Mathware & Soft Computing 4 (1997) 281-297

Towards Specifying with Inclusions*

J. Agusti, J. Puigsegur and W. M. Schorlemmer
Institut d’Investigacié en Intelligencia Artificial (CSIC)

Campus de la UAB, E-08193 Bellaterra, Catalonia
e-mail: {agusti,jpf,marco} @Qiiia.csic.es

Abstract

In this article we present a functional specification language based on in-
clusions between set expressions. Instead of computing with data individuals
we deal with their classification into sets. The specification of functions and
relations by means of inclusions can be considered as a generalization of the
conventional algebraic specification by means of equations. The main aim of
this generalization is to facilitate the incremental refinement of specifications.
Furthermore, inclusional specifications admit a natural visual syntax which
can also be used to visualize the reasoning process. We show that reasoning
with inclusions is well captured by bi-rewriting, a rewriting technique intro-
duced by Levy and Agusti [15]. However, there are still key problems to
be solved in order to have executable inclusional specifications, necessary for
rapid prototyping purposes. The article mainly points to the potentialities
and difficulties of specifying with inclusions.

Keywords: diagrammatic reasoning, visual languages, declarative program-
ming, formal specification.

1 Introduction

The systematic development of correct programs from complete formal specifica-
tions by means of verified refinement steps has attracted considerable effort [6].
Much less attention has been devoted to formal Requirements Engineering; i.e. the
difficult process of creation of adequate formal and complete specifications from in-
formal requirements. Specifications cannot be validated conclusively with respect
to the real world, they can only be judged subjectively as adequate descriptions
of a problem, maybe with the help of some theorem prover which computes con-
sequences of the formulation. So formal specification languages to be widely used
in Requirements Engineering [9], should not present undue difficulties of use and
interpretation to the persons who create and read the specification, who usually
are experts on the appli cation domain and not programmers. This article is based

*This work is supported by the project DISCOR (TIC 94-0847-C02-01) funded by the CICYT

281

282 J. Agusti, J. Puigsegur & W. M. Schorlemmer

on the research done in our group on the Calculus of Refinements (COR), a func-
tional specification language designed to shorten the distance between the informal
description of a problem and its first formalization (preferably executable for rapid
prototyping purposes). This research concentrates on an incremental approach to
executable formal specification where preliminary specifications can be expressed
in a notation accessible to non-specialists whilst providing clear points of refine-
ment towards complete specificati ons in languages targeted to more specialised
developers.

The basic and intuitive semantic notion of our language is that of set. Every-
thing is viewed in some way as a set. Instead of dealing (reasoning or computing)
with data individuals we work with their classification into types or sorts (also
called classes, descriptions, approximations or concepts, depending on the area
of interest). For instance, to handle numerical functions like in the example of
Section 4.2, we create and reason with sorts like “nat” (for the set of natural num-
bers), “mult(nat)” (the multiples of naturals), etc. In our approach individuals are
considered as a particular kind of set, namely as singletons. Even functions and re-
lations are seen as sets of images (outputs) dependent on parameters which are also
expressed as sets (sets of inputs). In Figure 3 of Section 2 we describe the ancestor
relation and we consider it as a function returning the sets of ancestors of a given
set of persons. Then, we give information about ancestor by giving subsets of it:
for example the parents of the same persons. In this language set expressions are
built as terms using constants, variables and function symbols. The formal details
are given in the next section where we also show how these terms and formulas are
represented in the alternative visual syntax of our set-based language.

The main predication on set expressions is the inclusion between them. To
express the meaning of a set expression we give upper and lower bounds as su-
perset and subset expressions, as can be seen in the example of Section 4.2. This
specification of functions and relations by means of inclusions can be considered as
a generalization of algebraic specifications by means of equations. The main aim
of this generalization is to facilitate the incremental refinement of specifications.
Inclusions can be seen as more expressive and flexible constraints than equations:
upper and lower bounds can be successively refined by closer bounds towards an
equality relation, usually between singleton expressions. The example about mul-
tiples of natural numbers in Section 4.2 shows briefly such kind of refinements.

Instead of a set-based language we could use the well known First Order Logic
(FOL) to express the same information. However —we claim— that set expres-
sions and inclusions provide frequently enough a more natural and less demanding
sublanguage for non-logicians than the corresponding first order formulas. For
instance, the simple inclusion man C mortal should be expressed in FOL as
Vx(man(x) — mortal(z)). The usual operations between set expressions, inter-
section and union, and the inclusion relation, we claim are easier to understand
by non-logicians than the FOL connectives conjunction, disjunction and implica-
tion. It has also been shown in [18] how a similar set syntax for FOL has some
advantages when automating deduction. Other similar taxonomic knowledge rep-
resentation languages have also proved its methodological and technical superiority
to deal with taxonomic knowledge, compared with FOL (see [17]). Furthermore,

Towards Specifying with Inclusions 283

a way to make these languages more accessible to non-logicians is by means of its
diagrammatic representation. One of the advantages of set-based languages like
ours is that they admit a natural diagrammatic representation similar to Venn di-
agrams. This diagrams can be used naturally to express information on functions,
and also allow some kind of automatic reasoning to be performed on them, as we
will see below.

Specifications based on inclusions showed interest in themselves from a theoret-
ical point of view. Peter Mosses [20] was one of the first to consider them as a new
framework, called unified algebras, for the algebraic specification of abstract data
types. Independently we explored the same idea on a more general framework, that
of higher order functional languages. The Calculus of Refinements (COR) we de-
fined can be considered as an extension of A-calculus with lattice operations where
specifications are sets of inclusions between A-terms [16]. In a series of papers and
the doctoral thesis of J. Levy [13] we investigated the denotational semantics (the
class of models of COR [1]) and its operational semantics based on rewrite tech-
niques [14]. Based on this results we tried to use a first order version of COR as
a requirements specification language in the framework of logic programming [22].
The present article tries to push this application a bit further. First by presenting
a visual syntax based on higraphs, a topological diagrammatic formalism, as an
alternative to the usual textual syntax. Second by showing the possibilities and
difficulties of an executable specification language based on inclusions.

2 The Language

2.1 Syntax

As said in the introduction, our set-based language has a textual syntax and an
alternative visual syntax. Effectively, the special features of our set-based func-
tional language allow a direct topological visual representation. While the textual
syntax of our language is similar to syntax used in many other equational logic
languages, the visual syntax is a customization of higraphs, an open-ended topo-
logical formalism developed by David Harel [8]. Higraphs combine two well-known
diagrammatic formalisms: graphs and Venn diagrams. A higraph is a graph whose
nodes represent sets which are related by a binary relation: graphical inclusion.
This diagrammatic language differs from traditional set-based diagrams, like Venn
diagrams, in two ways: 1) It is possible to construct new sets by building compound
terms through visual functional application. 2) It is also possible for an element or
set of elements to be repeated in different places of the diagram at the same time.
This is, if two boxes are graphically disjoint it does not imply that the associated
sets are disjoint. The only relevant information in the diagrams is the graphical
inclusion between boxes (sets) and circles (set variables) in boxes.

2.1.1 Terms

Terms are syntactically defined as usual in functional languages, with two extra
constructors: union and intersection, and two extra elements: top and bottom (top

284 J. Agusti, J. Puigsegur & W. M. Schorlemmer

Figure 1: The Symbols of the Visual Syntax

f(X,9(X,a)) f(X)ug(X) flang(X),X)

Figure 2: Examples of Visual Terms

and bottom are not used by now in the visual syntax). All terms are interpreted as
sets: constants and variables represent sets, and functions are extended over sets,
i.e. they take them as arguments and return a set.

The construction of the corresponding visual terms as directed acyclic graphs
(DAGs) is straightforward. In Figure 1, we show the graphical representation of
nodes of the higraph (symbols). Circles denote sets which correspond to variables,
while boxes denote sets associated to the other types of terms of the language.
Every box is named after the outer-most function of the term it represents. Nodes
are connected using arrows that point from the subterms to the node that represents
the functor of the term. Arrows represent functional application. Note that in some
DAG representations of terms, arrows go in the opposite direction. The reason of
our way is that we want to stress the fact that functions map elements from the
domain sets to elements of the image set. The structure of a term is therefore a
DAG where nodes are boxes and circles, and circles do not have incoming arrows
(the edges of the graph). In Figure 2 we show examples of visual terms together
with their textual equivalents.

The graphical representation of terms using DAGs is one of the keypoints of
our visual language. DAGs allow to share common parts of subterms, reducing the
quantity of symbols in the visual terms. For instance, variables do not need to have

Towards Specifying with Inclusions 285

(a) grandparent(X) D parent(parent(X))
(b) ancestor(X) D parent(X)

ancestor(X) D ancestor(parent(X))
(¢) X Cdescendant(Y) <Y C ancestor(X)

Figure 3: Examples of Visual Formulas

a name, and if they appear many times in a textual term, they will appear just
once in the corresponding visual term, thus reducing the complexity of the term
and making it easier to read in its visual form.

2.1.2 Formulas

An atomic formula of the textual specification language is an inclusion between
terms, and a formula is either an atomic formula or an inclusional Horn Clause.
They are defined in the following way:

Definition 1 Formulas

— an atomic formula is an inclusion, t; C to, where t1 and to are terms.

—a clause f < fiAfoA...A [, is a formula, where f,f1,... fn are atomic formulas
andn > 1.

The basic units of our visual language —equivalent to formulas in the textual
language— are diagrams. A diagram is the smallest complete unit of description
and it is composed of various visual terms related by graphical inclusion. In every
diagram there is a goal set term, which is the term that is being partially defined.
To define a set term we indicate which are its subset terms. The goal set term
is marked by drawing its box using thick lines. Therefore a diagram is usually
equivalent to an inclusional clause where the head is the main inclusion —the goal-
set inclusion— and the rest of graphical inclusions in the diagram is the body of
the clause. In [21] we presented a variant of this visual language more addressed
to declarative programming.

286 J. Agusti, J. Puigsegur & W. M. Schorlemmer

In Figure 3 we find three examples of visual formulas and their equivalent tex-
tual formulas, representing the relations grandparent, ancestor and descendant.
Let’s now examine how the examples of Figure 3 are constructed. In all three
diagrams we are representing relations as functions over sets that return sets. In
diagram (a) the grandparent relation is represented as a function that applied to
a set X (of persons) returns the set grandparent(X) (of their grandparents). This
relation is then defined by giving a subset of the image set: parent(parent(X)),
i.e. “the parents of the parents of X are the grandparents of X”. The functional
notation allows us to compose relations, as it is done in this diagram applying
twice the parent relation to the input set X. Diagram (b) defines the ancestor
relation by stating that “the parents of X and the ancestors of the parents of X
are ancestors of X”. Note that in the visual syntax a diagram can represent more
than one clause when there is no conflict with the conditions of each clause. In
this case, since there are no conditions, we can represent both clauses in a single
diagram. Finally, diagram (c) defines the relation descendant, the inverse relation
of ancestor.

2.2 Semantics

As we have said the attempted intuitive meaning of set terms are sets built from
constant sets and function application on them. The meaning of term inclusions
is the usual set inclusion meaning. However the class of models satisfying the
inclusional Horn clauses is wider and more abstract. In the following we define
this class of models, the satisfaction relation between models and formulas and the
entailment relation between formulas. All of them are particular first order cases
of the general class of COR models, COR satisfaction and entailment relations [1].

Let ¥ be the set of constants and function symbols and V the variables used
to build our terms. ¥ includes the constant symbols top (T) and bottom (L)
and the binary functions U and N. A ¥-model A consists of a set ||.A]| which is a
lattice with U4 as join and N4 as meet, the element T 4 as top and the element
1 4 as bottom. Let <4 denote the partial order of the lattice. The other constant
symbols C' € ¥ are interpreted as elements C'4 € ||A|| and the function symbols
f of arity n as functions f4 : ||A|® — ||A[]. All functions f4 are monotone with
respect to <4. Using the previous interpretation to each valuation of variables
p: ||l = ||A]| corresponds the homomorphic interpretation of terms on A defined
as usual: ® : T(X,V) — ||A||. We say a model A satisfies the formula t; C t,,
Ayt CaiffVp: Vo WAl 94 (1) i 9% (to).

The satisfaction of an inclusional Horn clause by a model is defined using the
standard interpretation of FOL connectives. The defined class of models has ini-
tial models isomorphic to the standard term model. Power set algebras and its
subalgebras can be considered also as intuitive models of inclusional specifications.
However, they are not initial models as has been shown in [20].

The entailment relation between a set of formulas 7 and a formula ¢ is defined
by the lattice axioms, the inclusion inference rules, reflexivity and transitivity; the
variable substitution (replacement) and function monotonicity rules ; and the res-
olution rule [1]. This entailment relation so defined is not enough to mechanize the

Towards Specifying with Inclusions 287

deduction with inclusions, necessary to our goal of having executable specifications.
The rest of the article focuses on this key problem showing the advances reached
till now and the remaining problems.

3 Reasoning with Inclusions

In order to validate preliminary specifications one solution is, as mentioned in
the introduction, to make a first implementation by rapid prototyping. We want
therefore a specification to be executable, in order to verify properties on it. In
this section we show the techniques for mechanizing the deduction in those logical
theories underlying our specifications, namely in inclusional theories.

Recently it has been shown that term rewriting techniques, which have turned
out to be among the more successful approaches to equational theorem proving,
are suitable for defining specialized proof calculi for inclusional theories. It is well
known that rewriting implicitly captures the transitivity and congruence properties
of the equality relation in a natural way, and avoids the explicit use of the equality
axioms, which pose severe problems in the design of efficient automated t heorem
provers. But, since rewrite rules rewrite terms in one direction, it is not only in
reasoning with the equality relation where these techniques naturally apply, but
in reasoning with arbitrary, possibly non-symmetric, transitive relations, as e.g.
inclusions . In fact, Meseguer noticed that the logic underlying rewrite systems in
not equational logic but rewriting logic [19]. Levy and Agusti where the first in
using techniques of term rewriting to define a decision procedure for theories with
non-symmetric relations [14]. They generalized to inclusional theories the notions
of confluence and termination of term rewrite systems based on equational theories,
by introducing the so called bi-rewrite systems [15].

In the same sense in that the theory of rewrite systems has provided us with an
efficient operational semantics for equational logic, its generalization to bi-rewriting
will be a suitable basis for an operational semantics for our specification language
b ased on inclusional theories.

3.1 Theorem proving with inclusions: Bi-rewrite systems
and ordered chaining

The fundamental idea lying behind bi-rewrite systems is to orient a given set of
inclusions, following a reduction ordering on terms. We get in this way two indepen-
dent rewrite systems, one containing those rewrite rules which rewrite terms into
“bigger” ones (with respect to the inclusion relation), and the other one containing
rewrite rules which rewrite terms into “smalle r” ones. We will distinguish the two

. . . . C
separate rewrite relations by denoting the first one with — and the second one

with —=». Consider for example the inclusional theory presentation I consisting of
the following axioms:

288 J. Agusti, J. Puigsegur & W. M. Schorlemmer

If we orient these inclusions, following e.g. a lexicographic path ordering based
on the signature precedence f = ¢ = b = a', we obtain the following two rewrite
system s:

-
Rlz{ fam) - R2:{ f(a,c)i)b

flz,c) S

We say that these two rewrite systems form a bi-rewrite system B = (R;, R»).

In order to have a decision procedure for the word problem of an inclusional
theory we need the bi-rewrite system to be convergent, i.e. it has to satisfy two prop-
erties: Church-Rosser and termination®. The system is Church-Rosser if whenever
we have two terms s and ¢ such that, I - s C t® a bi-rewrite proof between these
terms exists, consisting of two paths, one using rules of R; and the other using
rules of Rs, which join together in a common term:

- C - C
§ —% - - Y — - -—t

The system is terminating, if no infinite sequences of rewrites with rules in Ry (or
R») can be built. Termination is guaranteed when the rewrite orderings defined
by R; and R, respectively are contained in a unique reduction ordering on terms.
Bi-rewrite systems fulfilling termination and the Church-Rosser property are said
to be convergent.

A decision procedure? for the word problem in convergent bi-rewrite systems
is then straightforward: To check if I F s C ¢t we reduce s and ¢ applying rewrite
rules of each rewrite system, and exploring all possible paths, until a common term
is reached:

-
-
- /
S \] .
- - '

The conditions put on the rewrite relations in order to guarantee termination
also avoid the possibility of infinite branching.

Convergent bi-rewrite systems finitely encode the reflexive, transitive and mono-
tone closure of the inclusion relation C: All possible consequences of a set of in-

clusions I using transitivity, reflexivity and monotonicity can be represented by a
bi-rewrite proof.

c

I'We refer to [7] for a survey on termination orderings.

2To be rigorous we only need quasi-termination [14], but for the sake of simplicity, termination
is required.

3The entailment relation + is defined by the reflexivity, transitivity and monotonicity inference
rules of the inclusion relation C.

4 Actually it is a decision algorithm because of termination.

Towards Specifying with Inclusions 289

An arbitrary bi-rewrite system, obtained by orienting the inclusions of an inclu-
sional theory presentation I is non-convergent in general. But, like in the equational
case, there exist necessary and sufficient conditions for a terminating bi-rewrite sys-
tem to be Church-Rosser, which were stated by Levy and Agusti [15] adapting the
original results of Knuth and Bendix [12]. Following the same ideas proposed by
Knuth and Bendix, one can attempt to complete a non-convergent terminating
bi-rewrite system, by means of adding new rewrite rules to the systems R; or R».

Within the context of resolution-based theorem proving with full first-order
clauses there have been attempts to use additional inferences in order to avoid the
transitivity axiom of arbitrary transitive relations, like paramodulation in first-
order theor ies with equality. Slagle [24] introduced for these purposes the chaining
inference rule. Chaining can be seen as the generalization of paramodulation for
arbitrary transitive relations. As paramodulation, chaining has the drawback that
it explicitly generates the transitive closure of the binary relation. But like or-
dering restrictions on the paramodulation inference have led to the superposition
calculus [10, 4] (which in essence generalizes the computation of new equations dur-
ing the Knuth-Bendix completion process), so ordering restrictions on the chaining
inference rule take the advantages of rewrite techniques resul ting from bi-rewrite
systems, and avoid generating the whole closure using bi-rewrite proofs to prove the
validity of a transitive relation. The result is the calculus presented by Bachmair
and Ganzinger [5], which is based on the ordered chaining inference rule between

two clauses:
CVu<s DVt<w

CoV Do Vuo < vo

where o is a most general unifier of s and ¢, and the following ordering restrictions
between terms, and literals hold: uo® ¥ so, vo ¥ to, uoc < so is the strictly
maximal literal with respect to the rest Co of the clause, and vo < to is the
strictly maximal literal with respect to the rest Do of the clause®.

Ordered Chaining:

3.2 Towards an operational semantics: Some drawbacks for
efficiency

In the same sense in that the theory of rewrite systems has provided us with
an efficient operational semantics for equational logic, we are convinced that its
generalization to bi-rewriting is a suitable basis for an operational semantics of a
specificat ion language based on inclusional theories. It is well known that if we
want to use logic as a programming language we need to choose a suitable special-
ized proof system which will mark the difference between a hopeless theorem prover
and an efficient programming language. The results on proof theory with arbitrary
transitive relations are still too weak for defining powerful deduction strategies
that may serve us for this purpose. Though we have seen that term rewriting is a
suitable technique for reasoning with arbitrary transitive relations, several impor-
tant differences to equational term rewriting appear, which are important for the
practicability of deductions with inclusions.

5 Application of substitution ¢ on terms, literals or clauses is denoted in postfix notation.
6Tt is possible to extend a simplification ordering on terms over literals and clauses (see [7]).

290 J. Agusti, J. Puigsegur & W. M. Schorlemmer

Figure 4: A Visual Program

First of all, instead of dealing with a single rewrite relation we have to manage a
bi-rewrite system. Furthermore, no rewriting within equivalence classes of terms is
done, making a notion of unique normal form on which equational term rewriting
is based, meaningless. Consequently the order of application of rewrite rules is
now significant, making term rewriting don’t know nondeterministic: backtracking
is needed for a rewrite proof to be found.

But the most important difference to the equational case, in the sense of practi-
cability of the inference system, appears when reasoning with functions which are
monotonic with respect to the transitive relation, which is the case in our specifica-
tion lan guage. Besides chaining on proper subterms also variable subterm chaining
is necessary which leads to a quite inefficient proof calculus if completeness results
are wanted.

It is therefore necessary to restrict this general ordered chaining calculus if we
want to avoid prolific first-order variable subterm chaining. As we will see later
a way to improve the efficiency of the inference system is by studying certain
algebraic structures, which can help us to consider only certain cases of variable
subterm chaining. It is known, e.g. that in dense total orderings without endpoints,
variable chaining can be avoided completely [3].

For a more extended survey on the state of the art of theorem proving with
transitive relations we refer to [23].

3.3 Visually solving queries

As mentioned in section 2.1, our visual notation is based on using graphical set
inclusion between diagrams instead of implication. The transitivity of the inclusion
relation, which is also implicit in the chaining inference rule is trivially captured
in our diagrams. It is therefore not surprising that inferences based on chaining
are well presented in our visual notation. In other words, we can visually show the
operational behaviour of the query solving process within our graphically stated
specifications.

Towards Specifying with Inclusions 291

Figure 5: Query solving process

We sketch some of our ideas through an example: Given the visual specification
of Figure 4, suppose we want to know, who are the grandparents of Charly. We
express this query with the query diagram of Figure 5 (a). It differs from ordinary
diagrams in that no box is marked by thick lines (because we are not defining
a function) and that the unknown variables to be computed are noted with an
interrogation mark. Queries are existentially quantified and solved by refuting
their negation. This is achieved by transforming a query diagram into an answer
diagram applying visual inferences. The idea behind this diagram transformation
is to complete the query with the trace of its proof, and with the instantiation of
its unknown variables. This query solving process is shown in Figure 5.

First, we match the grandparent box with its definition in Figure 4. The circle
—the argument of grandparent— matches box charly, and the boxes referring to
parent are added to the query diagram giving diagram (b). This inference step is
actually a chaining step, since we are going to proof the existence of a subset in the
grandparent box by means of its membership in the parent box contained in it.
Therefore we place the unknown variable within the parent box. Next we match

292 J. Agusti, J. Puigsegur & W. M. Schorlemmer

the parent(charly) box with its definition in Figure 4. This step corresponds to
an ordinary resolution step and leads to diagram (c). In order to further solve
the query we use the monotonicity property of function parent with respect to set
inclusion: Since bob is subset of parent(charly), parent applied to bob is a subset
of parent applied to parent(charly). The same happens to parent applied to ann.
In fact, there are two alternatives to further compute the grandparents of Charly,
and we choose to represent both in one single diagram (d). This corresponds to a
breadth-first strategy. The unknown variable appears twice, showing that maybe
two possible solutions can be computed. In this case the inference step are actually
chaining steps, since we again are going to proof the existence of a subset in the
parent(parent(charly)) box by means of its membership in the parent(bob) or
parent(ann) box contained in it. Further transformation by resolution brings us
finally to answer diagram (e), where the original unknown variable appears fully
instantiated, presenting in this case four different solutions to the original query,
namely that John, Mary, Tom and Sa lly are grandparents of Charly.

Several advantages of the visual notation are present in this simple example:
We can keep the trace of the proof in our diagram during the query solving process
in an elegant way, and different alternative answers can easily be presented within
one single diagram. We are still in the very beginning of giving an operational
semantics to our specification paradigm, and there is a lot to be explored about
these or other advantages of the visual notation and its resulting open questions,
as well as about the chaining-b ased operational semantics of our language.

4 Executing Specifications

We have seen in the previous section that it is necessary to restrict in some way the
general ordered chaining calculus if we want to avoid some of the major drawbacks
for efficient computation. One way to improve this is by studying certain algebraic
structures. This options appears to be more promising, since several specification
frameworks based on partial orders are based on specific algebraic structures.

4.1 A language based on lattices

As mentioned in section 2.2 the models of our specifications are lattices. Other
specification paradigms are also based on lattices as e.g. Mosses’ unified algebras
[20]. Completion of the inclusional theory of free lattices to a convergent bi-rewrite
system is possible [13], and this fact suggests to consider the properties of this
specific algebraic structure for improving the deduction with inclusions. However
this approach is not useful enough for a practical use of inclusions, as we will see
later.

Lattices have also been chosen as interpretations for a variety of much more
concrete logic programming languages, in which partial orders play a central role.
Ait-Kaci and Podelski make use of order-sorted feature terms as basic data struc-
ture of the programming language LIFE [2], generalizing in this way the flat first-
order terms normally used as unique data structure in logic programming. An

Towards Specifying with Inclusions 293

order-sorted feature term is a compact way to represent the collection of elements
of a given non-empty domain which satisfy the constraint encoded by the term,
and therefore may be interpreted itself as a sort, like in unified algebras or in CO
R, being LIFE one of the first proposals of sorts as values. Algebraically, a term
denotes an element of a meet semi-lattice with a top T and a bottom L, which in
essence is a subalgebra of the power set of the considered domain. But, deduction
in LIFE is quite poor, because of the restricted use of terms within the definition
of the partial order. Deduction reduces to unification of order-sorted feature terms
and can be seen as the meet operation in the semi-lattice. It is performed by nor-
malizing the conjunction of the constraints encoded in the terms to be unified, and
is equivalent to intersecting the collections of elements the terms represent.

Also Jayaraman, Osorio and Moon base their partial order programming paradigm
on a lattice structure, and are specially interested on the complete lattice of finite
sets [11]. In their paradigm they pursue the aim to integrate sets into logic pro-
gramming, and to consider them as basic data structure on which the paradigm
relies. But in this framework no deduction mechanisms are given to validate order
related functional expressions.

4.2 Functions as sort constructing operators

But besides efficiency issues, it is also necessary to think about how functional ex-
pressions are supposed to be evaluated, whenever functions are specified by axioms
with partial orders instead of equations, as for example the following preliminary
speci fication of the mult function, which given a set of natural numbers returns
the set of their multiples”. Constant nat denotes the sort of all natural numbers:

mult(nat) C nat
mult(nat) D nat x nat

The first axiom specifies the function’s type, while the second one gives a first
approximation of its computational behaviour. A further refinement of both axioms
could be as follows:

mult(X) Cnat < X Cnat
mult(X) D X xnat < X Cnat

As said in the introduction, our aim during the refinement process, is to ultimately
specify how the function will operate on elements. An additional refinement to the
second axioms will suffice for this purpose:

mult(X) D X xY <« X CnatAY Cnat

Recall that when rewriting is done on an arbitrary transitive relation, no rewriting
inside equivalence classes of terms is done, and therefore, in a purely inclusional

"This example may serve only to clarify our intuitions; it isn’t in any way a satisfactory
specification of the multiple function.

294 J. Agusti, J. Puigsegur & W. M. Schorlemmer

programming language, function evaluation cannot be seen as normal form compu-
tation by reduction. Furthermore, rewriting on non-symmetric transitive relations
becomes don’t know nondeterministic.

In the approach followed by LIFE, functions are defined by rewrite rules to
be interpreted as equations, as usual, and therefore expressions are reduced by
equational rewriting to their normal forms. Maybe if we use partial orders to
constrain functions we could exploit the semi-lattice structure of LIFE terms in
order to not only evaluate functional expressions, but also to use them as new
sort definitions, much more in the spirit of unified algebras or the calculus of
refinements. For example, we would like expression div(Y") to represent the sort
of those elements that are the divisors of elements in Y (for this to have sense Y’
should be subset of nat). Such a sort expression would be useful, e.g. to add to
the definition o f function mult the following axiom:

mult(X) DY <« Y CnatAX Cdiv(Y)

Functions would be then, besides user-defined functions, also sort constructing
operators. In such a context rewriting of functional expressions becomes a kind of
sort checking, because now our interest would lie on knowing which are the upper or
lower bounds of the functional expression, and in this way to check the correctness
of the performe d refinement steps. For instance, we would like to infer that, given
a natural number k (i.e. k is a singleton set such that k C nat), k¥ C mult(k) C
nat. But, though we have studied specific theorem proving techniques in order to
perform such sort checking (see Section 3.1), we still lack of specific methodologies
for doing so.

In Jayaraman’s et al. partial order programming paradigm, though orders are
used explicitly for the definition of functions, functional expressions are equated to
the greatest lower bound (or least upper bound) of all irreducible terms reached
by rewritin g on the partial order on which the functions are defined. These terms
must be expressed by constructors of a previously fixed lattice structure, and usu-
ally will be set expressions. As in LIFE, functions themselves cannot be used as
sort constructing operators. Therefore, the use of partial orders in this paradigm
appears simply to be an elegant and compact way to define functions on the given
lattice. Functional expressions are ultimately equated to specific terms built with
these lattice constructors.

We think that the main drawback of the view that all functions are sort con-
structing operators, and of functional evaluation interpreted as the computation of
lower and upper bounds, is that the behaviour of this computation is not clear to
the programmer . In order to have an executable specification language based on
inclusional theories, we must be able to see from the structure of the specification,
i.e. from the axioms expressed as inclusions, how the computation will be done.
With the knowledge up to now about deduction with arbitrary transitive relations,
we are still too close to the definition of a theorem prover for inclusional theories
without any concrete strategy and methodology, and therefore being far away from
having an efficient operational semantics for our specification language.

Towards Specifying with Inclusions 295

5 Conclusions

Our aim has been to show that inclusions are in principle a flexible and expressive
language for preliminary specification. They are a generalization of equations (the
conventional specification language for abstract data types) and have a communi-
catory visual syntax to represent and reason with information about functions.

Very limited uses of inclusions have been proposed in the area of declarative
programming. The use of inclusions proposed in this article goes much further.
On the one hand, inclusions facilitate the incremental refinement of specifications,
from typing information given by upper bounds to partial computing information
by lower bounds. They can be successively refined by closer bounds toward equality
specifications restricted on singletons. On the other hand, inclusions have a natural
visual syntax which can also be used to capture and represent the reasoning process
in a compact way.

Because our ultimate goal is to have executable inclusional specifications we
have reviewd the state of the art in automatic deduction with inclusions. We
have seen that reasoning with inclusions is well captured by bi-rewriting. But the
prolific variable subterm chaining inference, which is required for the completeness
of the calculus, is an important drawback for finding an efficient operational seman
tics for an executable specification language based on inclusions. It is therefore
necessary to restrict this general ordered chaining calculus. Future work will focus
mainly on restricting the language, finding clear strategies for the deduction in
inclusional theories, and defining specific methodologies for solving problems by
means of inclusions, that will make us shift towards the specificati on paradigm we
pursue.

Acknowledgements

We acknowledge D. Robertson and J. Levy for their collaboration in the work
presented in this article.

References

[1] J. Agusti, F. Esteva, P. Garcia, and J. Levy. A Calculus of Refinements: its
class of models. In 12 Congreso de Programacidn Declarativa, ProDe’92, pages
118-126, 1992.

[2] H. Ait-Kaci and A. Podelski. Towards a meaning of LIFE. Journal of Logic
Programming, 16:195-234, 1993.

[3] L. Bachmair and H. Ganzinger. Ordered chaining for total orderings. In
A. Bundy, editor, Automated Deduction — CADE’12, LNAI 814, pages 435—
450. Springer-Verlag, 1994.

[4] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation, 4(3):1-
31, 1994.

296 J. Agusti, J. Puigsegur & W. M. Schorlemmer

[5] L. Bachmair and H. Ganzinger. Rewrite Techniques for Transitive Relations.
In Proc., 9th IEEE Symposium on Logic in Computer Science, pages 384-393,
1994.

[6] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella. Algebraic
System Specification and Development. A Survey and Annotated Bibliography.
LNCS 501. Springer-Verlag, 1991.

[7] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3:69-116, 1987.

[8] D. Harel. On Visual Formalisms. Communications of the ACM, 31(5):514-530,
1988.

[9] H. F. Hofmann. Requirements engineering: A survey of methods and tools.
Research Report 93.05, Institut fiir Informatik der Universitit Zirich, 1993.

[10] J. Hsiang and M. Rusinowitch. Proving refutational completeness of theorem
proving strategies: The transfinite semantic tree method. Journal of the ACM,
38(3):559-587, 1991.

[11] B. Jayaraman, M. Osorio, and K. Moon. Partial order programming (revis-
ited). In Proc. Algebraic Methodology and Software Technology (AMAST),
pages 561-575, 1995.

[12] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263—297.
Pergamon Press, 1970.

[13] J. Levy. The Calculus of Refinements: a Formal Specification Model Based on
Inclusions. PhD thesis, Departament de Llenguatges i Sistemes Informatics,
Universitat Politecnica de Catalunya, 1994.

[14] J. Levy and J. Agusti. Bi-Rewriting, a Term Rewriting Technique for Mono-
tonic Order Relations. In C. Kirchner, editor, Rewriting Techniques and Ap-
plications, LNCS 690, pages 17-31. Springer-Verlag, 1993.

[15] J. Levy and J. Agusti. Bi-rewrite systems. Journal of Symbolic Computation,
1996. To be published.

[16] J. Levy, J. Agusti, F. Esteva, and P. Garcia. An ideal model for an extended
A-calculus with refinements. Technical Report ECS-LFCS-91-188, Laboratory
for Foundations of Computer Science, Edinburgh, 1991.

[17] J. Levy, J. Agusti, and F. Mafna. Functional lattices for taxonomic reasoning.
Research Paper DAI-593, Department of Artificial Intelligence, University of
Edinburgh, 1992.

[18] D. McAllester, B. Givan, and T. Fatima. Taxonomic syntax for first order
inference. In Proc. of the First Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning, pages 289-300, 1989.

Towards Specifying with Inclusions 297

[19]

[20]

[21]

[22]

J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Journal of Theoretical Computer Science, 96:73-155, 1992.

P. Mosses. Unified algebras and institutions. In Principles of Programming
Languages Conference, pages 304-312. ACM Press, 1989.

J. Puigsegur, J. Agusti, and D. Robertson. A Visual Logic Programming
Language. In Proc., 12th IEEE Symposium on Visual Languages, 1996.

D. Robertson, J. Agusti, J. Hesketh, and J. Levy. Expressing program re-
quirements using refinement lattices. Fundamenta Informaticae, 21:163-183,
1994.

W. M. Schorlemmer and J. Agusti. Theorem proving with transitive rela-
tions from a practical point of view. Research Report IITA 95/12, Institut
d’Investigacié en Intelligeéncia Artificial (CSIC), 1995.

J. R. Slagle. Automated theorem proving for theories with built-in theories
including equality, partial orderings and sets. Journal of the ACM, 19:120-135,
1972.

