Mathware & Soft Computing 4 (1997) 155-179

Parameterized Prime Implicant/Implicate
Computations for Regular Logics*

Anavai Ramesh!fand Neil V. Murray
! Intel Corporation. Chandler, Arizona
agramesh@sedona.intel.com
2 Dept. of Computer Science. SUNY at Albany, NY.
num@cs. albany. edu

Abstract

Prime implicant/implicate generating algorithms for multiple-valued log-
ics (MVL’s) are introduced. Techniques from classical logic not requiring
large normal forms or truth tables are adapted to certain “regular” multiple-
valued logics. This is accomplished by means of signed formulas, a meta-logic
for multiple valued logics; the formulas are normalized in a way analogous to
negation normal form. The logic of signed formulas is classical in nature.

The presented method is based on path dissolution, a strongly complete
inference rule. The generalization of dissolution that accommodates signed
formulas is described. The method is first characterized as a procedure it-
erated over the truth value domain A = {0,1,...,n — 1} of the MVL. The
computational requirements are then reduced via parameterization with re-
spect to the elements and the cardinality of A.

1 Introduction

Prime implicant generating algorithms are used as the first step in minimiza-
tion of functions in classical two-valued logic [18] and in multiple-valued logics
(MVL’s) [1, 17, 19]. In artificial intelligence research, prime implicate generat-
ing algorithms have been used in clause management and in truth maintenance
systems [8, 15]. Many algorithms for computing prime implicants and prime im-
plicates have been developed; for example, Slagle, Chang, and Lee [16], Kean and
Tsiknis [7], Jackson and Pais [5], Jackson [6], and Strzemecki [18] for classical logic,
Su and Cheung [19], Smith IIT [17] and Allen and Givone [1] for multiple-valued
logics. These algorithms require the input to be in some normal form — usually
conjunctive normal form (CNF), disjunctive normal form (DNF), or as a set of

*This research was supported in part by National Science Foundation Grants CCR-9101208
and CCR-9404338.
TThis work was carried out while the author stayed at the University at Albany.

155

156 A. Ramesh & N. V. Murray

minterms. Ngair’s method [13] employs a normal form which is much more restric-
tive than negation normal form (NNF) although less restrictive than CNF or than
DNF.

In [14] we gave several related methods for finding prime implicants/implicates
when the input is in the less restrictive NNF. One can easily convert boolean
functions containing negation, conjunction, implication, and disjunction to NNF
with no increase in formula size. We showed theoretically as well as empirically that
by working with formulas in NNF, running times are improved in comparison with
those obtainable on equivalent CNF or DNF inputs. Our methods are based on
dissolution [9], a strongly complete inference rule, and an algorithm called PI. (By
strongly complete, we mean that any sequence of dissolution steps will terminate in
a linkless formula equivalent to the original — see [9].) The path-based techniques
from [5] are combined with techniques that are inference-based as in [6, 7]. A key
feature of our techniques is that they do not rely on CNF, DNF, or on minterms.

In this paper we investigate the adaptability of our techniques to multiple-valued
logics. Dissolution is a sound and complete inference rule; it was first proposed for
classical two-valued logic and handles formulas in NNF. It was later generalized to
handle multiple valued logics through signed formulas, a classical logic that serves
as a meta-logic for multiple-valued logics. Signed formulas (defined below) capture,
at a meta-level, queries about formulas of multiple-valued logics. The answers to
these queries are either true or false. For example, let F be a formula in some 4
valued logic with {0,1,2,3} as the set of truth values. To answer queries such as “can
the value of F be 1”7 or “can the value of F be greater than 1,” we express them as
the signed formulas {1}:F and {> 1} : F, respectively. The answer to such queries
is yes if the corresponding signed formula is satisfiable, false if not. Satisfiability
for signed formulas is defined in the classical way, but under certain restrictions
allowing only those assignments that correspond to “reasonable” assignments over
the multiple-valued language. Depending upon the deductive machinery employed,
affirmative answers to such queries may be accompanied by a representation of
those interpretations under which the query comes out true. It is this feature that
is crucial for producing prime implicants/implicates.

We first define the notion of prime s-implicant and prime s-implicate with re-
spect to signed formulas that are normalized in a way analogous to NNF. These
are generalizations to signed formulas of the classical notions of prime impli-
cant/implicate. Then, to find the prime implicants/implicates of multiple-valued
logic formulas, we first form the corresponding signed formulas, find the prime
s-implicants/s-implicates of these signed formulas, and finally translate them to
prime implicants/implicates of the multiple-valued function.

The method is first characterized as a procedure iterated over the truth value
domain A = {0,1,...,n — 1} of the MVL. The computational requirements are
then reduced via parameterization with respect to the elements and the cardinality
of A. Our method therefore provides a way of finding prime implicants or prime
implicates that is quite independent of the particular MVL employed (within the
class of MVL’s called regular logics, defined in Section 2.1).

In the next section we introduce basic definitions including signed formulas
and path dissolution. The notions of implicant and implicate are generalized to

Parameterized Prime Implicant/Implicate Computations for Regular Logics 157

s-implicant and s-implicate for signed formulas in Section 3. In Section 4 we adapt
our classical methods to produce a new algorithm for finding the prime s-implicants
of an MVL formula based on signed formulas. The algorithm’s correctness is shown.
In Section 5 we show how our approach yields a method for computing the prime
implicants of formulas in a family of Post logics.

2 Signed Formulas

Signed formulas have been used by Héhnle [3] and by Murray and Rosenthal [10, 11]
to build inference systems for multiple valued logics. A review of signed formulas
and of the corresponding propositional logic appears below; it is borrowed from [11]
in order to make this paper self-contained.

We assume a (propositional) language A consisting of logical formulas built in
the usual way from a set A of atoms, a set T' of connectives, and a set x of logical
constants. For the sake of completeness, we precisely define a formula in A as
follows:

1. Atoms and logical constants are formulas.

2. If © is a connective of arity n and if 7y, Fs, ..., F, are formulas,
then so is O(F1, Fa, ..., Fn)-

Associated with A is a set A of truth values, and an interpretation for A is
a function from A to A; i.e., an assignment of truth values to every atom in A.
A connective © of arity n denotes a function © : A — A. Interpretations are
extended in the usual way to mappings from formulas to A.

We use the term sign for any subset of A (and overload it by also using it for
any expression that denotes a subset of A). We define a signed formula to be an
expression of the form S:F, where S is a sign and F is a formula in A; if F is
an atom in A, we call S:F a signed literal. We are interested in signed formulas
because they represent queries of the form, ” Are there interpretations under which
F evaluates to a truth value in S?” To answer arbitrary queries, we map formulas
in A to formulas in a classical propositional logic Ag, called signed formulas; it is
defined as follows: The atoms are signed formulas and the connectives are (classical)
conjunction and disjunction. The set of truth values is of course {true, false}.

An arbitrary interpretation for Ay may make an assignment of true or false
to any signed formula (i.e., to any atom) in the usual way. Our goal is to focus
attention only on those interpretations that relate to the sign in a signed formula.
To accomplish this we restrict attention to A-consistent interpretations. An in-
terpretation I over A assigns to each atom, and therefore to each formula F, a
truth value in A, and the corresponding A-consistent interpretation Ig is defined
by Is(S : F) = true if I(F) € S, and Is(S : F) = false if I(F) ¢ S. Note
that this is a 1-1 correspondence between the set of all interpretations over A and
the set of A-consistent interpretations over Ag. Intuitively, A-consistent means an
assignment of true to all signed formulas whose signs are simultaneously achiev-
able via some interpretation over the original language. Restricting attention to

158 A. Ramesh & N. V. Murray

A-consistent interpretations yields a new consequence relation: If F; and F» are
formulas in A, we write Fy |=a F» if whenever I is a A-consistent interpretation
and I;(Fy) = true, then I;(F2) = true.

The following lemma is immediate.

Lemma 1 Let I; be a A-consistent interpretation, let A be an atom and F a
formula in A, and let S; and Sy be signs. Then:

i) I;(0:F) = false;

il) I;(A:F) = true;

iii) S; C So & S1: F Ea Sy : F, for all formulas F;

iv) There is exactly one 6 € A such that I;({6}: A) = true. O

The next lemma, follows immediately from part iv of Lemma 1. First, we say
that two formulas Fy and F) in As are A-equivalent if I,(Fs) = I(F.) for any
A-consistent interpretation I; we write Fy = F.. Observe that Fs = F. if and

only if s |=a F. and F, Ep Fs.

Lemma 2 (The Reduction Lemma). Let S; : A and Sy : A be signed literals in
Ag; then

Si:ANSy: A= (S1NSs): A and

SliA\/SziAEA (51U52):A

2.1 A-atomic formulas

We say that a formula in Ay is A-atomic if for each signed literal S : A, A is an
atom in A; i.e., if the only atoms in the formula are signed literals. In [11], it was
shown that a A-equivalent version of any signed formula can in principle be com-
puted when A is finite. In general, however, computing the A-atomic equivalent of
S : F can be prohibitively expensive. Yet for many applications in which prime im-
plicants/implicates are useful (e.g., hardware design), the logic employed is highly
structured and turns out to be a regular logic as defined by Hahnle [2]. Intuitively,
a regular logic has a finite linearly ordered truth domain, and its operators behave
monotonically with respect to each of their arguments; for details, see [2].

For example, the family of Post’s Logics P, using V,, A,, and o as connectives
can be expressed as regular logics. Here 0(4) = (A + 1) modn and V, and A, are
defined as max and min. Although o is not regular, it can be defined in terms of
regular unary operators — see Section 5.

Consider the following signed formula in Py, {> 1} : F where F is ((z1 V,
z2) Ap o(x3)). After driving the signs inward we get the following (A-equivalent
— see Section 5) A-atomic formula F' = (({> 1} : 2z V {> 1} 1 22) A ({> 1}

Parameterized Prime Implicant/Implicate Computations for Regular Logics 159

SlzC
A \ 5320
SQZA
((ﬁsl ZC/\SQZA)VSgZC)/\("S4ZAV(S5ZB/\S@ZC))E A
Ss:B
S4:A \Y N
S@ZC’

Figure 1: NNF in two dimensions

zz A {< 3} :x3)). Note that the operators V and A in F' are classical disjunction
and conjunction, not max and min over A.

Let F be any signed formula. We introduce classical negation (—) into signed
formulas by defining —F as follows: If I, is a A-consistent interpretation, Is(—F) =
true if I;(F) = false; otherwise, Is(—~F) = false. The proofs of the identities listed
below follow from A-consistency and well known properties of classical two-valued
logic.

1. 2S:F =5 S:F, where S = A —8S.

2. =(S1:F NS Fo) =p 0S8 Fi vV aSy: Fo.

3. =(S1:F VS Fo) =p =St Fi A Sy Fo.

4. S F1 |Ea So: Fiff—S;:F1 V Sa: Fy is valid w.r.t. A-consistency.

2.2 NNF notation

A number of technical terms and definitions are introduced in this section. Al-
though the treatment is brief, the examples plus the reader’s intuition should pro-
vide an adequate understanding of this background material. For a more detailed
exposition, see [9].

The formulas in A, that we are interested in are in negation normal form (NNF):
The only connectives used are conjunction and disjunction. Such NNF formulas
naturally lend themselves to a two-dimensional representation that we call semantic
graphs. A semantic graph G is either one of the truth constants true or false, a
literal, a c-arc which is a conjunction of two semantic graphs, or a d-arc which is
a disjunction of two semantic graphs. We use the notation (X,Y). for the c-arc
from X to Y and similarly use (X,Y), for a d-arc; the subscript may be omitted
when no confusion is possible. For example, in Figure 1, the formula on the left is
displayed graphically on the right.

Disjunctions (d-arcs) are displayed horizontally, conjunctions (c-arcs) verti-
cally. Essentially, the only difference between a semantic graph and a formula
in NNF is the point of view, and we will use either term depending upon the de-
sired emphasis. The graph above contains four c-paths (maximal conjunctions

160 A. Ramesh & N. V. Murray

5120
A \ 5320 Sz A
SzZA
A A
S5:B
S4ZA \Y A S4:A \Y SGZC
SgCC

Figure 2: Subgraphs

of literal occurrences): {S; : C,S2 : A, Sy : A}, {S5 : C, S5 : B, Ss : C},
{51 20, Sz:A, SsCB, SG:C}, {5310, S4A}

More precisely, if A and B are nodes in a graph, and ifa = (X,Y), is an arc
(¢ =cora=d) with Ain X and B in Y, we say that a is the arc connecting A
and B, and that A and B are a-connected. In Figure 1, Sy : C is c-connected to
each of So : A, Sy : A, S5 : B, and Sg : C, and is d-connected to S5 : C. A partial
c-path through G is a set of nodes such that any two are c-connected, and a c-path
through G is a partial c-path that is not properly contained in any partial c-path;
similarly for d-paths.

We define a c-link to be a minimal set of mutually unsatisfiable pairwise c-
connected signed literals and a d-link to be a minimal set of mutually valid pairwise
d-connected signed literals. Some thought should convince the reader that all link
elements share the same atom from A and that either the intersection of their signs
is @ (for c-links) or the union is A (for d-links). Note that for the special case
of classical logic, this reduces to the usual definition of a pair of complementary
literals. In Ag, however, links are not necessarily binary. Since dissolution was
designed to operate on pairs of objects, we define a partial c-link to be a pair
of c-connected literals that differ only in their signs; similarly for partial d-links.
For example in the above figure S» : A and Sy : A form a partial c-link, and if
Sa NSy = 0, then they also form a c-link.

A semantic graph is unsatisfiable (valid) if and only if every c-path (d-path) is
unsatisfiable (valid), and a c-path (d-path) is unsatisfiable (valid) if and only if it
contains a c-link (d-link).

It is useful to consider subgraphs that are not explicit; that is, given any set of
nodes, we would like to examine that part of the graph consisting of exactly that
set of nodes. We use G'x to denote the subgraph of G with respect to a set of nodes
X. The example of Figure 1 is shown on the left in Figure 2; the subgraph relative
to the set {Ss : A, Sy : A, Sg:C} is the graph on the right.

Note that every c-path (d-path) in Gx will be a partial c-path (d-path) in G.
A non-empty subset N of nodes corresponds unambiguously to one subgraph of G.
The empty set corresponds to both ¢rue and to false; true and false are subgraphs
of all semantic graphs. For a precise definition of subgraphs, see [9].

Parameterized Prime Implicant/Implicate Computations for Regular Logics 161

C C
A V D AV D
A A D
A A VoA
B B A
A v A A
C C

Figure 3: Classical dissolution

2.3 Path dissolution

In classical logic, the idea of path dissolution is to eliminate all paths through a
given c-link. Given a formula G, repeated applications of dissolution will eventu-
ally produce a linkless formula FD(G) called the full dissolvent of G. Hence all
remaining paths are satisfiable, so G is unsatisfiable if and only if FD(G) has no
c-paths; i.e., if and only if F'D(G) is the empty disjunction.

We can get an intuitive idea of how dissolution for classical logic works from
Figure 3. The graph on the right is produced by dissolving on the link {4, A} in
the graph on the left.

The two graphs are equivalent, but the one on the right contains three, not
four, c-paths — the one path through the link is no longer present.

Path dissolution is in general applicable to collections of links. Here we re-
strict attention to single links, in which complementary literals A and A reside in
conjoined subgraphs X and Y, respectively. With respect to the link {4, A} in

c B
Figure3, X = A V D and ¥ = A V A .
D c

The c-path complement of A with respect to X, written CC(4, X), is the sub-
graph of X consisting of all literals in X that lie on c-paths that do not contain A;
the c-path extension of A with respect to X, written CPE(A, X), is the subgraph
containing all literals in X that lie on c-paths that do contain A. The c-paths
through (X A Y) that do not contain the link are those through (X A CC(4, Y))
(these are the paths of (X A'Y') that do or do not include A and that do not include
A) plus those through (CC(A, X) A CPE(A,Y)) (these are the paths that do in-
clude A but do not include A). The dissolvent of the link {4, A} in the subgraph

M, denoted DV ({A, A}, M), is defined to be

X CC(A, X)
AV A
CC(A,Y) CPE(A,Y)

At every step, equivalence (and thus soundness) is preserved. Furthermore,
the number of c-paths decreases by precisely the number of paths through the
selected link. Thus termination is inevitable regardless of the choice of link at each

162 A. Ramesh & N. V. Murray

step. For unsatisfiable formulas, a graph without c-paths, the empty graph, must
result. Satisfiable formulas always contain at least one c-path without a link, and
such c-paths are preserved by dissolution; thus a non-empty graph without c-links
will result, to which dissolution is not applicable. Any c-path in such a graph
determines a set of models for the formula. It is this unavoidable termination that
we call strong completeness. The reader is referred to [9] for more detail and for
the formal definitions.

2.4 Signed path dissolution

Signed dissolution results from generalizing the standard formulation to operate
on partial c-links. Suppose literals S; : A and Ss : A reside in conjoined subgraphs
X and Y. The standard dissolvent contains all paths of X A Y not containing
{S1: A, Sy: A}. We define the signed path dissolvent to be the standard dissolvent
disjoined with that subgraph whose paths are exactly those that contain both S : A
and S, : A. However, these latter paths can be simplified: The two literals in the
partial link can be replaced by the single literal (S; N S3) : A, by the Reduction
Lemma.

Formally, let M = X AY, where S; : Aisin X and Sy : A is in Y. Then the
signed path dissolvent of L = {Sy: A, S2: A} in Mis DV(L, M) =

X CC(S; : A, X) {CPE(S,: A, X)} — {S1 : A}
A V A Vv A
CC(SQ :A, Y) CPE(SQ : A, Y) {CPE(SQ : A, Y)} - {52 : A} .
A
(S1 NSy : A

The number of c-paths does not decrease unless S; NSy = (), in which case the
rightmost disjunct in the dissolvent is dropped. Strong completeness, however, still
holds; a finite number of steps will yield a graph without partial links. To make
this paper more self-contained, we include the strong completeness result from [11].

Consider the set of path-specific partial links (PSPL’s):

{(lp, p) | lis a partial link on c-path pin G } .

All PSPL’s in G corresponding to paths unchanged by a dissolution step are
retained in the dissolvent. But paths in CPE(S; : A, X) A CPE(S2 : A,Y) are
replaced by paths that are identical except that they contain one less occurrence
of atom A. As a result, the PSPL’s corresponding to these paths have decreased
in number. Therefore, finitely many dissolutions (bounded above by the number
of PSPL’s in the original graph) will yield a linkless equivalent graph. Notice that
this analysis does not rely on the choice of partial link at each step.

We illustrate signed path dissolution with an example. Consider the A-atomic
formula in Figure 4, where A = {0, 1, 2}. We dissolve on {{1,2} : 4, {0,1} : A}.

The dissolvent is shown in Figure 5.

If we continue dissolving until no partial links remain, a full dissolvent results
(Figure 6). (Some of the dissolution steps are merely applications of the Reduction

Parameterized Prime Implicant/Implicate Computations for Regular Logics 163

{1}: B
{0,1}:C Vv A
{1,2}: A
A
{1}:C
{0,1}: A V A
{0}: B
Figure 4:
{1}: B
{0,1}: C \Y A
{1,2}: A {0,1}: C {1}: B
A \% A \ A
{1}:C {0,1}: A {1}: A
A
{0}: B
Figure 5:
{1}:C {0,1}: C {1}: B
A \ A \% A
{0}: B {0,1}: A {1}: A

Figure 6: A full signed dissolvent

164 A. Ramesh & N. V. Murray

Lemma — indeed, the one dissolution step applicable to (S; : AA S, : A) produces
S1 NSy A exactly.)

The preceding development of dissolution has been conducted from a refuta-
tion viewpoint. Just as unsatisfiability can be dualized to validity, so can these
operators, and therefore dissolution itself, be dualized so as to focus on d-links and
d-paths rather than on c-links and c-paths. Alternatively, such a disjunctive full
dissolvent of G may be obtained using the version of dissolution defined above,
operating on c-paths and partial c-links, simply by computing —FD(—G). When
there is a possibility of confusion, we will mention explicitly the type of link (and
path) on which we are dissolving.

3 Prime Implicants/Implicates and Signed For-
mulas

3.1 Definitions

In this section we give basic definitions of prime implicants/implicates with respect
to signed formulas. Note that a prime implicant of a classical formula is a weakest
(or minimal) conjunction of literals implying the formula. Similarly, a prime s-
implicant of a signed formula is a minimal conjunction of signed literals implying
the signed formula, with respect to A-consistency. This analogy can be dualized to
one involving implicates and minimal disjunctions in the obvious way.

The signed formula G mentioned in these definitions need not be A-atomic,
although typically it is.

A conjunctive (disjunctive) term is a conjunction (disjunction) of signed literals
S; : x; where each z; appears exactly once.

A conjunctive term C subsumes another C' iff C' |=5 C.
A disjunctive term D subsumes another D' iff D = D'.

Let C and C" be two conjunctive terms different from (.

A conjunctive term C'is a s-implicant of a signed formula G, iff C' =5 G.

A prime s-implicant is an s-implicant not subsumed by another s-implicant.
Let D and D’ be two disjunctive terms different from (.

A disjunctive term D is a s-implicate of a signed formula G, iff G =5 D.

A prime s-implicant is an s-implicant not subsumed by another s-implicant.

Consider a c-path consisting of the signed literals S; : z;, 1 < i < n. Essentially,
it denotes the conjunction of its literal occurrences. Such a conjunction is more
succinctly represented as follows: If there are distinct ¢ and j such that z; = z;j,
then replace S; : ; and S; : x; by (S; N S;) : x; (by the Reduction Lemma).

Parameterized Prime Implicant/Implicate Computations for Regular Logics 165

{0,1}: A {0,2}: A
A v A v {1,2}:A v {0}:B
{2}:B {2}:C

Figure 7:

Iteration of this process will obviously produce a conjunctive term equivalent to
the original c-path. If any of the resulting signs are empty, then the conjunctive
term reduces to false; if any are equal to A, then that literal is dropped from the
conjunctive term.

Similarly we can associate with any d-path an equivalent disjunctive term where
signs of similar literals are combined by union rather than by intersection. If any
of the resulting signs are equal to A, then the conjunctive term reduces to true; if
any are empty, then that literal is dropped from the disjunctive term.

We say that a c-path (or a d-path) P subsumes another c-path (or d-path)
P' iff the conjunctive term (or disjunctive term) equivalent to P subsumes the
corresponding term for P’. Similarly, we may extend this notion to subsumption
between c-paths (d-paths) and conjunctive (disjunctive) terms, or vice versa; in
effect, whenever paths are present in a subsumption relationship, we coerce them
to their corresponding terms, and apply the test to the terms.

The test for subsumption between conjunctive and disjunctive terms is a straight-
forward, albeit O(n?) operation: A conjunctive term C(# false) is subsumed by
another conjunctive term C’ if for every S’ : & € (', there is a literal S : z € C
such that S C S'.

A disjunctive term C(# true) is subsumed by another disjunctive term C'
if for every S':z € C', there is a literal S : x € C such that S D S’.

As an example consider the signed formula in Figure 7, where A = {0, 1, 2}.

An example of an s-implicant that is not a prime s-implicant is {0,2} : A A {2} :
C. However, {2} : C is a prime s-implicant. Similarly {1,2} : A v {0,2} :
B v {1,2} : C is an s-implicate which is not prime, whereas {1,2} : A v {0,2} :
B Vv {2} : C is a prime s-implicate.

4 Prime S-Implicants

We now have the tools necessary for computing prime s-implicants (or s-impli-
cates) of any A-atomic formula. (Assuming a finite A, of course.) As a result,
these techniques can handle any finitely valued MVL in which formulas can be
converted to A-atomic form. To find all prime s-implicants that force the condition
that F evaluates to an element of S, find a A-atomic equivalent ' of S : F, then
find a (disjunctive) linkless equivalent F" of F’, and finally collect the conjunctive
terms of the c-paths of "' that are not subsumed by others.

In the subsection below, we establish the results that form the basis for this ap-
proach. In the following subsection, methods for obtaining s-implicants are defined
precisely.

166 A. Ramesh & N. V. Murray

4.1 Foundations

Lemma 3 Every satisfiable c-path in a A-atomic formula G corresponds to an
s-implicant of G.

Proof: Given a satisfiable c-path p in G, let C' be the conjunctive term corre-
sponding to p, and let Iy be a A-consistent interpretation which satisfies C. For

each literal S : x in C, there are literals S; : z, So : z, ..., Sk : & in p such that
S C S;, 1 <i < k. Furthermore, all literals in p are so related to some literal in
C. As aresult, I satisfies every signed literal in p and hence satisfies G. a

Lemma 4 Let G be a semantic graph, and let H be a subgraph of G such that
all c-paths through H are only partial c-paths in G. Then there exists a d-path ¢
through G that does not meet H.

Proof: See [14]. (This lemma expresses a structural property of semantic graphs
and was proved in [14]. The fact that signed formulas rather than standard proposi-
tional formulas are being represented has no effect on the lemma or on its proof.)O

Theorem 1 For any non-empty A-atomic formula G in which no d-path contains
a partial link, every s-implicant of G is subsumed by some c-path of G.

Proof: Let M = Sy : x1 A ... A S, : x, be an s-implicant of G. Since M
Ex G, G V - M is valid with respect to A-consistency and is therefore spanned
by its full set of (disjunctive) links, i.e., all d-paths contain a link. Moreover, only
binary links need be considered because M is a conjunctive (and hence =M is a
disjunctive) term, and G is assumed to be free of partial links. Note that =M =
Si:xy V...V S, :z,. Therefore, all d-links are of the form {S; : x;, Si:oxit,
where S; : ¥; € =M, S!:z;isin G,and S; U S} = A.

Let R be the set of all literals in G that are linked to =M. ;From the obser-
vations above, we know that corresponding to each literal S} : z; in R, there is a
literal S; : ; € M such that S; C S}. So any c-path through R will subsume M,
and, to prove the theorem, it suffices to show that G contains a c-path through
G.

So suppose that every c-path in Gy is partial in G. By Lemma 4 there is a
d-path p through G which does not meet Gr. The path p is not linked to —~M
because it has no nodes from R; furthermore, p itself contains no links since G is
linkless. Therefore, the d-path comprised of the nodes from both p and —M is a
linkless d-path through G vV =M. But this is a contradiction: G V =M is spanned
by its d-links by definition. As a result, some c-path in Gg is not partial in G and
the proof is complete. |

Theorem 2 Suppose G is a non-null graph representing a A-atomic formula having
no partial d-links, and let ¥(G) be defined as follows:

Y(G) = {p| (pis a c—path through G) N (p # false)

A (V c—paths q through G, q does not subsume p)} .
Then ¢(G) is the set of all prime s-implicants of G.

Parameterized Prime Implicant/Implicate Computations for Regular Logics 167

Proof: Direct result of Lemma 3 and Theorem 1. |

We say that a signed formula is in reduced CNF if each of its clauses are dis-
junctive terms, i.e., if it has no true disjuncts, and every disjunct has at most one
signed literal for each variable.

Corollary 1 If G is a signed formula in reduced CNF, then (G) is the set of all
prime s-implicants of G.

This follows from Theorem 1 as such a CNF formula has no d-paths with partial
links. We mention this corollary for historical reasons: The classical version is
simply Nelson’s theorem [12]. Of course, it is of limited computational interest
since moving from NNF to CNF may entail an exponential penalty.

Theorem 3 FD(F) (with respect to c-links or to d-links) is equivalent to F under
all A-consistent interpretations.

Proof: See [11]. O

The removal of all partial d-links prior to collecting the c-paths is crucial to
our method; in particular, Theorem 1 cannot be strengthened into the converse of
Lemma 3. The formula (where A = {0, 1, 2})

{1}:C {0,2}:C
A Vv A
{0}:B {1,2}: A

has one d-link and has {{0} : B,{1,2} : A} as a prime-s implicant, which is not
contained in any c-path.

4.2 Computing s-implicants

We can now state the steps in finding all the prime s-implicants of a signed formula

F.

Step 1: If F is not A-atomic, push the sign inward resulting in an equivalent
A-atomic formula F' (Section 5).

Step 2: Find F"”, a A-atomic formula equivalent to F' that has no d-links, by
computing F'D(F") with respect to d-links or by converting to reduced CNF.

Step 3: Find all the c-paths of F” that are not subsumed by other c-paths. The
conjunctive terms corresponding to these c-paths are the prime s-implicants
of F.

The correctness of the steps follows from Theorems 2 and 3.
We illustrate the different steps by an example. Consider the semantic graph
from Figure 7:

{0,1}: A {0,2}: A
A

Y, A v {1,2}:A4 v {0}:B
{2}:B {2}:C

168 A. Ramesh & N. V. Murray

This is in A-atomic form so we do nothing in Step 1. In Step 2 we find the
full dissolvent with respect to d-links. Dissolving on the {{0,1} : A, {1,2} : A}
link amounts to replacing {0,1} : A by A : A = true; similarly for the {{0,2} :
A, {1,2} : A} link. This leaves one d-path containing the {{2} : B, {0} : B} link.
This is a very special case where dissolution reduces to a simple application of the
Reduction Lemma. The resulting full (disjunctive) dissolvent is:

{1,2}:4 v {0,2}:B Vv {2}:C

Since none of the c-paths subsume each each other, the prime s-implicants are
exactly the c-paths of the graph: {1,2}: A4, {0,2}: B and {2}: C.

We have so far restricted our discussion to finding prime s-implicants only.
However we can dualize all the theorems and lemmas. This would give us a method
to find prime s-implicates. Alternatively, given G, one could find the prime s-
implicants of =G and then negate them to produce the prime s-implicates of G.

5 Post Logics

In this section we show how one can find all the prime implicants of arbitrary
functions of a Post logic. The key observation is that this can be accomplished
using signed formulas in which all signs are regular (defined below). For any signed
formula S : F, where S is regular and the logic A of F is a Post logic (and hence
expressible as a regular logic), we have reasonable techniques for computing an
equivalent A-atomic formula.

5.1 Regularity

We assume that A is a finite linearly ordered set {0,1,2, ..., n — 1}. We say that
S is a regular sign if it represents an interval of A containing either 0 or n — 1.
Obviously, any regular sign can be represented as {< i} or {> i}, wherei € A (or
as A or) in case they are needed). When a regular sign is pushed inside a regular
operator, the arguments of the operator becomes signed, and those resulting signs
are also regular.

The connectives include A, = min and V, = max. We also have the unary
operator ¢ defined by o(i) = i+ 1modn. Recall that a regular unary operator u
is one that is monotonic. Although o is not monotonic and hence not regular, it
can be expressed using regular operators: o(i) = o'(i) Ap Jp_1(i), where o'(i) =
min(i+ 1,n—1) and J,_1(i) = n—1—i+ (imodn —1).

Given a signed formula S : F, where sign S is regular and F is a formula from
a Post logic, we have the following rules for driving S inward.

Parameterized Prime Implicant/Implicate Computations for Regular Logics 169

{<i}: (G N, H) =r {<i}:GVA{<i}:H

{>i}: (G A, H) =x {>i}:GA{>i}:H

{<i}:(GVpH) =r {<i}:GA{<i}:H

{>i}:(GVp,H) =r {>i}:GV{>i}:H
{>i}:0'(F) =r» {>i-1}:F
{<i}:o"(F) =x {<i-1}:F

{>i}: Jui(F) =4 {<n-1}:F

{<i}:Jpot(F) =a {>n-2}:F

In applying the above rules, we assume the following simplifications:

{<0}: F and {>n—1}: F are always false;

{<n}:F and {> —1}: F are always true.

The notational conventions for expressing prime implicants and prime impli-
cates of formulas in Post logics differs from our general notation for MVL’s. In
particular, these notions are approached in the context of the MVL itself, whereas
our approach is through the use of the meta-language of signed formulas. In the re-
mainder of this section, we relate concepts and notation from Post logics to signed
formulas. Many of the following definitions and notation are taken from [2].

5.2 Product terms and s-implicants

An interpretation I maps variable z; to an element of A = {0,1,...,n — 1}.
A literal is of the form z;(a,b), where z; is a variable and 0 < a,b < n — 1.
Interpretation I maps literal z;(a,b) ton—1if a < I(z;) < b, 0 otherwise. A product
term is of the form K A, x1(a1,b1) Ap ... Ap Tm(am,by,), where 1 < K < n—1,
and z;(a;, b;) is a literal. Such a product term will always evaluate either to K or
to 0. If a product term does not include variable z;, then we can find an equivalent
product term which includes z; by adding the literal z;(0,n — 1). In the rest of
this paper we assume that product terms include all variables under consideration.

A product term R is an implicant of a Post logic truth function F' if for every
interpretation I, I(R) < I(F). Let R be the product term K A, z1(a1,b1) Ap
oo Ap T (@m, bm), and let R’ be the term K' Ap x1(c1,d1) Ap ... Ap Tm(Cmy dim)-
We say that R subsumes R’ if K' < K and, for each i, a; < ¢; < d; < b;. Note
that the intervals associated with the variables of product terms do not necessarily
correspond to regular signs. This is to be expected: Although we can preserve
regularity while generating a A-atomic formula, processing the formula with either
signed dissolution or conversion to reduced CNF will produce non-regular signs.
However, each such sign is a finite set, and can therefore be be represented as a
unique minimal set of disjoint intervals. For example, the sign {0,1,3,4,6} can be
viewed as the set of intervals {(0,1), (3,4), (6,6)}; we say that (0,1), (3,4), and
(6,6) are the intervals corresponding to the sign {0,1,3,4,6}.

Let {m|m is a prime s—implicant of >i : F} be denoted by S¢s;.p. Let
M =Sy :21 A ... NSy : Ty, be an s-implicant of {> i} : F. We define Rys to
be the set of all product terms of the form (i + 1) A z1(a1,b1) ... A Zp(am,bm),
where for 1 < i < m, (a;,b;) is an interval corresponding to S;. (If z; does not

170 A. Ramesh & N. V. Murray

appear in M, then a; = 0 and b; = n — 1.) For example, let {1,2,4} : 2y A {3}:
x2 be an s-implicant of {> 3} : F. Then the corresponding product terms are
4 Ap 21(1,2) A 22(3,3) and 4 Ap z1(4,4) A z2(3,3).

It is easy to see that none of the product terms in R j; subsume each other.

Theorem 4 Let F be a formula, S;;).r be the set of all prime s-implicants of
{> i} : F, and Rys;.r be the union of all the sets Ry, where M; € Sy ¢ F.
Then every product term in Ry~ ;.r is an implicant of F.

Proof: Let R be a product term in R{-;y.r, and let M be the corresponding s-
implicant. Every interpretation over A maps R either to 0 or to 1+ 1. If I(R) = 0,
then obviously I(R) < I(F).

So suppose I(R) = i+1. Then I must map every literal z;(a;, b;) in the product
term to n-1; we have a; < I(z;) < b;. Let I, be the corresponding A-consistent
interpretation; by definition I;(S; : ;) = true and {aj, a; +1,...,b;} C S;.
Hence I ({> i} : F) is also true, I(F) > i+ 1, and R is an implicant of F. O

Theorem 5 Suppose F' is a formula and product term R is an implicant of F,
where K is the constant in R. Then there is some product term in R{sx_1}.r
which subsumes R.

Proof: Let R = K A, z1(a1,b1) Ap ... Ap &m(am, br,), and consider M = S :
z1 A ... A Syt Ty, where S; is the set of elements in the range a; to b;. M is
an s-implicant of {> K — 1} : F and will be subsumed by some prime s-implicant
Spix Ao NS Ty in Ssg_1pp (say M'), where S; O S;, 1 < i < m.
Now consider the product R’ in Ry that is of the form K A, 1 (a}, b)) Ap ... Ap
T (@, b)) such that aj < a; < b; < b for 1 < j < m. There must be such a
product term since S;- D S; for each j and hence R’ subsumes R. a

Theorem 6 Let F be a formula, and let £ = U:Z(f R{>iy.r- Let Z be the result
of removing all product terms in K that are subsumed by others. Then 7 is the set
of all prime implicants of F.

Proof: Follows directly from Theorems 4 and 5. a
We can now give a method to find the set of prime implicants for a given formula
F.

Step 1: Set Z to 0.
Step 2: For each i, from n — 2 down to 0, do

Step 2a: Find S, the set of prime s-implicants of {> i} : F.

Step 2b: Find Rs, the set of all product terms corresponding to
prime s-implicants of {> i} : F.

Step 2c: Add to Z all those product terms in Rs not subsumed by
other product terms in 7.

At the end of Step 2, 7 contains exactly the prime implicants of F. The cor-
rectness of the steps follows from Theorem 6.

Parameterized Prime Implicant/Implicate Computations for Regular Logics 171

5.3 An example

Let A = {0,1,2} and consider the following formula: F = (o(z1) Ap o(x3)) Vyp
(x2 Ap z3) Since n = 3, Step 2 above need only be iterated for i = 1,0; we show
the case ¢ = 1 in detail.

To compute the prime s-implicants of {> 1} : F, first push the sign inward:

{>1}:F = {> 1} : (o(x1) Apo(x3)) Vp (2 Ap 23)

{>1}: (o(z1) Ap o(ms)) V {> 1} : (z2 Ap z3)
({>1}:o@)A{>1}:0(@3)V({>1} 122 A {>1}:13)
= (> 1} (0'@) Ay Taln))
A{> 1} (0" (x3) Ap J2(3))) V ({2}t 22 A {2} 2 23)
= ({>1}: (o' (@) A{> 1} Ja(za)) A {> 1} : (0 (23)
A{>1}: Ja2(x3))) V ({2} s 22 A {2} = 23)
= (({>0}:z1 A {<2}:11)
A{>0}:z3A{<2}:23))V ({2} : 22 A {2} : z3)
= ({1} iz A{1} i az3) V ({2} s 22 A {2}t 23)

Note that the last step above is due to the Reduction Lemma, not to the rules for
distributing signs over connectives; the latter preserve regularity. As a result, the
sign {1} (for both z; and x3) is not regular.

Below we write in two-dimensional format, the A-atomic formula above:

{1} - I {2} D)
A Vv A

{1} . I3 {2} - I3

The only partial d-link is {{1} : 3, {2} : z3}; dissolving (disjunctively) on this link
produces a full dissolvent.

{1} - I
A Vo {2}
{1} . I3
A
{1}] \Y {2} . I3
A
{1,2} I3

Note that the c-path containing both {1} : z3 and {2} : z3 reduces to false
by the Reduction Lemma. The other three c-paths reduce to the following s-
implicants.

{1} L {2} D) {2} X2
A A A
{1} : x5 {1} : {2} : a3
A

{1, 2} . I3

172 A. Ramesh & N. V. Murray

None of these subsume each other and are thus all prime s-implicants. None of the
corresponding product terms subsume each other, and all are added to Z.

2 2 2
/\p /\p /\p
ﬂ,’l(l,l) ZI,'2(2,2) 372(2,2)
/\p /\p /\p
z3(1,1) z1(1,1) z3(2,2)
/\p
1'3(]-7 2)

Now Step 2 must be repeated with i = 0; it is left to the reader to verify that
this produces the following A-atomic formula.

{0,1} : 2y {1,2} : 2
A V A

{0,1} I3 {1,2} I3

Dissolving on the partial d-link {{0,1} : =3, {1,2} : 25} produces a full dissol-
vent for {> 0} : F.

{0,1} L
A v {1,2}:xs
{0,1} : z3
A
{0,1} 2y vV {1,2}: 23

In this case, none of the four c-paths is contradictory; the following s-implicants
are obtained via the Reduction Lemma.

{0,1} : 2y {0,1} : a4 {1,2} : a9 {1,2} : a9
A A A A

{0,1} I3 {1}:1‘3 {0,1}:1‘1 {1,2}:1‘3

We get the prime s-implicants by removing the second s-implicant above, which
is subsumed by the first. The corresponding product terms must also be checked
for subsumption by those terms already in Z. In this particular example, none are.

The values of S,Rs,Z at the end of each iteration of Step 2 are shown in the table
below.

Parameterized Prime Implicant/Implicate Computations for Regular Logics 173

{>i—1}21‘1
A

{<n-1}:m:;, {>i}: 2
A Vv A

{>i—1}:x3 {>i}: a3
A

{<n—-1}:z3

Figure 8: Driving parameterized signs inward

) S Rs T
1 {1} :z1 A {1} : 23 2 Ap z1(1,1) Ap za(1,1) | 2 Ap z1(1,1) Ap z3(1,
{2} izo A {1} : 21 2 Ap 2(2,2) Ap z1(1L,1) | 2 Ap 22(2,2) Ap z1(1,
A {1,2} 1 z3 Ap z3(1,2) Ap z3(1,2

{2} rxa A {2} 3 2 Np x2(2,2) Np 3(2,2)
0 {0,1} 1 A {0,1} rx3 | 1 Ap 1‘1(0,1) Ap :E3(0,1) 2 Ap 1‘1(1,1) Ap 23
{1,2} rz2 A {0,1} 121 | 1 Ap 22(1,2) Ap 21(0,1)

Ap z3(1,2

{1,2} rzo A {1,2} 123 | 1 Ap 22(1,2) Ap 23(1,2) | 2 Ap 22(2,2) Ap 23(2,2)
1 Ap 21(0,1) Ap 23(0,1)

1 Ap z2(1,2) Ap 21(0,1)

1 Ap z2(1,2) Ap 23(1,2)

The process terminates after two iterations and Z has all the prime implicants of
F.

5.4 Improvements

There are several aspects of this approach that may be significantly improved.
Consider Step 2a in the algorithm as defined above. By recomputing these steps
for each value of 4, the sign {> i} is pushed inward at each iteration. However, it
is easy to see that the variable i may be left in the sign, and a A-atomic equivalent
can be produced that is essentially parameterized in terms of i. (The careful reader
will have noted that the rules for pushing signs inward in Section 5.1 were indeed
given in this form.) A similar “parameterization” of signs has been employed in
[4].

In the example above, this parameterization would result in the A-atomic for-
mula of Figure 8.
Even in this case, the Reduction Lemma can be applied twice to the left conjunct.
The resulting signs for both z; and z3 contain the elements in the interval [i..n —2].
For simplicity, we denote this sign by {i..n — 2}.

174 A. Ramesh & N. V. Murray

So suppose we have the conjunction [A7"; {> e;} : X] A [AfL, {< e} @ X].
Let ef,,, = max}’ (e; + 1) and let €f,;, = min}_ , (e; —1). Then by the
Reduction Lemma, we can express this conjunction as {e%,,..-€5.;.} : X. Note
that if m =0, €f,,, = 0;if n =m, ef,;,, = n—1. Also, if e then
{emaz mzn} X _@ X - false

Now consider the disjunction [Vi%,{> e;} : X] V [V, 1 {< e} : X]. Let
= max], . (e;) and let e, = min’ (e;). This disjunction can be

maz- el }:X. Here,if n=m, e, =0;ifm=0,el, =n-—1

Also, ifed .. > el . then {ed .e? 1:X =0:X = A:X = true. Note also
that {emaz mzn} X = ({0“emaz - 1} U {emin +1.n— 1}) :

Thus, if we apply the Reduction Lemma to a conjunction in which the signs
are regular, the resulting sign is a single interval in the range 0..n — 1 that can
be either empty or non-regular. Similarly, if we apply the Reduction Lemma to a
disjunction in which the signs are regular, the resulting sign is the complement of
a (possibly empty or non-regular) single interval in the range 0..n — 1. It is easy to
see, however, from the rules of Section 5.1, that the e;’s will all be linear expressions
in terms of ¢ and n. So the interval limits are reducible to simple expressions in
terms of i and n, and we have proved:

max > emzn’

d

emaz

reduced to {ed

Theorem 7 Let F be a formula in a Post logic, where A = {0,1,2,...,n—1}, and
let 7' be a A-atomic equivalent of {> i} : F produced by the rules for distributing
regular signs over the connectives. Let F" be the result of applying the Reduction
Lemma to F' wherever possible. Then F' is regular, and the signs of F" can be
expressed as single intervals {e;..ea} or their complements, where ey, e5 are linear
expressions in terms of ¢ and n. O

A more subtle improvement (but one that may have a more dramatic effect on
efficiency) results from leaving the signs unspecified during the dissolution process.
Thus we compute the full dissolvent only once rather than at each iteration. It
turns out that signed dissolution manipulates signs in precisely the same manner
as does the Reduction Lemma. Recall that given M = X A Y, where S; : A is in
X and Sy : A is in Y, the signed path dissolvent of the partial link {S; : A, So : A}
in Mis

X CC(S : A, X) {CPE(S; : A, X)} — {S; : A}
A V A Vv A
CC(SQ :A, Y) CPE(SQ : A, Y) {CPE(SQ : A, Y)} - {52 : A} .
A
(S1 NSy : A

Notice that the only subformula of the signed dissolvent in which a new sign is
introduced is (S N S2) : A. But this is simply S; : A A Sy : A, by the Reduction
Lemma.

The signed dissolvent has been defined using the intersection of signs S; and
S assuming the signs to be constant expressions. Under this assumption, S1 N S,
can be computed as a single sign immediately. But here we wish to keep signs

Parameterized Prime Implicant/Implicate Computations for Regular Logics 175

parameterized in terms of ¢ and n while driving them inward. To more conveniently
represent this parameterized state during the dissolution process, we may express
the signed dissolvent in a slightly different form:

X CC(S : A, X) {CPE(S; : A, X)} — {S; : A}
A V A Vv A
CC(SQ :A, Y) CPE(SQ : A, Y) {CPE(SQ : A, Y)} - {52 : A} .
A
Sl : A
A
SQ : A

This version of the signed dissolvent makes explicit the essence of the operation.
The graph is rewritten in a manner that isolates the c-paths containing the partial
link: CPE(S; : A, X) is a conjunction in which Sy : A is a conjunct; similarly
for CPE(Sy : A,Y). The rightmost disjunct in the dissolvent is a conjunction
capturing the paths containing the partial link, in which the literals of the partial
link have merely been brought together via associativity and commutativity of con-
junction. Since we need not reassociate and commute until the Reduction Lemma
is actually applied, a further reformulation of signed dissolution is appropriate.

X CC(S) : A, X) CPE(S, : A, X)
A V A V A
CC(Sy: A, Y) CPE(Sy: A, Y) CPE(Sy: A, Y)

Here we have avoided any set operations on signs and simply restructured the graph
so as to isolate paths containing the partial link. But this is exactly what is needed
to make the Reduction Lemma applicable to the literals of the partial link. For the
purposes of this paper, we call this formulation of signed dissolution lazy signed
dissolution.

Observe that all of the above formulations of signed dissolution are equivalent.
The only apparent distinction is in how the potential sign intersection operations
are represented. In an implementation, it may be advantageous to employ such
“lazy evaluation” only partially and to include some amount of look ahead to
recognize when sign intersections have become empty, for example. There is an
operational distinction in these formulations, however, that must be handled.

The strong termination properties of signed dissolution depend upon produc-
ing a graph without partial links. In particular, PSPL’s are strictly reduced at
each step. By not explicitly combining the two literals of a partial link, we leave
the number of PSPL’s unchanged, and this termination condition will not arise.
However, the problem can be overcome with some simple bookkeeping.

Essentially, a partial link to which the Reduction Lemma is already applicable
should be ignored. This is because lazy signed dissolution acts almost as the
identity operator on such a link; its literals are members of a single conjunction
which is essentially left unchanged. However, a partial link to which the Reduction
Lemma is not applicable is transformed by lazy signed dissolution; the Reduction
Lemma. does become applicable to its literals in the dissolvent as a result. Thus
termination will occur when the Reduction Lemma is applicable to all partial links.

176 A. Ramesh & N. V. Murray

Theorem 8 For propositional signed formulas, lazy signed dissolution with partial
links is a strongly complete rule of inference, when restricted to links to which the
Reduction Lemma does not apply.

Proof: We partition the set of PSPL’s into two blocks: Let By be the block
containing those to which the Reduction Lemma is applicable, and let Bz7 contain
those to which it is not. By dissolving only on partial links whose corresponding
PSPL’s are from Bgy, we add those PSPL’s to Bgr,, and remove them from Bzr.
Since total PSPL’s is an invariant under lazy signed dissolution, Bxz will become
empty after a finite number of steps. O

It should be noted that the development above regarding signed dissolution
on partial c-links can be dualized for signed dissolution on partial d-links. In the
latter case, evaluation of unions of signs is delayed, rather than intersections, for
the computation of prime implicants, rather than implicates.

It is apparent from the discussion above that a full signed dissolvent can be
computed in which all signs are present in the A-atomic formula with which we
began; those signs may be regular signs expressed in terms of ¢ and n, where
0 <i <n. As a result, we have the following generalization of Theorem 8:

Theorem 9 Let F be a formula in a Post logic, where A = {0,1,2,...,n — 1}.
Let 7' be a full dissolvent of a A-atomic equivalent of {> i} : F, produced by first
applying the rules for distributing regular signs over the connectives, and then by
applying lazy signed dissolution. Let F" be the result of applying the Reduction
Lemma to F' wherever possible. Then F' is regular, and the signs of F" can be
expressed as single intervals {e;..ea} or their complements, where e;, e5 are linear
expressions in terms of 4 and n. a

We can now state an improved method to find the set of prime implicants for
a given formula F.

Step 1: Set Z to 0.
Step 2: Compute F', a full dissolvent of a A-atomic equivalent of {> i} : F.
Step 3: Compute F"' by applying the Reduction Lemma to F' wherever possible.
Step 4: For each ¢, from n — 2 down to 0, do

Step 4a: Find S, the set of prime s-implicants of F".

Step 4b: Find Rs, the set of all product terms corresponding to prime s-
implicants of F".

Step 4c: Add to 7 all product terms in Rs not subsumed by other product
terms in Z.

At the end of Step 4, 7 contains exactly the prime implicants of F. The cor-
rectness of the algorithm follows from Theorem 9.

Parameterized Prime Implicant/Implicate Computations for Regular Logics 177

Note that in the above algorithm, pushing signs inward and dissolving is ex-
pressed explicitly, outside the loop. In the method presented initially, these com-
putations were implicit in Step 2a for finding the set of prime s-implicants, and
were thus inside the loop. Observe also that the computation of prime s-implicants
was described in Section 4.2 as a three step process. Here, only the third step is
required in which we find all the c-paths of F"' that are not subsumed by other
c-paths. The conjunctive terms corresponding to these c-paths are the prime s-
implicants of {> i} : F.

Consider the parameterized A-atomic formula of Figure 8, further simplified via
the Reduction Lemma.

{i.n—2}:m {>i} 2
A Vv A
{i.n—2} :xz3 {>i}: a3

Now the sole d-link {{i..n — 2} : (x3), {> i} : 3} is in parameterized form, and
we compute the (disjunctive) lazy signed dissolvent.

{i.mn—2}: 2y
A V {i+1l.n—1}: 2
{i.n —2}: 23
A
{i.n—2}y:2y V {i+1l.n—1}:2;
A
{i.n—2}:2z3 V {i+1l.n—1}:2;3

Since the Reduction Lemma applies to the only d-link now present, lazy disso-
lution terminates, the lemma is applied, and of course we know that n = 3.

{i.1} i 2
A Vo {i+1.2):
{Z].} . I3
A
A
{i..2} : x5

This completes Step 3 of the improved algorithm, and only at this point do
we initiate the loop for ¢ = 1 down to 0. Merely instantiating ¢ in the formula
above produces the two formulas created from scratch at Step 2a of the original
algorithm. The improved algorithm must, for each iteration, still compute the
prime s-implicants, product terms, and prime implicants for each instance of i.
This computation appears unavoidable and is identical in both versions.

6 Conclusions and Future Work

The current study has provided, in addition to earlier work on prime implicant
methods for MVL’s based on truth table analysis, a formula-based approach us-

178 A. Ramesh & N. V. Murray

ing the logic of signed formulas. In the attempt to improve Step 2a of the initial
method, we have shown how signs may be pushed inward while left as expres-
sions parameterized in terms of the elements and cardinality of A. A more subtle
improvement, has been introduced in which signs are left in parameterized form
during the inference process. This has been carried out for signed dissolution in
the presence of regular signs.

A good question for future research is whether these techniques can be extended
in various ways. Most inference techniques are applicable to signed formulas in a
relatively straightforward way. Thus extending these results to computations based
on alternative inference rules (e.g., signed resolution) should also be straightfor-
ward. A more challenging goal would be to determine ways in which the regularity
requirement on signs could be relaxed. Alternatively, by retaining regularity, per-
haps the restriction of finiteness on A could be dropped.

References

[1] Allen, C.M. The Allen-Givone implementation oriented algebra. In D.C Rine
editor, Computer Science and multiple-valued logic, North Holland 1984, 268-
288.

[2] Hihnle, R. Uniform notation tableau rules for multiple-valued logics. Proceed-
ings of the International Symposium on Multiple- Valued Logic, IEEE Com-
puter Society Press, Victoria, BC, May 26-29, 1991, 238-245.

[3] Hahnle, R. Automated Deduction in Multiple-Valued Logics. International

Series of Monographs on Computer Science, vol. 10. Oxford University Press,
1994.

[4] H&hnle, R. Many-valued logic and mixed integer programming. Annals of
Mathematics and Artificial Intelligence, 12(3,4):231-264, Dec. 1994.

[5] Jackson, P., and Pais, J. Computing Prime Implicants. Proceedings of the
10" International Conference on Automated Deduction, Kaiserslautern, W.
Germany, July, 1990. In Lecture Notes in Artificial Intelligence (M. Stickel,
ed.), Springer-Verlag, Vol. 449, 543-557.

[6] Jackson, P. Computing prime implicants incrementally. Proceedings of the
11" International Conference on Automated Deduction, Saratoga Springs,
NY, June, 1992. In Lecture Notes in Artificial Intelligence, (D. Kapur, ed.),
Springer-Verlag, Vol. 607, 253-267.

[7] Kean, A., and Tsiknis, G. An incremental method for generating prime impli-
cants/implicates. Journal of Symbolic Computation 9 (1990), 185-206.

[8] Kean, A., and Tsiknis, G. Assumption based reasoning and clause management
systems. Computational Intelligence 8,1 (Nov. 1992), 1-24.

Parameterized Prime Implicant/Implicate Computations for Regular Logics 179

[9]

[10]

[14]

[15]

Murray, N.V., and Rosenthal, E. Dissolution: Making paths vanish. J. ACM
40,3 (July 1993), 504-535.

Murray, N.V., and Rosenthal, E. Resolution and path dissolution in multiple-
valued logics. Proceedings of the International Symposium on Methodologies
for Intelligent Systems, Charlotte, NC, October 16-19, 1991. In Lecture Notes
in Artificial Intelligence, (Z. Ras & M. Zemankova, eds.), Springer-Verlag, Vol.
542, 570-579.

Murray, N.V., and Rosenthal, E. “Adapting Classical Inference Techniques
to Multiple-Valued Logics Using Signed Formulas.” Fundamenta Informaticae
21,3 (Sept. 1994), 237-253.

Nelson, R.J., Simplest normal truth functions, J. Symbolic Logic, 20 (1955),
105-108.

Ngair, T. A new algorithm for incremental prime implicate generation. Pro-
ceedings of IJCAI-93, Morgan Kaufmann, Chambery, France, August, 1993,
46-51.

Ramesh, A.; Becker, G., and Murray, N.V. “CNF and DNF Considered Harm-
ful for Computing Prime Implicants/Implicates.” To appear, Journal of Au-
tomated Reasoning.

Reiter, R. and de Kleer, J. Foundations of assumption-based truth mainte-
nance systems: preliminary report. Proceedings of the 6t" National Conference
on Artificial Intelligence, Morgan Kaufmann, Seattle, WA, July 12-17, 1987,
183-188.

Slagle, J.R., Chang, C.L., and Lee, R.C.T. A new algorithm for generating
prime implicants. IEEE Transactions on Computers, C-19(4) (1970), 304-
310.

Smith III W.R. Minimization of multivalued functions. In D.C Rine editor,
Computer Science and multiple-valued logic, North Holland 1984, 227-267.

Strzemecki, T. Polynomial-time algorithms for generation of prime implicants.
Journal of Complexity 8 (1992), 37-63.

Su S.Y.H and Cheung P.T., Computer simplification of multi-valued functions.
In D.C Rine editor, Computer Science and multiple-valued logic, North Holland
1984, 195-226.

