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Abstract

In this work we present the general classifier system Sedas. We show
how this system implements the description of the domain and how it builds
similarity matrices and classification trees. The system uses a new semantics,
introduced in [21], to define a distance between qualitative values.

Keywords: Clustering, Knowledge Representation, Knowledge-based Sys-
tems.

1 Introduction

In the knowledge acquisition process, the expert, together with the Knowledge
engineer, is faced up to the development of a model of his own expertise. The
modelling process is, however, a difficult task because the definition of a model
oblies the expert to describe an experience that had not been previously expressed
in an explicit form. For this reason, nowadays there are several efforts devoted to
the definition and construction of tools for automatic knowledge acquisition. These
tools that use Artificial Intelligence techniques pretend to help the experts to make
their knowledge explicit and to represent it.

Among knowledge acquisition systems we find those based on G. Kelly’s Per-
sonal Construct Theory [13]. In these systems, the expert defines data matrices
that represent functions of the form f: Object*Attribute — Value. The definition
of these matrices is done [2] in an interactive way. At any time, the system can
analize the similarity between attributes and between objects already introduced
by the expert so that the expert can reconsider decisions already made or develop
non complete aspects. These systems also allow the user to generate a representa-
tion of the knowledge by means of rules, fuzzy sets or frame systems relating the
concepts and objects already defined. Some of the systems developed under this
ideas are ETS [2], extended in AQUINAS [3] and KSSn [7].

However, there are still some open questions in knowledge acquisition tools
development. Some of them are the following:
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1. Value types other than quantitative ones are needed for object-attribute pairs.
In the systems mentioned above -ETS, AQUINAS, KSSn - the mapping
f(object, attribute) takes values in the ordinal reduced scale (1 to 5). As
not all the knowledge can be expressed in this way there have been several
attempts to use other kinds of mappings (into a set of labels or into the
boolean set). See for example KAFES [11], LINNEO+ [15], EAR* [18].

2. Dealing with information from several experts is needed. It is not an isolate
case that a model should be defined from the knowledge of several experts [14].
In this case a synthesis process of the information provided by each of them
is needed. The EGAC [23] tool and also ETS and AQUINAS systems deal
with synthesis of information. EGAC is a tool for synthesis of information in
knowledge acquisition systems based on personal construct theory. It builds
from a set of data matrices defined by a set of experts a new matrix that
synthesises the information of original matrices. This new matrix is built
translating the synthesis problem into a classification one.

3. Other kind of knowledge representation than mappings for object-attribute
pairs is needed. Due to the fact that some knowledge cannot be easily repre-
sented by this kind of mappings, sometimes it is required a system that in-
cludes the use of rules, predicates, relations between attributes (e.g., causality
relations).

4. Friendly interfaces are required. This is, nowadays, one of the most wished
characteristic. Since Knowledge Based Systems (KBS) have an increasing
complexity, the expert has to deal with more information. Friendly interfaces
help the user when manipulating data.

In this work we present a general classification process to be used in knowledge
acquisition tools (e.g., EGAC and GAR [19]). This latter tool is to extract rules
from classifications. Due to the fact that a classification process is used in Arti-
ficial Intelligence not only in the knowledge acquisition setting but also in other
frameworks as knowledge based system verification [9], and also due to the fact
that there is not a single classification method but, several classification ones, we
have built a general classification architecture. The system includes several classi-
fication methods and is open to the definition of new ones. The system has been
designed to be used as both a stand-alone system or embedded in another tool.
The system, Sedas, is centered to points 1 and 4 described above. On one hand it
deals not only with attributes with a quantitative domain but also with qualitative
and boolean domains. On the other hand, we have developed a friendly interface
for the system.

In this work together with Sedas, we present the definition of the distance
used between values when their domain is a set of ordered qualitative labels. This
distance is based on a method, introduced in [21], to extract a semantics for each
label in a set from a negation function defined over the set.

The structure of the paper is as follows. First, section 2, we describe the General
Classification System. Then, section 3, we introduce the definition of the distance
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for qualitative values. Section 4 is devoted to some examples. We finish with the
conclusions and some future work.

2 The general classification system

Several authors (as [6]) consider the classification process as a three step process:
(1) domain description, (2) similarity matrices construction and (3) classification
construction. Our system distinguishes these 3 steps to allow the user to choose
the appropriate function for each step. Moreover, from a single data matrix several
classifications can be analysed changing some of the functions and keeping the
others constant. These steps are briefly described in this section.

The system besides of giving the basic functions corresponding to these steps
it also offers, in a higher level, a friendly interface. The interfase allows the user:

1. to define data matrices, both from files and from keyboard

2. to classify data (once the similarity function, the classification method and
the aggregation criterion are defined - see below).

3. to visualize the stored data structures: data matrices, similarity matrices and
classification trees

4. to save data on disk.

2.1 Domain description

In general, the domains where reasoning systems are applied are too wide and
with a large amount of characteristics, thus it is usual to consider only a subset of
the elements of the domain (data bias), which are enough to represent the whole
domain, and only a subset of the properties (description bias).

Definition 1 Let O= {01, Oa,...,0n} be the set of objects that define the data
bias, let A= {A1,As,...,A,} be the set of attributes that define the description bias
and let DOM(A},) be the domain (the set of possible values) of the attribute Ay.

In this way the information about the domain (the knowledge that the expert
makes explicit) is described by means of an application f: O*A — Upeqi,. n}
DOM(Ag). In classifier systems the function is represented by means of a two
dimensional matrix M. See definition 2.

Definition 2 Let A be a set of attributes and let O be a set of objects, then a data
matriz M is defined as the set of values V(k,j) for each object O € O and each
attribute A; € A. So, V(k,j) stands for the value corresponding to the attribute j for
the object k and it should hold that V(k,j) € DOM(A;). Notice that the mapping
f(Ox,A;) corresponds to V(k,j).
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Distance Differences, MCD (Mean Character Difference), Manhat-
tan or City Blocks, Camberra Metric, Taxonomic Distance,
Minkowski.

Association Jaccard, Dice, Simple Matching, Rogers & Tanimoto, Yule,
Hamann

Correlation Pearson

Table 1: Similarity functions

Our system considers, concerning the attributes, four types of domains: Boolean,
Quantitative, Non ordered Qualitative and Ordered Qualitative. The first type of
domain describes whether a certain characteristic is satisfied or not. In the second
one, the domain is defined as a subset of real numbers. In non Ordered Qualitative
attributes the domain is defined as a set of discrete values without any significative
ordering, instead, a total ordering is required when Ordered Qualitative attributes
are considered.

2.2 First module: Construction of similarity matrices

Once there is a description of the domain, the next step on the process of construct-
ing a classification consists on the transformation of the data matrix (definition 2)
into a similarity relation between objects. This process is achieved by means of
functions (they can be found in [6, 20]) defined among pairs of objects that ex-
press how similar they are. The functions of our system can be classified into three
groups according to [20]:

e Distance based coefficients
e Association coefficients

e Correlation coefficients

The functions implemented are listed in table 1 according to this classifica-
tion. Their definition is given in [6, 20]. Distance coefficients measure the distance
between objects in a numeric space defined in various ways (the most familiar mea-
sure of distance is simple Euclidean distance). Association coefficients are based
on various algorithms involving qualitative data (two-state attributes or multistate
attributes). Correlation coefficients measure proportionality and independence be-
tween pairs of object vectors.

When implementing similarity functions, one of the problems that face classi-
fiers is the need of dealing with qualitative values in a numeric way, i.e., to calculate
distances and similarities between pairs of linguistic labels. The way this problem
was handled is detailed in section 3. We show how to define an interval for each
linguistic label in a set L. by means of a negation function.



Sedas: A Semantic Based General Classifier System 271

2.3 Second module: The construction of the classification
tree

Once the similarity relation is defined for each pair of objects in the data matrix,
the system builds a classification tree. The classification tree obtained follows
definition 3 below:

Definition 3 [8] A classification tree over a set of objects O is defined as a set T
of subsets of O that satisfy the following conditions:

1. 0e T,0 & T, {0;} € T for all O; € O

2. MN Ne€ {D,M,N} for all M, Ne T

In this way, the classification trees obtained by the system Sedas are n-trees,
i.e., a generalization of the more frequently used structures in AI -decision trees,
dendograms. Usually classification trees are forced to be binary, so each node has
only two children. The use of binary trees is justified in terms of the facility with
which these structures are obtained and treated. However as binary trees are not
as much close to the knowledge they represent as n-trees, we have decided to use
the latter structure.

The classification process, besides of returning the set of nodes that form the
classification tree, assigns to each node a cohesion value of the class it represents.
This value corresponds to a measure of similarity of the last union (i.e., when all
the subclasses have been gathered to form the class that the node represents).

The algorithms implemented in our system Sedas to build classification trees
belong to the set of methods known as SAHN [6], i.e., sequential, agglomerative,
hierarchic, nonoverlapping clustering methods. The structure of the algorithms
follows the general classification algorithm:

General classification algorithm

0. Construction of the initial similarity matrix.
1. Selection of the objects that should integrate

the new class (aggregation criterion).
2. Modification of the similarity matrix.
.1. Elimination of the objects in the new class.
.2. Insertion of the new class.
.3. Calculation of the similarity between the new

class and the rest of objects (classification criterion).

3. Repeat steps 1-2 until we have a single class.

NN DN

The system allows the user to select the aggregation criterion (how to select the
objects that form the new class) and the classification one (how to calculate new
similarities from old ones) to be used by the classifier. We outline below some of
the aspects related to these criteria.
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1. Aggregation criterion. It is used to determine which of the elements form
a new class. At present, there is only a single criterion implemented that
consists on defining the new class with those objects that have a minimum
dissimilarity value (so they are the most similar ones). This is the most used
method.

This criterion can be applied gathering at each step only two objects (in this
way we obtain binary trees) or gathering in each step all those objects with
a minimum dissimilarity (so we obtain n-trees). As it has been said, we have
implemented this latter option.

2. Classification criterion. It is used to recalculate the similarity matrix when
a new class is built. In the system Sedas we have implemented the following
methods: Single linkage, Complete linkage, Arithmetic average, Group aver-
age, Centroid cluster analysis, Median cluster analysis, Ward’s method. The
methods are described in [6, 24].

3 Distance definition for ordered linguistic labels

In section 2.2, when describing the classifier, we have pointed out that a distance
function between pairs of linguistic labels is needed when implementing similarity
functions. In this section we introduce the definition of a distance between pairs of
linguistic labels based on negation functions. See [21] for more details. The section
begins with classical negation functions over linguistic labels. Then, we comment
some drawbacks of these functions and we introduce a new definition of negation
functions that is used latter on to define the semantics. The semantics is used to
define the distance.

Negation functions over a set of ordered linguistic labels L = {xg,...,xn} (such
that, xo < ... < x,) are usually defined [12, 10] as functions from L to L that
satisfy:

N1) if x < x’ then Neg(x) > Neg(x’) forallx,x’ € L

N2) Neg(Neg(x)) = x forall xé€eL
The later condition, N2, can be equivalently rewritten as

N3) if x=Neg(x’) then x’=Neg(x)

However, a negation function defined in this way is not always adequate. In
fact, when N1 and N2 hold Neg(x) should be defined as Neg(x;)=x,_, so, it stands
for situations where each label of the pair <x;,x,,_;> is equally informative. It is
possible, instead, that some subdomain of the reference set is more informative
than the rest. In this case, the density of linguistic labels in this subdomain should
be greater than the density in the rest of the domain. In fact, in our case, we are
interested on representing situations similar to figure 1 and defining the similarity
or the distance between labels accordingly.

Usually when a system considers ordered linguistic labels, it also considers their
corresponding semantics defined by means of fuzzy sets (i.e., for each linguistic
label there is a fuzzy set over a reference set attached to it). See, for instance [4]
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Figure 1: Labels distribution in the domain

in fuzzy control, [27] in KBS and [10] in aggregation of opinions. In this case, the
classifier can define the similarity between any pair of labels as a function of their
corresponding fuzzy set (e.g., by means of the extension principle [5]). However, in
the framework of knowledge acquisition (modelling) the expert is not always able
to define a fuzzy set for each linguistic label because this would require an excess
of accuracy that he/she can not always supply.

Instead, we want that the expert could express his/her knolwedge about the
terms by means of a negation function. Nevertheless, when the set of linguistic
labels is intended to be according figure 1, the negation function cannot be of the
form Neg(x;)=x,_;. Notice that in this figure, the negation of Almost-Nil (AN),
and also the one of Very-Low (VL), should be Very-High (VH). However, this
negation function does not satisfy condition N1. Besides of that, if we consider
condition N3, then, it is not even possible to define Neg(High).

To overcome these problems, we have defined [21] a negation function as a
function Neg from L to parts of L (Neg: L — p(L)) weakening the conditions
given above.

Definition 4 A function Neg: L — (L) is a negation function if and only if it
satisfies:

C0) Neg is a convex and a non empty function
C1) if x < x’ then Neg(z) > Neg(z’) for all z,z” € L

where A > B is true, if and only if, min {y | y € A} > maz {y | y € B}
C2) if v € Neg(z’) then z’ € Neg(z)

CO is a technical condition, it requires that the negation of a label is not an
empty set (so, every label has a negation) and that the negation of a label is a
convex set (i.e., a subset X of L is defined as convex if and only if for all x,y,z € L
such that x < y < z and x,z € X, then y € X)

Given a set of linguistic labels L = {xg,...,,n} (such that, xg < ... < x5,) and
a negation function Neg: L — p(L), in [21] we have defined for each label x; its
corresponding semantics as the interval I(x;):

I(@;) = [min,mis] = [ Y [Neg(zi)l/ > |Neg(i)|, Y |Neg(zi)l/ Y |Neg(z:)|]-
r<z; zeEX r<z; zeX

This semantics has been defined in a way that the negation over L performs
similar than the negation over the unit interval. We have considered N(x)=1-x
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Figure 2: Labels obtained according to (a) source information, (b) classical intervals
and (c) the new semantics.

as the function in this interval. The enunciation of these properties are in [21]
together with the proof that the semantics satisfies these properties.

A negation function following definition 4 makes possible to express the relation
between labels in figure 1:

Neg(almost-nil) = Neg(very-low) = {very-high}
Neg(quite-low)= Neg(low) = {high}
Neg(medium) = {medium}

Neg(high) = {quite-low, low}

Neg(very-high) = {almost-nil, very-low}

To see that this semantics modifies the induced interval, we consider again the
original intervals in figure 1. We display them in figure 2a together with the limits
of the intervals (with its domain normalized in [0,1]). In figure 2b, we display the
intervals when the relations among labels are not expressed with a negation function
(i.e., classical intervals are considered). In figure 2¢, we display the intervals inferred
according to the new semantics when the negation function defined above is used.
It can be seen that the new semantics induces a set of intervals that are more
similar to the original ones than the ones in figure 2b. Notice that as the intervals
are built upon the negation function, when the negation function is changed, they
change also. Notice also that when Neg(x;)=x,—;, the intervals inferred are the
classical ones (i.e., in the example of figure 2a, we would infer 2b).

Once there is a semantics in [0,1] attached to each label, it is possible to define a
distance between pairs of them. In our case as there is not more information about
the interval, this is achieved calculating a numeric value ¢'(I;) corresponding to the
center of the interval, i.e., ¢'(l;) = q(l;)/ >_,c1 |Neg(z)| where ¢(l;) is defined as:
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Yo INeg(l)| 4+ X INeg (L))
q(l;) = 5

Recently, we have studied the validity of this semantics in the framework of
knowledge acquisition systems. Our first results have been reported in [25]. We
have observed that this semantics leads to a classification with more structure
in relation to the case that the classical semantics is used. This is, when only
one attribute is considered (an ordered qualitative one), the classification depends
only on the mapping of each label into the unit interval. In this case, if classical
semantics is used, the resulting classification can only be splitted into two a-cuts.
One that corresponds to the equivalence relation built upon the linguistic labels.
In the other a-cut there is only one class with all the objects. This is not always
the case when the semantics used is the one inferred from a negation function of
the form of definition 4.

4 Examples

The system has been applied to data on several domains (biology, data on car
importation, ...) some of them obtained from a public repository [16]. Here, in
order to give an example of the components mentioned above we show the results
of a small example taken from [23]: Data matrices about programming languages
with 13 objects and 8 attributes. The data matrices were fullfilled by some mem-
bers of the academic staff at the Computer Science department at the Universitat
Politecnica de Catalunya and of the Institut d’Investigacié en Intel.ligencia Artifi-
cial (IITA, CSIC). The set of objects (O) and the set of attributes (A) are defined
in these matrices in the following form:

O = {Lisp, C, Pascal, Scheme, FORTRAN, Prolog, ML,
Modula-2, Basic, FP, Assembler, Ada, COBOL}

A = {clarity, compactness, power, comprehension, structures,
modularity, facility, type}

One of the matrices has been used to calculate several classifications changing
the similarity function, the classification method, or the aggregation criteria. In
figure 3, as an example, we show a tree corresponding to the case that the similarity
function is a distance based on differences and the classification function is the
single linkage. Notice that figure 3 shows that the trees are not forced to be binary.
There is a node with three subtrees.

In table 2 we compare different classifications obtained from the same data
matrix with several classification methods and similarity functions. The table give
the distance between pairs of trees. We have used the distance defined in [17] and

[1]:
d(T,T') = |TUT'| - |TNT|
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Figure 3: A classification tree calculated by differences and single linkage

It is interesting to see that the similarity between classification trees is highly
related to the similarity function used rather than to the classification method. This
is reflected in table 2 by means of small distances between classifications obtained
with the same similarity function (differences or mean character difference), and
greater distances when different similarity functions are considered. We can see, for
example, that when we choose a distance function by differences (Dif), the trees
obtained by means of the arithmetic average (Dif-a) and the median procedure
(Dif-m) have a distance of 8. On the other hand, when arithmetic average is
considered with several distance functions we have d(Dif-a, MCD-a)=13. Notice
that the distances in the frame are greater than the others in the same column/row.

5 Conclusions and future work

In this paper, we have introduced the general classifier system Sedas that builds
n-ary classification trees from data matrices according to three parameters supplied
by the expert: a similarity function, a classification criterion and an aggregation
criterion. This arquitecture differs from the usual methods by not limiting the
type of the values of the attributes, which can be either quantitative, boolean or
qualitative (ordered or not) and also by the new method of calculating the similarity
between linguistic terms when their domain is ordered. Sedas has been defined as
an open system so that the user can define new similarity functions, classification
criteria and aggregation criteria. These methods can be easily incorporated to the
system.

Nowadays, we are using Sedas to study the synthesis of information in the
framework of knowledge acquisition. We have studied the synthesis at two different
levels: matrix level (EGAC [23]) and classification level ([22]). Sedas is going to
be used in a methodology [26] designed for the analysis and comparison of these
tools on synthesis of information.
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Dif-a | Dif-m | Dif-s | MCD-a | MCD-m | MCD-s | Symbols

glossary
Dif-a 0 8 9 13 17 13 Dif: Distance

by difference
Dif-m 0 13 17 19 17 MCD:  Dis-

tance by

Mean Charac-
ter Difference
Dif-s 0 12 16 12 a: Classifica-
tion by Arith-
metic average
MCD-a 0 6 0 m: Clas-
sification

by Median
procedure
MCD-m 0 6 s:  Classifica-
tion by single
linkage

MCD-s 0

Table 2: Distances between classifications
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