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Abstract

Some properties of the quasi-inverse operators are presented. They are
basic tools in order to reduce complex expressions involving several of such
operators. An effective calculation for the quasi-inverse of a continuous t-
norm is also provided.

1 Introduction.

The aim of this paper is to provide the reader with a set of elementary properties,
which are useful tools in order to reduce complex expressions where a t-norm and
its associated quasi-inverse appear several times.

Some of the results presented here are not new and they can be found dissem-
inated in the literature, mainly under two different forms: as specific properties
concerning a restrictive class of t-norms, (even a particular t-norm like 7" =Min,
T =L...) or into the setting of more general logic and algebraic structures (mainly
GL-Monoids and MV-Algebras [3]).

The properties are arranged into three different classes depending on the conti-
nuity of the chosen t-norm: the general case —arbitrarily t-norms—, left continuous
t-norms and continuous t-norms.

Let us recall some elementary concepts.

Definition 1.1. A t-norm is an operation T : [0, 1] %[0, 1] — [0, 1] which is associa-
tive, commutative, non-decreasing in both variables and that satisfies T'(1,z) = =z,
T(0,z) =0 for any x € [0,1].

Definition 1.2. Given a t-norm T, its quasi-inverse T is defined by

T(zly) =sup{a € [0,1] / T(a,z) <y}, for any x,y € [0,1].
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Definition 1.3. Given a t-norm T, its symmetrized quasi-inverse Er is defined by
Ep(z,y) = Min{T'(z|y), T(y|x)} = T(Maz{z,y} | Min{z,y}) for any x,y € [0,1].

In the same way that, in the setting of fuzzy logic, T' can be interpreted as an
extension of the classical ({0,1}) conjunction A to the whole unit interval, 7' can
be viewed as the residuated implication associated to 7', and it is very common to
note f(a:|y) by x?y and Er(z,y) by a:(T)y (the natural equivalence). However,

care is needed when dealing with arbitrarily chosen t-norms, because, in this case,
T(x|y) could not define neither an implication function [5] nor a T-preorder [6],
which are the most common ways to generalize the classical implication to the fuzzy
framework. In the same way, E7(x,y) could not define a fuzzy equivalence relation
(T-indistinguishability, similarity,...). As we will see later, the left-continuity of
the t-norm 7T is needed in order to ensure that 7' acomplishes with these basic
structures.

Examples of t-norms and its associated quasi-inverses are:

Min{z,y}, ifz >y,
1

(1) T(z,y) = Min{z, y}, and T'(z|y) = { , in other case.

(2) T(z,y) = L(z,y) = Max{z + y — 1,0}, (The Luckasiewicz t-norm), and
s fl-z+y ifz>y,
T(aly) = { 1 in other case.

o . [ oylx fz>y
(3) T(2,y) =2y and T(zly) = { 1 in other case.
r ify=1 .
() T,y) = Z@y) =4 y =1  andT(ey={ 0 Tr<l
. y ifx=1.
0 in other case

Definition 1.4. A continuous t-norm T is archimedean if T'(z,x) < x for any
z € (0,1).

Definition 1.5. An archimedean t-norm is strict if T"(xz) > 0 for any = € (0,1]
and for any n € N.

Note. T"(z) is defined in a recurrent way by T (z) = =,
T"(@) = T(a, "' (@), n>1.

Next, representation theorem characterizes the archimedian t-norms.

Theorem 1.6. (Ling). T is an archimedean t-norm if, and only if, there exists
a continuous decreasing function f : [0,1] — [0,+o0], such that f(1) = 0 and

T(z,y) = fI(f(2) + f())-
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Usually f is termed the additive generator of T, and fl='1 denotes the pseudo-
inverse of f, defined by

1, ifx <0
f7@) =< f@), ifz €0, f(0)]
0

, in other case

and T is strict if, and only if, f(0) = +oo.

In a more general way, we have:

Therorem 1.7. T is a continuous t-norm if, and only if, there exists a family
{(ai, bi) Yier of disjoint intervals of [0,1], and f; : [a;,b;] — [0,+0o0], such that
fz(bz) = 0, and

T(z,y) = { F7NS@) + £iw) if (@,y) € (aibi) x (ai,bi)

min{z,y} in other case.

Here, fI=1 is defined by

@ =S @) ifreo, fla)]
a; in other case.

Note that T =Min is obtained when I = (), and archimedean t-norms when
I = {ip} and (ai,, bi,) = (0,1). In any other case, we say that T is an ordinal sum.

A proof of theorem 1.7 as well as further reading on these topics can be found
in [4].

2 Basic properties

Let us start with the most general case, in which no hypothesis about the continuity
of the t-norm T is assumed.

Proposition 2.1. Let T be a t-norm. For any x,y,z € [0,1], we have:
a) If <y then T'(z|y) = 1.
b) If T(z, 2) < y then T'(z]y) >

IfT<T'thenT>T'

¢

€

)
)
)

d) T(z|T(z,y)) > y
) It T(T(zly),z) > y then = >y
)

f) T(z,y) > Inf{a / T(z|a) >y}
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Proof. Evident. B

Proposition 2.2. Let T be a t-norm. For any x,y,z € [0,1], we have:
T(T(z,2)|T(y,2)) > T(xly).

Proof. Tt is sufficient to show that A; C As being 41 = {a € [0,1] / T(,z) > y}
and Ay ={a €[0,1] / T(a, T(z,2)) < T(y,2)}. N

The concept of right (or left) continuity is applied only to functions depending
on a single variable, and it does not make sense in the case of several variables.
However, we will say that a function F(z,y) is right (or left) continuous with
respect to the variable z (resp. y) if F(z,yo) is right (or left) continuous for any
fixed yo € [0,1] (resp. F(zo,y) for any fixed zo € [0, 1]).

Obviously, since a t-norm is a commutative operation, T'(z,y) is right (or left)
continuous with respect to the variable z if, and only if, it is right (or left) contin-
uous with respect to the variable y. We will refer to these t-norms as right (or left)
continuous (without any reference to the variables).

Proposition 2.3. For any t-norm T, its quasi-inverse f(a:|y) s a non-decreasing
and right continuous function with respect to the variable y.

Proof. If {yn}nen C [0,1] is decreasing and such that lim, . yn = y, we can

consider for any z € [0,1], A, = {a € [0,1] / T(a,7) < yn}, and A = {a €

[0,1] / T(a,z) < y}. Tt is evident that A = [ Ay, and the limy, 00 T(2|yn) =
neN

T(zly). m

3 Quasi-inverses of left continuous t-norms

Left continuity plays a crucial role in order to relate the quasi-inverse with logi-
cal and algebraic structures. In this case, ([0,1],<,T) is a GL-monoid where its
residuated structure is given by 7' [3].

In this section we prove some relevant properties such as proposition 3.4.a and
Theorem 3.2.c —they ensure that T'(x|y) defines an implication function and that
it acomplishes with multivalued Modus Ponens [2], [5]-, and theorem 3.2.b (T-
transitivity) which relates 7' and Er with T-preorders and T-indistinguishabilitites

[6].

Proposition 3.1. If T is a left continuous t-norm, then f(a:|y) is a mon increasing
and left continuous function with respect to x.

Proof. Analogous to Proposition 2.3. B

Theorem 3.2. For any t-norm T, these are equivalent statements:
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a) T is left continuous.

b) T(T(x|y), T(y|2)) < T(z|z) (T-transitivity)

¢) T(z,T(xly)) <y (Modus Ponens)

d) T(z,y) < z if, and only if, z < T(y|z)

e) Infla € [0,1] / T(wla) > y} = T(a,y),
Proof. Tt is straightforward showing that (a) = (b) = (¢) = (d) = (a), (d) = (e)
and (e) = (c). &

Theorem 3.2.e. has an interesting meaning from a structural point of view.
It stablishes that the map that sends each t-norm T to its quasi-inverse is an
injective one when only left continuous t-norms are considered [2]. This is not true
for arbitrarily t-norms, as it is shown in next example.

Example 3.3. Let us consider T} and T5 t-norms defined by:

0, if (z,y) € [0,3] x [0, 3]
Tl(way) =

Min{z,y}, otherwise.

Ti(z,y), if (v,9) # (3.3)
TQ(way) =

)

3 if (z,y) = (

Obviously, fl = Tg and T; #T>. 1

)-

M
M

Proposition 3.4. Let T be a left-continuous t-norm. For any z,y,z € [0,1] we
have:

o) T (x| T(yl2)) =T (y | Tal2)) = T (T(z,p)l2)
0) T (2, 7(12) <T(y | T(w,2))
o) T(T(zl2) | 7(zly)) > T(ely)
@) T(@(ylz) 1P()2) > Taly)
e) T(T(aly)(2) > T(w, T(y|2)).
Proof.

(a) From Theorem 3.2 it is easy to show that

{a€0,1]/ T(a,2) <T(ylz)} = {a€l0,1]/T(ay) <T(el2)} =
= {ae[0,1]/ T(e,T(2,y)) < 2}

and (a) is obtained by taking the suprema of this set.
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(b) Let us consider A = {a €[0,1] / T(a,y) < z}

T(T(z,sup A),y) =

= sup T(m,T(a,y)) < T(l‘,Z),
aEA

T (T(@,7(yl2)).v)

SO R .
T(x,T(y,2)) <T(y|T(z,2)).

(c) and (d) are elementary consequences of Theorem 3.2.b.

(e) From theorem 3.2.c it follows
T (T(z, T(y12)), T(aly)) = T (2, T(T(aly), T(yl2))) < T, T(al2) < 2. W

Any property in proposition 3.4 gives sufficient condition in order to ensure the
left continuity of T': the t-norm T' = Z, that clearly is not left continuous satisfies
all them.

Proposition 3.5. T'(z|y) = sup{a € [0,1] / T(aly) > x} for any left continuous
t-norm T'.

Proof. Tt is evident since {a € [0,1] / T(a,z) < y} = {a € [0,1] / T(aly) > =}
(Theorem 3.2.d). B

Proposition 3.5 does not characterize left continuous t-norms, as it is shown in
next example.

Example 3.6. Let us consider T} and T5 the t-norms defined in Example 3.3.

T, is a left continuous t-norm, and T5 is not. Clearly fl = Tg, since both Tl
and T satisfy T(z|y) = sup{a € [0,1] / T(aly) > =}

Next corollary can be obtained by applying Proposition 3.4.a,c and d recur-
rently.

Corollary 3.5. Given a left continuous t-norm. For any x,y, 2,21, ...;Tpn, 21, .-, Zn €
[0,1] we have:

T(zly) ifn=2m
T(ylz) ifn=2m+1

N (T (@ |@s), Tws|24), ...),T(mn_1|wn)) if n = 2m
T (..T(x1, T(s]23))-..), (wn_1|mn)) ifn=2m+1,(m>2).

>
>
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4 Quasi-inverses of continuous t-norms

Let us recall that any continuous t-norm 7' is either archimedean, 7" =Min or an
ordinal sum (Theorem 1.7). From an algebraic point of view, it is worth noting
that, if T is a non strict archimedean t-norm, then ([0, 1], <,T) is a MV-algebra.

Proposition 4.1. If T is an archimedean t-norm with additive generator f, then
T(zly) = f11(f(y) = f(2)), for any z,y € [0,1].
Proof. [6]. &

Next theorem provides us with an effective way to calculate the quasi-inverse
of any continuous t-norm.

Theorem 4.2. A function F : [0,1] x [0,1] — [0,1] is the quasi-inverse of a
continuous t-norm T (i.e. F =T) if, and only if, there exists a family {(as, b;)Yicr
of disjoint intervals of [0,1], and a family of continuous and decreasing functions
fi t[ai, bi] = [0, fi(a;)] such that f(b;) =0 satisfying

1 ifx <y
F(zly) =3 fTU(fily) = fi), if (2,y) € las, bi) x [as, b;)
y in any other case.

Proof. Tt is a consequence of Theorem 1.7. B
Note that, in this case, T is the ordinal sum associated to {(a;, b;)}icr and to

{fitier-
Under the hypothesis of continuity for the t-norm 7', there are some inequalities
in Section 3 that become equalities.

Corollary 4.3. Given a continuous t-norm T, for any z,y,z € [0,1] such that
z <y <z, we have:

(a) T (T(aly), T(y)2)) = T(al2)
() T (T(aly) | T(al2)) = Tyl).

Proof. 1t can be easily obtained from Theorem 4.2 by considering four different
cases, namely: z,y,z € (a;,b;) for some i € I; y,z € (a;,b;) but x ¢ (a;,b;);
x,y € (ai,b;) but z ¢ (a;,b;); any other case.

It is worth noting that 7' (T(y|z) | T(m|z)) > T(y|z), but the equality does not
hold (7' =Min is an easy counterexample).

By applying Corollary 4.3 recurrently, we obtain:

Corollary 4.4. Given a continuous t-norm T, for any x,z,y1,...,yn Such that
z <y < ... <yn <z have:

A

T (P(@lyn), T Walyn—1), - Twi2)) = Tal2).
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Corollary 4.5. Given a continuous t-norm T, for any x1,...,2n,y,2z € [0,1] such
that z <y <z < ... <z,, we have:

A

T (7o), s m)ly) | Tlzr)-wn)l2)) = T(yl2).

Proposition 4.4. (Modus Ponens) If T is a continuous t-norm and x,y € [0, 1],
then T (:U,T(:U|y)) =y if, and only if, v > y.

Proof. [6]. B

Proposition 4.5. Let T be a continuous t-norm, and A C [0,1] x [0,1] the set
containing all points (z,y) where T'(z|y) is a continuous function. We have:

(a) If A=[0,1] x [0, 1], then T is a non strict archimedian t-norm.

(b) If A=10,1] x (0,1], then T is a strict archimedian t-norm.

(c) In any other case, T is an ordinal sum or T =Min.

Proof. 1t is a consequence of Theorem 4.2. B
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