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Abstract

We discuss a prescriptive approach to multistage optimal fuzzy control of
a fuzzy system, given by a fuzzy state transition equation. Fuzzy constraints
and fuzzy goals at consecutive control stages are given, and their confluence,
Bellman and Zadeh’s fuzzy decision, is an explicit performance function to
be optimized. First, we briefly survey previous basic solution methods of dy-
namic programming (Baldwin and Pilsworth, 1982) and branch-and-bound
(Kacprzyk, 1979), which are plagued by low numerical efficiency, and then
sketch Kacprzyk’s (1993a—e, 1994a) approach based on possibilistic inter-
polative reasoning aimed at enhancing the numerical efficiency but requiring
a solution of a simplified auxiliary problem, and then some “readjustment” of
the solution obtained. We propose a genetic algorithm for solving the prob-
lem considered. Real coding and specially defined operations of crossover,
mutation, etc. are employed. The approach yields good results, and is quite
efficient numerically.

Keywords: multistage fuzzy control, fuzzy dynamic system, fuzzy dynamic
programming, branch-and-bound, interpolative reasoning, genetic algorithm.

1 Introduction

A huge interest in fuzzy (logic) control that we encounter all over the world, both
in the academia and among practitioners, is amplified by successful applications
ranging from “big” specialized equipment and technological processes, as, e.g.,
cranes, cement kilns, subway trains, etc. to “small” everyday products as, e.g.,
washing machines or cameras. Clearly, the latter ones are more visible to the
general public, media, and even authorities responsible for research financing, and
are therefore an important factor.

In those applications control rules are used that encode a control policy (control
to be applied in a specific situation). These rules, forming the knowledge base, are
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known from experience by the human operator, are stated in process manuals, etc.,
and need to be elicited by some knowledge elicitation or acquisition methods. Then,
these rules are used to infer control for a specific situation (not necessarily one of
those taken into account while constructing the knowledge base). Thus, the rules
just describe how to control the process, hence this is a descriptive approach to
fuzzy control.

However, though a traditional descriptive approach to fuzzy control is prac-
tically efficient, it has some inherent limitations. First of all, it lacks an explicit
performance function, and — what is clearly related — makes it not possible to simply
change the performance function, i.e. to make possible the control of the process
in a different way, for instance not aiming at a highest possible fuel efficiency but
at a possibly fast action. Such a simple and often encountered change of control
strategy would require in a traditional fuzzy control system the existence of a new
set of control rules covering such a different situation. Needless to say that since
at the extreme the number of such possible different control strategies (equivalent
to different performance functions) might be very high (theoretically infinite), then
the knowledge base of a fuzzy controller would have to contain a very high number
of rules that would often be prohibitive.

Fortunately enough, there also exists an earlier approach to fuzzy control which
does not exhibit the drawbacks of the conventional fuzzy (logic) control models
mentioned above. This approach is from the late 1960s and early 1970s (cf. Bellman
and Zadeh, 1970), and has been further developed by, e.g., Fung and Fu (1977),
Kacprzyk (1977-1994a), etc., and is presented in detail in Kacprzyk’s (1983a,1997)
books.

Its essence is the assumptions that: dynamics of the system under control is
known, a performance function is explicitly specified, and (optimal) controls are
to be found by an algorithm. So, we do not describe how the system should
be controlled but prescribe how to control it. This is therefore a prescriptive
approach.

Such a prescriptive approach to fuzzy control is considered here. We assume a
fuzzy system under control given by a fuzzy state transition equation, and oper-
ating under fuzzy constraints on controls and fuzzy goals on states (which, when
aggregated, constitute in fact an explicit performance function). We seek optimal
fuzzy controls over some planning horizon.

First, to provide a point of departure, show the essence of the problem con-
sidered and its inherent difficulties, and give motivation for our work, we sketch
the basic traditional solution techniques: dynamic programming (Baldwin and
Pilsworth, 1982), branch-and-bound (Kacprzyk, 1979), and Kacprzyk’s (1993a—e,
1994a) attempts to enhance efficiency by using interpolative reasoning.

As an alternative solution method, we propose a real coded genetic algorithm,
with specially devised genetic operations of crossover and mutation. We advocate
it as a viable alternative.
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2 Control of a fuzzy system in a fuzzy environ-
ment: problem formulation and traditional so-
lution techniques

Dynamics of the fuzzy system under control is given by a fuzzy state transition
equation

X1 =F(X, Up);t=0,1,. .. (1)

where Xy, Xy 11 are fuzzy states at control stage ¢ and ¢+ 1, respectively, defined as
fuzzy sets in the state space X = {z} = {s1,...,s,}, and U; is a fuzzy control at
t,t=0,1,..., defined as a fuzzy set in the control space U = {u} = {e1,...,cm}-

At each ¢, the control applied U; is subjected to a fuzzy constraint pe: (ut), and
on the state attained X;11 a fuzzy goal pge+1 (zpy1) is imposed, t = 0,1,..., N —1;
N is a control horizon (termination time) assumed to be fixed and specified, and
finite (cf. Kacprzyk, 1983a, 1997 for other type of finite and infinite termination
times).

Both the fuzzy controls U;’s and fuzzy states X;y1’s are now fuzzy, hence their
grades of membership in the fuzzy constraints and goals cannot be directly deter-
mined as the values of pce (us) and pgi+1(2441), and some “trickery” is needed. For
instance, one can use the following redefinition of the fuzzy constraint and fuzzy
goal

,uat(Ut) =1- d(Ct, Ut)
i+t (Xep1) = 1= d(GM, X yq) (2)
t=0,1,...,N—1

where d : [0,1] x [0,1] — [0, 1] is some measure of dissemblance (as, e.g., (12)), a
normalized (e.g. Hamming’s or Euclidean) distance between fuzzy sets (as, e.g., in
Kacprzyk, 1979), etc.

Now, employing Bellman and Zadeh’s (1970) general framework for decision
making under fuzziness, the fuzzy decision is

1o(Uo, ..., Un—1 | Xo) =
= o (Uo) A Hat (X1)A... A uaNﬂ(UN,l) N pran (XnN) (3)

It is easy to see that the fuzzy decision serves the purpose of an explicit per-
formance function which is a prerequisite for the approach considered. Namely, it
specifies the degree to which the fuzzy constraints and fuzzy goals are satisfied at
all the control stages.

Notice that although the minimum operation, “A” is used above, the aggrega-
tion of the fuzzy constraints and fuzzy goals may proceed using defferent operations
as, e.g., some t-norm, the weighted average (cf. Kacprzyk, 1983a), using a fuzzy
linguistic quantifier (cf. Kacprzyk, 1983b or Kacprzyk and Iwaiiski, 1987); for sim-
plicity, but without loss of generality, the most commonly used A-based aggregation
will be employed in this paper.
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We wish to best satisfy the fuzzy constraints and fuzzy goals at all the control
stages, so we seek an optimal sequence of fuzzy controls Uj,...,Ux_; such that

,U/D(Uga---antffl | XO) =
= max [I,D(Uo, ‘e .,UN,1 | X()) =

Uo,....Un—1
= . m%x [,uao (U()) A M (Xl) VAN HEN-1 (UN—I) A HEN (XN)] (4)
05 UN—1

Hence, the fuzzy control problem is now of an optimization type. The main
solution techniques are:

e dynamic programming,
e dynamic programming with interpolative reasoning, and
e branch-and-bound,

and these approaches will now be briefly discussed.

2.1 Solution by dynamic programming

This approach, which may be viewed as a reformulation of the classic Bellman and
Zadeh’s (1970) dynamic programming solution for the deterministic and stochastic
system under control, now to be able to handle the fuzzy system under control,
was proposed by Baldwin and Pilsworth (1982).

Basically, after some “trickery” we arrive at the following set of dynamic pro-
gramming recurrence equations

pay (XN) = maxgy (pxy (TN) A pay (TN))
prgn-i(Xn—i) = maxy,_; (maxuy _; (Huy_ (un—i)A

A pren—i(un—;)) Au@N_i+1 (TN-it1)) (5)
BXN_iy1 (wN—i-H) = maXgy_; (maXUN—i (I’LUN—i (U'N—i)/\

A MXn_iy1 (CUN—H-I | ITN—i, U’N—i)) ANUXy_; (wN—i))
i1=1,...N

In principle, this set of equations is solvable. However, first, the puzv-i(Xn—;)
is to be specified for each possible fuzzy state Xn_;, and second, the maximization
is to proceed over all possible fuzzy controls Uy _;. The numbers of possible Uy_; ’s
and Xny_; ’s may be very high, hence the solution of (5) is practically very often
impossible.

The so-called fuzzy interpolation (Baldwin and Pilsworth, 1982; Kacprzyk and
Staniewski, 1982) is therefore used. Basically, a relatively small number, r, of

reference fuzzy states §1, ...,S" and a relatively small number of reference fuzzy
controls 61, e ,Up are introduced. Then, an optimal control policy, U: =a;(Xy),
t =0,1,...,N — 1, is specified for the reference fuzzy states and controls only.

Such an optimal policy is represented as a fuzzy relation 1R (z¢,ut), and for a
current fuzzy state X;, not necessarily reference, an optimal fuzzy control U;", not
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necessarily reference, is given by the compositional rule of inference Uy = ; o R,
where “o” is, e.g., the max-min composition of the respective fuzzy relations.

However, by the very nature of the compositional rule of inference, there should
be relatively many “overlapping” reference fuzzy states and controls to yield signif-
icant results. This may clearly imply too high a problem dimensionality that may
lead to numerical problems, and hence Kacprzyk’s (1993a—e, 1994a) interpolative
reasoning approach was proposed, and it will be presented later.

In general, the fuzzy dynamic programming approach presented above is not
practically tractable, and the two approaches to be presented below were devised
to alleviate this difficulty.

More details on fuzzy dynamic programming can be found, e.g. in Kacprzyk’s
(1983a,1997) books or Kacprzyk (1994b).

2.2 Solution by dynamic programming with interpolative
reasoning

Since for the compositional rule of inference to work properly in the above dynamic
programming approach there should be “overlapping” reference fuzzy states and
fuzzy controls, whose number may be too high for many non-trivial problems,
in recent Kacprzyk’s (1993a—e, 1994) papers another approach was proposed in
which (very) small numbers of (non-overlapping) fuzzy reference fuzzy controls and
states are assumed, an (auxiliary) control problem is formulated in their terms, and
then quickly solved by dynamic programming (in fact, also by another method as,
say, branch-and-bound to be discussed later). An “auxiliary” optimal solution is
obtained which is then readjusted to obtain an optimal solution of a “real” control
problem, i.e. formulated in terms of the source fuzzy states and fuzzy controls.

Suppose that we obtain in such a case an optimal (auxiliary) control policy a}
stating that

(IFX; =S, THEN U, =Ch
ELSE ...ELSE
IF X, =5; THEN U, = Cy
ELSE (6)
IF X; = 5,11 THEN U, = Cy(i11)
ELSE ...ELSE
(| IFX; =235, THEN U, = C,,

To implement such a control policy, we need to find a fuzzy control Uy (not
necessarily reference) for a current X; (not necessarily reference). If X; is a fuzzy
number between S; and §i+1, we seek an U} corresponding to X; via @;; since X;
is not reference, U;" need not be reference either.

Kacprzyk’s (1993a—e, 1994) idea is now as follows. First, we assume — for
simplicity, but which is fully sufficient in our context — that the fuzzy controls and
fuzzy states are triangular fuzzy numbers. We seek therefore their mean values and
widths (left and right spreads).
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First we determine the mean value of U} using the following simple and intu-
itively appealing relation

AL X)) __dACLU) -
d(Xe, Siv1)  d(Uf, Criigry)

where d(.,.) is a distance, dissemblance, etc. of two fuzzy sets [cf. (2)] . That
is, the relative position of fuzzy control U;* with respect to its closest reference
counterparts, i.e. C; and Cy(;11) should be the same as that of X; and its closest
reference counterparts, i.e. S; and S;;; (this approach is close to Kéczy and Hirota,
1992).

The above interpolation type mechanism is clearly the simplest one, and in
Kacprzyk (1994a) some enhancement was proposed. Namely, notice that we employ
above information on the two neighboring reference fuzzy states and controls only,
i.e. a limited one. As this may be insufficient, we may use the three neighboring
fuzzy states (except for the lower and upper most) to better capture the dynamics
of change of the respective U,’s. The idea is: first, determine the mean value of
U as before. Second, find the value of a composite measure of change (e.g., rate
of increase, decrease, ...) of C;_ 1, C;, Ciy, that correspond via the auxiliary
optimal policy to S;_1, S; and S;;1, respectively. Third, correct the mean value
of U} using this measure: if it indicates an increase, move toward “higher values”,
otherwise — toward “lower” values. This may be generalized for more than three
values too. Notice that the general idea outlined above has much to do with the
so-called gradual rules.

The second aspect is the width of Uf. The reasoning is that the lower the
number of reference fuzzy states and controls, i.e., the more sparse the data set,
the less precise is the available information. Hence, the fuzzier (of a larger width)
Uy should be. For instance, we can use a formula

w(U;) = - [@(S:) + W(Sis1) + W(X1) + W(Cri) +B(Ciin))] (8)

ot =

where w(.) is a relative width (related to the universe of discourse of the fuzzy
states and controls), and the simplest arithmetics mean (8) can be replaced by
another formula expressing the above rationale as, e.g., a weighted average.

Moreover, it may often be expedient to include in (8) some term(s) accounting
for the fuzziness of the control problem as, e.g., of the fuzzy constraints, fuzzy goals,
fuzzy system under control, etc. As a first, somehow ad hoc attempt, we can use a
degree of specificity of a fuzzy set and calculate the mean fuzziness (non-specificity)
of fuzzy constraints, fuzzy goals, etc. For the degree of fuzziness (non-specificity)
of the fuzzy system under control (given as a set of IF — THEN rules), we can use
Kacprzyk’s (1994) approach.

Thus, the relative width of U} defined initially by (8), which involves the fuzzi-
ness (non-specificity) of the fuzzy states and fuzzy controls only, may be further
modified to involve the fuzziness of fuzzy constraints, fuzzy goals and fuzzy system
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under control yielding, e.g.,

N N
w(U;) =w(Uy) - corr[Z(l — spec(C*1)), Z(l —spec(G*)),1 —spec(S)] (9)

where w(U;) is the relative width of the fuzzy control given by (8), spec(C? 1) is a
degree of specificity (e.g., in Yager’s, 1988 sense — cf. Kacprzyk, 1994) of a fuzzy
constraint C'~!, spec(G?) is the degree of specificity of a fuzzy goal G?, spec(S)
is the degree of specificity of a fuzzy system under control (given as a set of IF —
THEN rules — cf. Kacprzyk, 1994), and

corr : [0,1] x [0,1] x [0,1] — (1, 00) (10)

is a correcting non-decreasing function which increases the width of an optimal
fuzzy control to be determined in relation to the fuzziness (non-specificity) of the
fuzzy constraints, fuzzy goals and fuzzy system under control.

A detailed description of this approach is beyond the scope of this paper, and
will appear elsewhere. In general, it works very well, and helps attain more realistic
results.

2.3 Solution by branch-and-bound

The earlier Kacprzyk’s (1979) branch-and-bound approach is conceptually simpler
and more efficient. It needs (for a decision tree it works on) a finite number of
controls, i.e. nonfuzzy controls (whose set is here finite by definition) or some
predefined reference fuzzy controls.

The branch-and-bound procedure starts from the initial state xog. We apply
control ug and proceed to x;. Next, we apply u; and proceed to z2, etc. Finally,
in zx_1, we apply uny—1 and attain . This may be presented as a decision tree
whose nodes are the states attained, and with whose edges the controls applied are
associated.

First, denote vg = oo (ug)A. . .Apcx (ug). Then, due to “A”: for any ug, . . ., ug,
0< k<N —1,for each kK <w < N — 1 there holds

Vg > Uy = (k) Aptortr (Upp1) A Apicw (W) > vy = pp(ug, ..., un—1 | Xo) (11)

So, if we are at ¢ = k, and have traversed some path from X, to X, the
most rational continuation of tree traversal is to apply controls to the node which
corresponds to the greatest value of v;, 1 — 1,... k.

Notice that in case of (reference) fuzzy states and fuzzy controls this scheme
works as well, with obvious replacements of u; by Uy, 2441 by Xiy1, Ct by Ut,
Gt by @t, and using the fuzzy decision (3).

The above facts make it possible to devise a branch-and-bound algorithm with
the branching through the controls applied at the consecutive ¢’s, and the bounding
via the values of the vg’s, k =0,..., N.

And again, in case of the reference fuzzy controls, optimal control policies de-
fine optimal fuzzy controls as functions of the reference fuzzy states. So, to find
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optimal fuzzy controls for non-reference fuzzy states, one needs to go as before
through the representation of an optimal policy via a fuzzy relation, and then
using the compositional rule of inference. Then, for larger, non-trivial problems,
if one encounters numerical efficiency problems, one may resort to an interpola-
tive reasoning algorithm analogous to that discuss in Section 2.2 in the context of
dynamic programming.

The above three approaches are satisfactory for many problems, even practical
ones (in particular the one based on interpolative reasoning). However, for exces-
sively large problems they may be not efficient enough. One may therefore try to
use some other tools as, e.g., a genetic algorithm which is proposed in this paper.

3 Solution by a genetic algorithm

For solving the problem considered (4), we will use now a genetic algorithm (cf.
Michalewicz, 1995) which for our purposes may be sketched as:

begin
t=: 0
set the initial population P(t)
evaluate strings in P(t)
while termination condition not fulfilled do

begin

t:=t+1

select current population P(t) from P(t — 1)

perform recombination on elements of P(t)

calculate the evaluation function for each element of P(t)
end

end

The basic elements of the above general algorithm description are to be generally
meant as:

e the problem is represented by strings of fuzzy controls Uy, . .., Unx—1 (assumed
for simplicity to be fuzzy numbers defined in [0, 1]) so we use real coding; in
fact, we further simplify the analysis, and assume triangular fuzzy numbers as
the representation of fuzzy controls; moreover, some reference fuzzy controls,
Uy, ...,Un_1, are also used, and they are also assumed to be triangular fuzzy
numbers in [0, 1];

e the evaluation (objective) function is (3), i.e. the fuzzy decision given as
/,LD(U(), N UN_1 | X()) =
= pgo (U()) A pgr (Xl) VANPAN u6N71(UN,1) A HEN (XN)

and for the calculation of ugt (Up) and pize+1(Xy41) [notice that the controls
and states are fuzzy, and cannot be directly accounted for in the fuzzy con-
straint and fuzzy goal — cf. (2)] we use the dissemblance index (Kaufmann
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and Gupta, 1985) defined, for triangular fuzzy numbers assumed, as: if A
and B are triangular fuzzy numbers, then the degree of dissemblance of A
and B is

1
1 _
(|a® =" | +]a* = 5" |) da (12)

diss(A4, B) :/ Hlla
=0

where [a®,@*] and [b%,b"] are the a-cuts (intervals) of A and B, Yo € (0, 1].

Therefore, if we denote
fr(Ue, C', X1, GMPY) = [1 = diss(Uy, C")] A [1 = diss(Xy41, G'TH] - (13)
for t =0,1,...N — 1, the evaluation function (fuzzy decision) becomes

f(UOaXla---UN_l,XN) =
l‘l’D(U[)’"‘)UNfl |X0):
= fO(UO,CO,Xl,Gl) AL, /\fol(UNflycNil,XN,GN) (14)

e standard random selections of elements from the consecutive populations,
standard concepts of crossover and mutation (evidently, applied to real coded
strings), and a standard termination condition, mainly a predefined number
of iterations, or iteration-to-iteration improvement lower than a threshhold)
are used;

We assume further that:

e fuzzy controls are fuzzy sets in [0, 1] defined as triangular fuzzy numbers in
[0,1], i.e. as the triples (a,b,¢), 0 < a < b < ¢ < 1; the left and right spreads
(widths) are assumed equal to 5% each, for simplicity, hence only the mean
value (b) is practically generated; moreover, 10 (“equally spaced” in [0,1])
reference fuzzy controls are introduced;

e fuzzy states are defined as fuzzy sets in the state space X = {s1,..., 510},

e fuzzy constraints and fuzzy goals are defined as trapezoid fuzzy numbers in
[0,1];

e dynamics of the fuzzy system under control (1), i.e. the state transition
equation, is defined as a set of fuzzy relations Rg in X x X, for each of the
reference fuzzy control (notice that here we do need reference fuzzy controls
as otherwise we would need to specify infinitely many fuzzy relations, for
each possible fuzzy control); so, to choose an appropriate table (relation) to
determine the state transition, first we find a reference fuzzy control that is
the closest (in the sense of, say, the dissemblance index used) to the current
control, and then we take its corresponding fuzzy relation, and employ the
compositional rule of inference to find the resulting fuzzy state Xg41.

The genetic algorithm works therefore as follows:
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begin
t=: 0

set the initial population P(t) which constitutes of

randomly generated strings of triangular fuzzy controls

(i.e. of randomly generated mean values,
with 5% left and right spreads);

for each Uy, ...

,Un_1 in each string in the population P(t),

find the resulting X;y1 (by finding first the closest
reference fuzzy control to choose an appropriate relation,

and then employing the compositional rule of inference),

J. Kacprzyk

and use the evaluation function (14) to evaluate each string in P(t)
while ¢ < the mazimum number of iterations
(or, alternatively, a predefined step-to-step improvement) do

begin

t:=t+1
assign the probabilities to each string in P(¢t — 1),

which are propotional to the value of the evaluation function
for each string, and randomly (using those probabilities)
generate the new population P(t)

perform crossover and mutation on the strings in P(t)

calculate the evaluation function (14) for each string in P(t)

end
end

The algorithm was tested on the following example.

Example. Suppose that the number of control stages is NV = 10, the state space
is X ={s1,...,810}, the controls are triangular fuzzy numbers in [0, 1], and there

are 10 “equally-spaced” (with the mean values at 0.1, ...
controls defined as the trapezoid fuzzy numbers in [0, 1] as follows:

C1 =(0.0,0.1,0.1,0.2)

Cs =

Cs =
Cr =

Co =

(0.2,0.3,0.3,0.4)
(0.4,0.5,0.5, 0.6)
(0.6,0.7,0.7,0.8)
(0.8,0.9,0.9,1.0)

The initial fuzzy state is
Xo=1.0/s1 +0.7/s2+0.4/s3 +0.1/54

The fuzzy constraints at the particular control stages are also given as the
following trapezoid fuzzy numbers:

60 = (0.0,0.0,0.5,0.8

C
C
[oh

)
0.0,0.0,0.5,0.8)
0.0,0.0,0.5,0.8)
0.0,0.0,0.5,0.8)

)

= (
= (
= (
=(0.0,0.0,0.5,0.8

Cy = (0.1,0.2,0.2,0.3)
C4 = (0.3,0.4,0.4,0.5)
Cg = (0.5,0.6,0.6,0.7)
Cg = (0.7,0.8,0.8,0.9)
C1o = (0.9,1.0,1.0,1.0)

—1

C' = (0.0,0.0,0.5,0.8)
¢’ =(0.0,0.0,0.5,0.8)
C” = (0.0,0.0,0.5,0.8)
" =(0.0,0.0,0.5,0.8)
¢’ =(0.0,0.0,0.5,0.8)

, 0.9, 1) reference fuzzy



Genetic Algorithm for the Multistage Control of a Fuzzy System... 229

The fuzzy goals at the particular control stages are:

G =0.1/s1 +0.2/s5 +0.3/s3 + 0.6/s4+

+1.0/s5 +0.6/s6 +0.3/s7 + 0.2/ss + 0.1/s9 + 0.0/s1¢
G’ =0.1/s1 +0.2/s5 +0.3/53 + 0.6/s4+

+1.0/s5 4+ 0.6/56 + 0.3/s7 + 0.2/s5 + 0.1/59 + 0.0/s10
G’ =0.1/s1 +0.2/s5 +0.3/53 + 0.6/s4+

+1.0/s5 4+ 0.6/56 + 0.3/57 + 0.2/55 + 0.1/59 + 0.0/s10
G =0.1/s1 +0.2/55 + 0.3/53 + 0.6/54 + 1.0/55 + 0.6/56+

+ 0.3/87 + 02/58 + 01/59 + 0.0/31[)
G =0.1/51 +0.2/s5 4+ 0.3/53 + 0.6/54+

+1.0/s5 4+ 0.6/56 + 0.3/s7 + 0.2/55 + 0.1/59 + 0.0/s10
G’ =0.1/s1 +0.2/s5 + 0.3/s3 + 0.6/s4+

+1.0/s5 4+ 0.6/56 + 0.3/s7 + 0.2/55 + 0.1/59 + 0.0/510
G =0.1/s1 +0.2/s5 + 0.3/s3 + 0.6/s4+

+1.0/s5 +0.6/s6 +0.3/s7 + 0.2/ss + 0.1/s9 + 0.0/s1¢
G =0.1/s1 +0.2/s5 +0.3/53 + 0.6/s4+

+1.0/s5 +0.6/s6 +0.3/s7 + 0.2/ss + 0.1/s9 + 0.0/s1¢
G’ =0.1/s1 +0.2/s5 +0.3/s3 + 0.6/s4+

+1.0/s5 +0.6/s6 +0.3/s7 + 0.2/ss + 0.1/s9 + 0.0/s1¢
G =01/, +0.2/s5 +0.3/55 + 0.6/s4+

+1.0/s5 +0.6/s6 +0.3/s7 + 0.2/ss + 0.1/s9 + 0.0/s1¢

The fuzzy state transitions (1) are specified as conditioned fuzzy sets for each
particular reference fuzzy control, C1,...,C1o. Due to lack of space we will only
present below the state transtion equations for the first and last reference fuzzy
control, i.e. C; and C1p, and these are:

e for C;

Tir1 = 81 82 53 S4 S5 S6 S7 S8 S9  S10
T =81 0.0 1.0 09 08 07 06 05 04 03 0.1
So 0.0 1.0 09 08 07 06 05 04 03 0.1
S3 0.0 00 09 08 0.7 06 05 04 03 0.1
Sq 0.0 00 09 08 0.7 06 05 04 03 0.1
S5 0.0 1.0 09 08 07 06 05 04 03 0.1
S6 0.0 1.0 09 08 07 06 05 04 03 0.1
St 0.0 1.0 09 08 07 06 05 04 03 0.1
Sg 0.0 1.0 0.9 08 07 06 05 04 03 0.1
So 0.0 1.0 0.9 08 07 06 05 04 03 0.1
$10 0.0 1.0 0.9 08 07 06 05 04 03 0.1
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e for 610

Tey1 =81 82 83 84 S5 S¢St 88 89 810
Ty = 81 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
52 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
53 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
54 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
S5 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
56 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
S7 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
58 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
59 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0
510 0.0 0.0 0.0 0.0 00 00 00 00 00 1.0

Suppose that the main parameters are:

the population size is 50,

e the maximum number of iterations (termination condition) is 1000,
e the crossover rate is 0.6, and

e the mutation rate is 0.001.

The ten best results obtained may be summarized as follows:

e the optimal fuzzy controls (triangular fuzzy numbers U; = (a,b,c)) at the

particular control stages t = 0,1,...,10, i.e. the best result obtained, are:
U = (0.4885,0.5142,0.5399) = (0.5031,0.5296, 0.5561)
U; = (0.4236,0.4459,0.4682) = (0.4842,0.5097,0.5352)
Us = (0.4651,0.4895,0.5140) = (0.4916,0.5175,0.5434)
U = (0.3218,0.3387,0.3556) U7 = (0.5225,0.5500, 0.5775)
Ug = (0.3451,0.3633,0.3815) = (0.2615,0.2752, 0.2890)

and the value of the fuzzy decision (14) is

up(US, ..., U | Xo) = 0.681881

e the second best result is

U0 = (0.4885, 0.5142, 0.5399) = (0.5031, 0.5296, 0.5561)
= (0.4236, 0.4459, 0.4682) = (0.4842,0.5097, 0.5352)
(0.4651,0.4895, 0.5140) = (0.4916, 0.5175,0.5434)
= (0.3218, 0.3387, 0.3556) = (0.5225, 0.5500, 0.5775)
= (0.3451,0.3633, 0.3815) = (0.2615, 0.2752,0.2890)

U4—

and the value of the fuzzy decision (14) is

wp (UL, ..., Us | Xo) = 0.681881



Genetic Algorithm for the Multistage Control of a Fuzzy System... 231

e while the tenth best result is:

Ug = (0.2510,0.2642,0.2774) U = (0.4758,0.5008, 0.5259)
Us = (0.4855,0.5111,0.5366) U = (0.5432,0.5718,0.6004)
U; = (0.4780,0.5032,0.5284) U = (0.5182,0.5455,0.5728)
Ug = (0.5100,0.5368,0.5637) U = (0.3316,0.3491, 0.3665)
U = (0.4639,0.4883,0.5127) Uy = (0.3816,0.4016,0.4217)

and the value of the fuzzy decision (14) is

up(Ug,... U | Xo) = 0.679795

As to the computational efficiency, the best values of the fuzzy decision (14) have
been obtained pretty early, well before the 1,000 iterations assumed. In general,
also for many different problems solved, the algorithm has proven to be efficient
(cf. Kacprzyk, 1997).

4 Concluding remarks

We proposed the use of a genetic algorithm for solving multistage (optimal) control
of a fuzzy system in a fuzzy environment (under fuzzy constraints and goals). Real
coding and standard crossover and mutation operations were used. The method is
simple and the results are promising. It seems that the use of a genetic algorithm
can provide a viable alternative for solving this class of prescriptive fuzzy control
problems that have been plagued by inherent numerical inefficiency. Moreover, we
think that a more sophisticated evolutionary type strategy might be even more
adequate for the problem considered.
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