+ Min(1,14+a1)—1) = 1 and

R(b/a-¢) = 14+ a3 < 1. Then W (R (b/a),R(c/a)) > R(b/a-c), that breaks
restricted monotonicity.

Corollary 3.3. Under the conditions of theorem 2.2., the relation R is neither
Prod-restricted monotonic nor Min-restricted monotonic.

Theorem 3.4. R (b/a) = Min (1,14 aip(a) + asp (b) + asp(a-b)), with —1 <
a1 < 0 and as > 0, is a p-W-conditional if and only if a1 = —1 and 0 < as < 1.

Proof.- If R is a p-W-conditional, W (p(a), R (b/a)) < p(b) , for each a, b, and
Maz (0,p(a) + Min (1,1 + aip (a) + azp (b) + azp(a - b)) —1) < p(b).

If a,b are such that p(a) =1, p(b) =0, it is obtained that a; = —1.

If it is ay > 1, then § < {#2- < 1, and we can take a € (%, 112&2). Choosing

a € E such that p(a) = «, itisp(a’) =1 —a, and 1 — a < a. In this case,
W (p(a),Min (1,14 a1p(a) + azp(a’) + asp (a - a'))) =

W(a,Min (1,1 —a+az (1 —a))) = Maz (0, Min(a,a2 (1 —a))) =a > 1—
a =p(a), that is absurd. Then it must be as < 1.

On the other hand, if a1 = —1 and 0 < as <1, it is
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Max (0,p(a) + Min (1,1 —p(a) + azp (b) + p(a-b) —azp(a-b)) —=1) <p(b) .
Then W (p(a),R(b/a)) <p(b). M

Theorem 3.5. Any relation R (b/a) = Min (1,1 —p(a) + mp (b) + (1 —m)p(a- b)),
0 <m <1, is a W-preorder.

Corollary 3.6. The Lukasiewicz’s implication I}V (b/a) = Min (1,1 — p(a) + p (b))
is monotonic, is a W-preorder and is a p-W-conditional.

Proof.- In fact, I}V (b/a) is equal to Min (1,1 4 a;p (a) + azp (b) + asp (a - b)) , with

ag=—-1,a=1andaz3=0. N

4 Some Polya’s Pattern probabilistic logics.

In this section relations with ag = by = by = b3 = 0, by # 0 are studied; that is,

R(bja) = R(b/a) = a1p(ﬂ)+az§((ab))+a3p(a'b), if p(a) #0
1, if p(a)=0

as it is always possible to get by = 1.

As by + by + b3 = 1, by theorem 1.1., R is reflexive if and only if ay + as +a3 = 1
and

R (b/a) = “(pla)=p(at)) tes(p(b)—p(a-b) tp(ah)

p(a)

From now on, we will suppose R reflexive.

Theorem 4.1. R > 0 if and only if a;,as > 0.

Proof.- If for all a, b it is R (b/a) = [“(p(“)fp(“'b))Jra;((ap)(b)7”(“'1’)””(“"’) > 0, choosing
a,b such that p (b) = 0, p(a) # 0, it results a; > 0. Taking a,b with p(a) # 0,
p(b) #0,p(a-b) =0, it is ay > —“;ﬁgf), for any a, and so as > 0.

On the other hand, if a;,as > 0, clearly R (b/a) >0. R

Theorem 4.2. If R > 0, it is: R <1 if and only if as = 0 and a; < 1.

Proof - Tf for all a, b it is R (b/a) = 2lele)plat)ltesbh) peb)ip(ed) < 1, taking b
such that p (b) = 0, it is a; < 1. Furthermore, taking a, b, such that p(a),p(b) #
0,p(a-b) =0, it is obtained as < % for all a. Choosing the values of p (a)
sufficiently small, it can be obtained as = 0.

Reciprocally, if ay =0 and a; <1, R(b/a) = al(p(“)_”p(&)b))”(“'b) <1. n




46 S. Cubillo

From now on, the relations will be well defined; that is 0 < a; < 1, as = 0,
a3 =1—ay, and

a1(p(a)—p(a- a- a1p(a-b')+p(a-b)
R (b/a) = @=plab)ipat) _ r( p(l)p

Theorem 4.3. The only relation R (b/a) = al(p(a)_i((‘z)b))"'p(a'b) that is monotonic
is the R = 1.

Proof.- Obviously, R (b/a) = 1 is monotonic.

If R is monotonic, it is al(p(“)_p((“')b))+p(“'b) < “1(”(“'C)_p((“'b')c))+p(“'b'c) for every
? p(a — pla-c

a,b,c.

We can choose a,b,c € E, such that p(a-b) #0,p(a-b") #0 and ¢ = b'. Then
al(p(ﬂ)*p((ﬂ')b)ﬁp(ﬂ'b) < a
pla -

_ p(a)—p(ab)+p(ab) _
So, R (b/a) = (@) =1. N

rla

, —a1p (a-b) < —p(a-b); it results a; > 1, and a; = 1.

a1(p(a)=p(a-b))+p(a-b)
p(a)

So, in any relation R (b/a) =
broken.

, 0 <a; <1, monotonicity is

Theorem 4.4. R (b/a) = “1(1’(“>—I;((“4)”>>+P(“"’> ,0<ay < 1,is W-restricted mono-
tonic.

Theorem 4.5. In the conditions of last theorem, if a; # 1, R is not Min-restricted
monotonic.

Proof.- If a; < 1, taking a,b,c such that p(a-b) #0,p(a-b) #0and c =V, it is
R(b/a-¢) < Min (R (b/a),R(c/a)), and restricted monotonicity is broken. W

Theorem 4.6. R (b/a) = al(p(“)fﬁ(‘gf)ﬁp(“'w is a W-preorder if and only if R = 1.

So, if R(b/a) = al(p(“)*i}(‘gf)ﬁp(“'w is a. Prod-preorder, or a Min-preorder, then
R=1.

Proof.- R =1 is clearly a W-preorder.

If R is a W-preorder, for any a, b, ¢ it should be

ai(p(a)—p(a-b))+p(a-b) | ai(p(b)—p(b-c))+p(bc) _ a1(p(a)—p(a-c))+p(a-c)
Maz (0’ 2@ + ) 1) < (@) :

Ifp(a)=05,c=a ,p)=1,itisgot 1 <ay, and thena; =1. N

Theorem 4.7. R(b/a) = al(p(a)_i((‘z)b))"'p(a'b) is a p-W-conditional if and only if
a1 = 0, that is, if R (b/a) = 28

p(a)
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Note. The Conditional Probability p* (b/a) = p}g?;;) (ap = 0) is not p-Min-

conditional in an enough rich Boolean Algebra: choosing a and b such that b < a
and 0 < p(b) <p(a) <1,itis Min (p(a) p(a'b)) = Min (p(a) p(b)) > p(b).

> p(a) » p(a)

Furthermore, it is neither monotonic nor W-preorder (and so, it is neither
Prod-preorder nor Min-preorder), and it is the only relation in this section being
a p-W-conditional.
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