Mathware & Soft Computing 4 (1997) 129-153

Computing Multiple-Valued Logic Programs *

James J. Lu'f Jacques Calmet and Joachim Schii?

! Department of Computer Science. Bucknell University
Lewisburg, PA 17837. U.S.A.
jameslu@bucknell. edu
2 Department of Computer Science.

Institute for Algorithms and Cognitive Systems
University of Karlsruhe, 76128 Karlsruhe. Am Fasanengarten 5
{calmet,schue} Qira.uka.de

Abstract

The logic of signed formula can be used to reason about a wide variety of
multiple-valued logics [Hah94b, LMR97]. The formal theoretical foundation
of multiple-valued logic programming based on signed formulas is set forth in
[Lu96]. The current paper is an investigation into the operational semantics of
such signed logic programming. The connection of signed logic programming
to constraint logic programming is presented, search space issues are briefly
discussed for both general and special cases, and applications to bilattice logic
programming and truth-maintenance are analyzed.
keywords: Logic for Artificial Intelligence, Multiple-valued Logic, Signed
Formula, Constraint Logic Programming, Truth-Maintenance, Bilattices.

1 Introduction

The logic of signed formulas facilitates the examination of questions regarding
multiple-valued logics through classical logic. As such, logic programming based
on signed formulas also facilitates the analysis of multiple-valued logic program-
ming systems through classical logic programming. The theoretical foundation and
the applications of the logic of signed formulas have been investigated extensively
[Hah91, Hah94a, LMR97, MR94]. On the other hand, logic programming based
on signed formulas — signed formula logic programming — is only formalized re-
cently [Lu96]. There, the semantical connections between a signed formula logic
program and its associated underlying multiple-valued logic program are studied.
In addition, the relationships between signed formula logic programming and the
class of annotated logic programming [BS89, KS92] are established. It is shown

*An extended abstract of the preliminary version of this paper appears in ISMIS “96.
TWork supported in part by the NSF under Grant CCR9225037.

129



130 J. J. Lu, J. Calmet & J. Schii

that signed formula logic programming and annotated logic programming together
provide a basis for reasoning about “inconsistent” multiple-valued logic programs.

This paper extends the work in [Lu96] by considering first of all, the operational
details of signed formula logic programming. It is demonstrated that a signed for-
mula logic program may be formulated as an equivalent constraint logic program.
From a practical point of view, this equivalence makes available to signed formula
logic programming a wide variety of implementation techniques that have been
developed for constraint logic programming. Moreover, the operational behav-
ior of constraint logic programming sheds insights into the search space of signed
resolution, which was a procedure proposed in [Lu96] for processing queries with
respect to signed formula logic programs. For the class of regular logics, a tech-
nique for reducing the search space called partial solvability is introduced. We also
analyze two independent applications of signed formula logic programming: bilat-
tice logic programming [Fit91] and assumption based truth-maintenance [DeK86].
The application to bilattice logic programming demonstrates how a signed formula
logic program may be used to answer questions about an underlying multiple-
valued logic program. On the other hand, the application to assumption based
truth-maintenance provides a semantical characterization of the popular reasoning
system through signed formula logic programming.

The organization of the paper is as follows. Section 2 summarizes the theoreti-
cal foundation of signed formula logic programming as examined in detail in [Lu96].
Section 3 explores the semantical connection of signed formula logic programming
and constraint logic programming. Analyses and comparisons of the operational se-
mantics of the two formalisms are provided. Section 4 investigates the applications
of signed formula logic programming to bilattice logic programming (Section 4.1)
and assumption based truth maintenance system (Section 4.2). Ideas described in
this paper evolved from a number of recent work [BF92, Hih93, MR94, Fr94, Lu96].
A brief examination of their relations to the current study is given in Section 5.

2 Signed Formula Logic Programming

This section recapitulates fundamental definitions and results of signed formula
logic programming as presented in [Lu96]. For completeness, proofs of some of the
more important results are repeated.

2.1 Signed Formula

The basic building blocks of signed formulas are a multiple-valued logic A and its
associated (finite) set of truth values A. A sign is an expression, which may contain
variables, that denotes a non-empty subset of A.! Suppose S is a sign and F is a A-
formula. Then S : F is a signed atom.2 More complex formulas — signed formulas

ITo simplify the presentation, we blur the distinction between the language from which such
an expression is constructed, and the objects in A over which the symbols of this language is
interpreted.

2 Abstractly, formulas in A are constructed from atomic formulas and connectives of different
arities. Suppose © is an n-ary connective, and Fi, ..., Fn, are A-formulas. Then the the expression



Computing Multiple-Valued Logic Programs 131

— may be constructed recursively using signed atoms and classical connectives by:
=G, Gi | G2, G1 & Ga, G1  Ga, where G,G1, Gy are signed formulas.®> If S : F is
a signed atom in which F contains no occurrences of A-connectives, then S : F is
said to be A-atomic.

2.2 Logic Programming

We are interested in signed clauses — signed formulas of the form
SO:A(—S1 : Fi &&Sn}—n

where Sy : A is a A-atomic signed atom, and each S : Fi,...,S, : Fp is a signed
atom. A finite set of signed clauses is called a signed formula logic program (SFLP).
In a signed clause, the conjunction appearing on the right hand side of the <+
symbol is called the body of the clause, and the single signed atom to the left of
the < is called the head of the clause. Variables that occur in the clause, whether
they appear in formulas over A or in signs, are assume to stand for all possible
ground instantiations, under the restriction that variables appearing in signs are
substituted with subsets of A, and variables that appear in atoms are substituted
with terms in A. A bodiless signed clause is sometimes called a signed fact, or a
signed unit clause. A headless signed clause is a signed query.

Interpretations over the logic A map ground atoms to A, and are extended to A-
formulas according to the meaning of the connectives that appear in the formulas.
Intuitively, a signed formula S : F may be thought of as representing the query:
“Can F evaluate to some element in S7” [LMR97].

Definition 1 (Satisfaction) A A-interpretation I satisfies a variable free signed
atom S : F iff I(F) € S.* Satisfaction is extended to arbitrary signed formulas in
the usual way. A signed clause is satisfied by an interpretation I if each ground
instance of the clause is satisfied by I. An SFLP P is satisfied by an interpretation
I if each signed clause is satisfied by I; I is said to be a model of P.

We write Mod(S : F) to denote the collection of all A-interpretations that satisfy
the signed atom S : F.

Proposition 2 Mod extends to arbitrary signed formulas as follows.
e Mod .7:1 & .7:2) = MOd(J:l) N MOd(J:Q)
e Mod(F; | F2) = Mod(F1) U Mod(Fz).

e Mod(F; + Fs) = Mod(F1) U (2 — Mod(F>))

O(F1,...,Fn) is also a A-formula.

3We use | and & to denote classical or and and respectively. The symbols V and A will be
used in Section 4.1 to denote connectives in A.

4This reflects the intuitive reading of S : F since T is a witness to the question “Can F evaluate
to a value in S?”

(
(
e Mod(—=F) = Q@ — Mod(F), where  is the set of all A-interpretations.
(
)



132 J. J. Lu, J. Calmet & .J. Schii

The classical notion of logical consequence applies, and is written with the usual
notation |=. The collection of all models of an SFLP P is denoted Mod(P).

Clearly, there will be SFLPs for which no models exist. Consider for example
the SFLP P over the A = {0,0.2,0.5,0.8,1}.°

{1}: A«
{0}: A«

P possesses no model since no A-interpretation can assign both 1 and 0 to the
proposition A. The existence of such an inconsistent program does not concern us.
It simply indicates that there exist formulas in the underlying multiple valued logic
A for which certain assignment of truth values is impossible. Indeed, their exis-
tence give rise to the interesting possibility of using signed formula logic programs
in conjunction with annotated logic to reason about inconsistent multiple valued
knowledge bases [LR95].

2.3 Semantics

An important property of classical logic programming is that a program P possesses
a unique minimal model (with respect to an appropriate ordering). In the case of
an SFLP, this property does not hold. For instance, using A = {0,0.2,0.5,0.8,1}
again as our truth values, if we have the program P that contains the single unit
signed atom {0,1} : A <, then P has two models:

L(A) =1

If we regard A as ordered according to the usual less than relation, then a reasonable
choice for a minimal model is I» since 0 < 1. However, as the truth value set A
is not in general assumed to be equipped with any ordering, consequently if we
treat the elements in A as being independent of one another, then I; and I are
incomparable models.

This leaves us with a rather undesirable situation. An SFLP may be disjunctive,
and this complicates computational issues since it may be necessary to answer
queries with respect to multiple models — a difficult problem well-known in the
research on disjunctive logic programming [LMR92]. Fortunately we may obtain
a good approximation to the models Mod(P) via an extension to the notion of
interpretation. Intuitively, extended interpretations can be thought of as functions
that measure the “indefiniteness” of each proposition in an SFLP.

Definition 3 (Extended Interpretation) An extended interpretation I of A is
a mapping from ground atoms to subsets of A. It extends to arbitrary variable-free
A-formulas as follows: Suppose © is an n-ary connective in A, and Fy, ..., F,, are
variable free A-formulas. Then

I(@(]:la 7-7:n)) = {Q(Mla"'ap‘n) | i € I(}—l)7V1 <i< n}

5The truth value set {0,0.2,0.5,0.8,1} has been applied in fuzzy reasoning [WTT93].



Computing Multiple-Valued Logic Programs 133

Definition 4 (Extended Satisfaction) An extended interpretation I e-satisfies
(extended satisfies) a variable free signed atom S : F if I(F) C S. E-satisfaction for
arbitrary signed formula is defined in the usual way. The collection of all extended
interpretations that e-satisfy S : F is denoted EMod(S : F). An extended inter-
pretation that e-satisfies an SFLP P is called an e-model of P, and the collection
of all e-models is denoted EMod(P).

For a given logic of signed formulas, the class of all extended interpretations forms
a complete lattice under the ordering C given by:

L CLiff I,(A) C I (A) for any ground atom A.

Care must be taken to observe that the ordering C “reverses” the ordering C. This
does not go against intuition. Since a sign S is interpreted disjunctively, i.e. can
a formula evaluate to one of the values in S, the ordering C is, in some sense,
modeling definiteness. In other words, an extended interpretation is more definite
than another if the first assigns a smaller set of truth values to each formula. The
next lemmas are immediate.

Lemma 5 Suppose I>(A) C I;(A) for any ground atom A. Then Ir(F) C I (F)
for any ground A-formula F.

Lemma 6 Suppose I; C Ir. Then for any signed atom S : F. I} € EMod(S : F)
implies I € EMod(S : F).

Various standard results of classical logic programming can now be proven for
signed formula logic programs with respect to extended models, including the exis-
tence of a unique minimal e-model, and the existence of a monotone operator whose
post-fixpoints coincide with the e-models of the program. We quickly state them
for the sake of completeness in Theorems 7 and 8. The interesting non-standard
result is Theorem 9, where the connection between models of P (i.e. Mod(P)), and
the e-models of P (i.e. EMod(P)) is established.

Theorem 7 Suppose P is an SFLP. Then there is a unique minimal e-model Ep
of P under the ordering C, given by

er(A)= |J 14
TEEMod(P)

for any ground atom A. Moreover, Ep corresponds to the least fixpoint of the
operator Wp which maps from and to extended interpretations of P:

Wp(I)(A) = ({SIS: A+ S1:F & ... & S, : Fp, is a ground instance of
a clause in P and I € EMod(S; : F;), for each 1 <i < n}

The least fixpoint of Wp can be approximated by iterating Wp starting with the
least extended interpretation that maps every A-formula to A. We use the following
notation.’

6We will use the symbol {}, which deviates slightly from the well-known 1 notation used in
the logic programming literature, because in Section 4.1, 1 is used to denote upsets of partially
ordered sets [DP90].



134 J. J. Lu, J. Calmet & .J. Schii

Wlﬁo = Ia, where Ian(A) = A for any ground atom A.
Wg" =Wp (Wgnfl), for n a successor ordinal.
Wi =, <, W™, for n a limit ordinal.

The symbol LI denotes the least upper bound with respect to C.
Theorem 8 Wgw =E&p.

As with classical logic programming, Wgw may be regarded as a bottom-up op-
erational semantics for P. In a deductive database context (i.e. logic programs
without function symbols), Wp provides the basis for view materialization. In
the more general logic programming context, Wp is typically used for proving the
completeness of top-down query answering procedures (See Theorem 16).

Theorem 9 {I(A) | I € Mod(P)} is an e-model of P.

Proof We define a function 7 that maps each interpretation of P to an extended
interpretation of P as follows. For any ground atom A, n(I)(A) = {I(A4)}.

For any ground formula F, it is straightforward to verify by induction on the
structure of F that = (I)(F) = {I(F)}. Thus:

Lemma 10 I € Mod(P) iff n(I) € EMods(P) where EMod(P) denotes the
collection of all e-models of P that assign only singleton sets to ground atoms.

Proof In the only if direction, let C =S : A« S : F1 & ... & S, : Fp, be a
ground instance of a signed clause in P, and let 7(I) e-satisfy each S; : F;, for
1<i<n n(I)(F) CS;. Then I(F;) € S;. As I € Mod(P), it follows that
I(A) € S. Hence 7(I)(A) C S and that «(I) is an e-model of C.

In the if direction, suppose C =S : A+ S;: F & ... & S, : F, is a ground
instance of a signed clause in P, and suppose I satisfies each S; : F;, for 1 <
i <n. I(F;) € S;. Then n(I)(F;) C S;. As () € EMod,(P), n(I)(A) C S.
Suppose 7(I) = {a}. Then I(A) =a € S. O

The lemma proves, in other words, that 7 is a satisfiability preserving bijection
from Mod(P) to EMod,(P). A simple corollary to the lemma is that 7(I) is an
e-model of P if I is a model of P.

We define Modp to be the extended interpretation that maps each ground
atom A to {I(A)|I € Mod(P)}. In view of Lemma 10, Modp may be expressed
equivalently as Modp(A4) = Urepmoa, (py 1(4), for any ground atom A.

Then, for any ground atom A,

Modp(4) = | I(A4) C Ep(A).
T€EMod,(P)
This completes the proof of Theorem 9. a

The theorem tells us that if we collect, for each ground atom A, the set of all
truth values assigned by the original semantics of P, then the result is an extended
interpretation that also e-satisfies P. The following corollary is immediate.



Computing Multiple-Valued Logic Programs 135

Corollary 11 Ep C {I(A) | I € Mod(P)} for any ground atom A.

Computationally, there are several important implications from the above dis-
cussion. First, query processing with respect to extended interpretations is no
harder than classical logic programming due to the existence of a unique minimal
e-model. This is a major advantage. In particular, the adaptation of constraint
logic programming deduction to SFLP relies on the existence of £p. Second, the
answers thus obtained is a conservative extension of the original semantics — the
set Mod(P) — since the set of truth values prescribed by the models of P are all
contained in £p, for each ground atom A.

In general, an SFLP P may be translated into an equivalent A-atomic SFLP.
The proof is based on Hidhnle’s more general result which applies to arbitrary
signed formulas [H&h93]. The key to proving the theorem is in realizing that a
sign appearing in front of an arbitrary A-formulas may be systematically “driven
inwards” whereby A-connectives are replaced with classical connectives.

Theorem 12 Suppose P is an SFLP. Then there is a A-atomic SFLP P’ such that
Mod(P) = Mod(P").

Typically, the A-atomic SFLP P’ will contain many more clauses than P. However,
implementations of procedures to process queries with respect to A-atomic SFLPs
are much easier since we may adapt the simple stack-based method for classical
logic programming in a relatively straightforward manner.

Example 13 Let us reconsider the MVL over A = {0,0.2,0.5,0.8,1}. Let A
denote the function min.” Suppose an SFLP contains the signed clause

{05} : A+ {05} : (BAC).

Then, as A corresponds to min, BAC' evaluates to 0.5 iff one of B and C' evaluates
to 0.5 while the other evaluates to 0.5,0.8 or 1. Hence one A-atomic equivalent of
the above signed clause is an SFLP that contains the following five clauses.

{0.5}: A+ {0.5}: B & {0.5}: C

{05} : A« {05}:B & {0.8}: C

{0.5}: A« {05} : B& {1}: C

{05} : A« {1} : B& {0.5}:C

{0.5}: A+ {0.8}: B & {0.5}: C
Observe that the translation is not optimal — the clauses may be merged into a
more succinct representation.

2.4 Processing Signed Query

We assume only A-atomic SFLPs in this section. Consider the following simple
intuition. Given an SFLP P containing the signed clause S : A < Body. Suppose
we pose the signed query < Sy : A which asks whether the truth value of A is
contained in the set S,. If we are able to show that Body of the given clause holds,

"This is the usual interpretation associated with conjunction in fuzzy logics.



136 J. J. Lu, J. Calmet & J. Schii

then S; : A holds in which case it remains to show that A has one of the values
in So — S7. In a refutational setting, this translates to the following resolution
inference.

Definition 14 (Signed resolution) Let C be the signed clause
S()IA()(—SllAl&...&SnZAn

and @ be the signed query < D1 & S : A & Dy where D1, Dy are conjunctions of
signed atoms. Suppose Ag and A are unifiable via mgu 6. Then the query

(—(Dl&V(S,S())A&SlBl&&San&Dg)e

is called the signed resolvent of C' and ), where the binary function v takes two
arguments, both subsets of A, and it returns a subset of A defined by

I/(Tl,TQ) =A— ((A - Tl) N TQ)

The idea of signed resolution is as described before. The reason for the two sub-
tractions performed in v is to “reverse” the sign.

It is fairly straightforward to see that if a signed query contains a signed atom
S : A where S evaluates to A, then the atom may be removed from the query
without affecting its set of models. We assume that such a simplification step is
taken whenever possible. In particular the signed atom v(S,Sp) : A in the signed
resolvent above may be removed if v(S5,Sy) = A. A simple way to test whether
v(Ty,T>) = A is by observing that v(T1,T2) = A iff T» C Ty.

Example 15 Suppose we have the A-atomic SFLP P shown below, and that we are
interested in determining whether r can evaluate to one of {0.8,1},i.e. {0.8,1}:r.

. {1,0.8,0.5} :r + {1}:p

. {1,0.8,0.2} : r < {0.8,1} : ¢ & {0.8} : s
AL} ip«+

. {0.8} : q

. {0.8} : s+

U W N~

This question may be answered by the following signed deduction.

Qo < {0.8,1}: r (Initial Query)
Q1 ¢ {1,0.8,0.2,0} : r & {1} : p (Qo,1)
Q2 {1} :p& {08,1} : ¢ & {0.8} : s (@1,2)
Qs+ {0.8,1}: q & {0.8} : s (@2,3)
Q4 :+ {0.8}: s (Q3,4)
QS =0 (Q475)

Theorem 16 Signed resolution is sound and complete for A-atomic formulas with
respect to Ep.



Computing Multiple-Valued Logic Programs 137

Proof (Sketch) Soundness may be proved by simple case analysis. Completeness
on the other hand is more involved. A proof based on first principle may follow
the traditional proof of completeness for classical logic programming where we first
show by induction that < S : A has a proof iff Wgn(A) = S for some n € w. In
this case completeness follows by Theorem 8.

In [Lu96], completeness of signed resolution was proved by resorting to the
soundness and completeness of an inference procedure — annotated resolution —
developed in [KS92] for annotated logic programming. The semantical relationship
of SFLP to annotated logic programming was first explored. It was then shown
that any annotated deduction may be “simulated” using signed resolution. O

In the case that an SFLP contains signs in which variables occur, testing
whether a signed deduction succeeds involves simultaneous testing of whether sev-
eral signs denote A.

Example 17 Let P be the SFLP defined over A = {0,0.5,1} as shown below.

VNW): A« V:B&W:C
{1,0}: B
(1,05} : C «

The query < {1} : A can be answered with the following signed refutation.

—~v{1}L,(VNW): A&V :B&W:C
—v({1},(VnW): A& v(V,{1,0}): B& W :C
—v({1},(VnW)): A& v(V,{1,0}) : B & v(W,{1,0.5}): C

In each of the queries, if the variables that occur in any of the signs can be consis-
tently replaced by subsets of A so that each sign evaluates to A, then the deduction
terminates. A careful inspection reveals that only the last of the above queries can
be so substituted with V' = {1,0} and W = {1,0.5}.

3 Constraint Logic Programming

Query processing based on signed resolution, as presented in Section 2.4, is the-
oretically straightforward. However, complex implementation issues arise due to
the possibility that a signed atom resolved upon may remain in the resolvent (see
Section 3.3). In light of this, we seek to find a connection between SFLP and
an existing logic programming formalism with a simpler operational semantics. If
such a connection can be established, then we benefit first of all by having available
existing implementation techniques, and secondly the operational simplicity of the
existing logic programming formalism may help to clarify issues that are specific to
SFLPs. This is the motivation behind the work described in this section. Specif-
ically, we show a transformation of SFLP to constraint logic programming (CLP)
over the domain of P(A); the “upside down” powerset lattice over A. This transla-
tion will enable the application of CLP query processing techniques, together with
set constraint solving methods (e.g. [AW92]), to SFLPs.



138 J. J. Lu, J. Calmet & J. Schii

The work on constraint logic programming was pioneered by Jaffar and Lassez
[JL87] and earlier by Colmerauer in a more restricted form [COL82]. The inte-
gration of constraint solving into the semantics of logic programming significantly
extends the applicability of logic programming to domains once thought unsuited
for logic programming. We give a very brief summary of the theory of CLP.

A CLP consists of definite horn clauses augmented with constraints over some
specified domain. We assume a first order language £. A structure over £, ¥, is a
collection of objects D (i.e. the carrier), and an assignment of the symbols of £ to
the functions and the relations on D.

The predicate symbols in £ are divided into two disjoint sets, II. and II,. An
atomic constraint is an atom formed in the usual way from the symbols of £, but
whose predicate symbol belongs to the set TI.. A constraint is a well-formed formula
built from atomic constraints, logical connectives, and quantifiers. A constraint
clause is an expression of the form

A<Z|| B &..&B,

where = is a constraint, and A, By, ..., B, are atoms whose head symbols belong to
IT,. A constraint logic program is then a finite collection of constraint clauses.

A Y-valuation is a mapping from variables in £ to elements in D, extended
straightforwardly to arbitrary expressions in £. A constraint = is solvable if there
is a ¥-valuation that when applied to =, yields a relation =0 over D that is true.
The X¥-valuation is said to be a solution of =.

A Y-base of a constraint logic program P is the set

{p(#)8 | p € II,, and 0 is a E-valuation}.

A XY-interpretation is a subset of the ¥-base, and a X-model I of a constraint
logic program P is a ¥-interpretation such that for every constraint clause A <+
E||By & ... & By, in P, if 6 is a T-valuation that is a solution of E and B;f € T
fori =1,...,n, then Af € I. As Jaffar and Lassez showed [JL87], a CLP program
is assured of a least YX-model with respect to set containment. This least model
may be approximated through a monotone operator that is analogous to the Tp
operator of classical logic programming.

To simplify the presentation, we consider in the remainder of the section, only
those SFLPs in which all A-formulas are propositional; signs that appear in signed
clauses may still contain variables. This assumption is made only for the sake of
brevity. All of the discussion lifts to non-ground SFLPs easily.

3.1 SFLP to CLP

As mentioned above, there is a natural representation of a A-atomic SFLP as a
CLP program over the domain P(A).

Definition 18 (Constraint Form) Given a A-atomic SFLP P, the constraint
form of P is the CLP, denoted CF(P), made up of the following three collections
of non-ground CLP clauses.



Computing Multiple-Valued Logic Programs 139

1. AV)« SCV || Bi(S1) & ... & B,(Sh)

where the signed clause S: A+ S;: By & ... & S, : B,, isin P.
2. AV) « (VinWe) CV || A(W1) & A(V2)

where A is any atom that occurs in P.
3. AV« V=A

where A is any atom that occurs in P.

The variables V, V] and V5 range over non-empty subsets of A. The constraint
form of a signed query Q =< S; : B; & ... & S, : B,, is obtained as a special case
of the first step above. That is, CF(Q) =+ B1(51) & ... & B,(Sy).

Example 19 Consider the SFLP P from the last example in Section 2.4.
(VNW): A« V:B&W:C
{1,0} : B «+
{1,0.5} : C +

The constraint form of P is the CF(P) below.

AU) « (VAW) CU || BIV) & C(W)
AU) < (UinUs) CU || A(Uh) & A(U»)
AU)«+U=A

B(U) « (1,00 CU

B(U) « (UinUz) CU || B(U1) & B(U2)
B(U) « U =A

C(U) « {1,05} CU

CU)«+ (Uinl:) CU || C(U1) & C(U2)
CU)«U=A

Note the clauses B(U) <~ U = A and C(U) « U = A are subsumed by B(U) +
{1,0} C U and C(U) « {1,0.5} C U respectively, and hence they may be removed.

The extended interpretations for P and the CLP-interpretations of CF(P) natu-
rally correspond, in the sense of satisfiability, via the following mapping . For
any ground atom A and variable free sign S:

A(S) € 9(I) iff I(A) C 8.

Hence if we have an SFLP written over the truth values A = {0,0.5,1}, and I is
the interpretation that maps A to {0.5}, then

¥(I) = {A({0.5}), A({0,0.5}), A({1,0.5}), A({0,0.5,1})}

Theorem 20 I is an e-model of P iff ¢(I) is a CLP model of CF(P).



140 J. J. Lu, J. Calmet & .J. Schii

Proof only if: Consider a ground instance C of a clause in CF(P) whose body
is satisfied by ¢(I). There are three cases to consider, each corresponding to
a case in the construction of CF(P) (see the definition of constraint form).
In the first case, C' has the form

A(Sp) « S C Sy || Bi(S1) & ... & B,(Sn)
where S C Sy holds. There is a corresponding instance Cy in P of the form
SA(—SlBl&&San

As B;(S;) € ¥(I), I(B;) € S;. Then I(A) C S since I is an e-model of P. It
follows by transitivity that I(A4) C Sp. By the definition of ¢, A(So) € ¥(I).

In the second case, C' has the form
A(So) < (51N 82) C So || A(S1) & A(S2)

where A(S7) and A(S2) are both contained in ¢ (I), and (S;NS2) C Sy holds.
For i = 1,2, I(A) C S;. Consequently, I(A) C (S; NS2). By the transitivity
of set inclusion, I(A) C Sp and A(Sy) € ¥(I).

In the last case, C has the form
A(So) <« So =A
where Sop = A holds. As I(A) C A holds trivially, A(A) € ¥(I).

if: Suppose
S()ZA(—SllBl&...&Sn:Bn

is a ground instance of a clause in P where I € EMod(S; : B;) for each
1 <i < n. The corresponding constraint form of the clause can be represented
via the schema

A(Vp) + Sy C Vo || Bi(S1) & ... & B,.(S,)

where Vj stands for any subset of A that contains Sy. Clearly, one particular
instance of Vp is Sp. Hence as 1(I) is a CLP model of CF(P), A(So) € ¥(I).
It follows that I(A) C So. i

Thus there is a isomorphism between the collection of CLP models of CF(P), and
the collection of e-models of an SFLP P. We have the following corollary.

Corollary 21 ¢(Ep) coincides with the least CLP model of CF(P).

3.2 Query Processing Revisited

A query in a CLP language is an expression of the form

I A &L & A,



Computing Multiple-Valued Logic Programs 141

where = is a constraint, and Ay, ..., 4,, are atoms. Query processing in CLP com-
bines classical logic programming backtracking with constraint solving. We call
such a procedure CLP-resolution. At each step of a CLP-deduction, the solvabil-
ity of the constraint part of the current goal is required. Considerations such as
incremental computation is useful in practice. As a starting point, we examing the
following example.

Example 22 Recall the example in Section 3.1. A signed refutation of the query
+ {1} : A was given earlier in the example in Section 2.4. The corresponding CLP
query is the expression < A({1}) and may be refuted as follows.

= (Vnw) c{1} || B(V) & C(W)
= (VW) c{1} &{1,0} CV || C(W)
(VW) {1} &{1,0} CV & {1,05} CW.

The constraint appearing in each step of the deduction is solvable.

Consider another example in which the extra clauses of the constraint form, intro-
duced via the second step of the definition of the constraint form, are used.

Example 23 Let A = {0,0.5,1} and let P be the SFLP below to the left. CF(P)
is the CLP shown on the right.

SFLP P Corresponding CLP CF(P)

{1,0} : A + AV) < {1,0} CV

{1,05}: A« | A(V)« {1,05} CV
AV) < (UinU:) CV || A(U1) & A(U2)

The query Q =+ {1} : A may be refuted using both signed resolution and CLP

resolution shown below.

Signed Deduction CLP Deduction
«~{1}: 4 +«~ A({1})
+«~v({1},{1,0}): A +— (U NUy) 1} || A(Uy) & A(Us)

c{
(w1}, {1,01),{1,05)): A | « (i nT:) C {1} & {1,0} C U, || A(U»)
<« (U1 n Uz) C {1} & {1,0} C U & {1,05} C Us

The next theorem follows from Theorem 20 and the fact that CLP-deduction
is sound and complete.

Theorem 24 (Soundness and Completeness) Suppose P is an SFLP and + @ is
a signed query. Then P |= @ iff there is a CLP-deduction of the empty clause from
the program CF(P) beginning with the query CF(Q).

Proof CLP-deduction is sound and complete with respect to the least ¥-model
of a given constraint logic program. By Corollary 21, it is sound and complete with
respect to the least model Ep. O

The completeness result is perhaps more appropriately called weak completeness
since we have based the result on the completeness of CLP-deduction. Thus the
result tells us that whenever there is a proof of <— ) from P, then there exists a
CLP-proof of CF(Q) from CF(P). A strong completeness result appears possible



142 J. J. Lu, J. Calmet & .J. Schii

where given a proof R of < @ from P, we can construct a CLP-proof CF(R) of
CF(Q) from CF(P) which “simulates” R in a step-by-step manner. This is an
interesting (but perhaps not crucial) topic that we will examine in the future.

3.3 Search Space Considerations
3.3.1 Literal and Clause Selections

Annotated logic, as studied in [BS89, KL92, KS92], has been shown to relate to
signed formulas in a natural way [LMR97]. In [LL94], a query processing procedure
for annotated logic programming was introduced that shares certain characteris-
tics with the signed resolution procedure developed in this paper. In particular,
since the signed atom resolved upon in signed resolution is not necessarily removed
in the resolvent, and since signed atoms may share variables in their signs, the
independence of literal selection in classical logic programming [L1088] no longer
holds. Hence a function that fairly chooses signed atoms from queries appearing
in a deduction is required to ensure completeness. Viewing an SFLP as a CLP
further sheds light on this issue.

Consider the program P from the last example in Section 2.4. Suppose we
adopt the strategy of selecting the leftmost signed atom in each deduction step, no
proof of the query < {1} : A can be obtained. In the proof exhibited in Section 2.4,
signed resolution was applied to the first signed atom in the first query, the second
signed atom in the second query, and the third signed atom in the last query.

Now viewing the program in its constraint form (see example in Section 3.1), it
can be seen that the problem of atom selection is transformed into the (traditional)
problem of fair clause selection. The query in question has the constraint form
+ A({1}), and can be resolved easily by CLP-resolution using the usual Prolog
left-most atom selection (see the first example in Section 3.2). Indeed, any other
atom selection strategy will work. Hence by considering SFLP as CLP, we have
traded off selection strategies on the signed atoms of queries for selection strategies
on the clauses in the transformed program.

A closer examination reveals that in this example, the structure of the search
space induced by CLP-resolution can be obtained by, in each step, shuffling the
signed atom resolved upon to the rightmost part of the resolvent prior to the next
deduction.?

3.3.2 Partial Solvability for Regular Signed Logics

Most applications of the logic of signed formulas — annotated and fuzzy logic
being special instances — adopt underlying truth value sets equipped with at least
a partial ordering. Moreover, the most frequently studied classes of signs are the so
called regular logics, where the signs are assumed to either be the upset of a single
truth value, the downset of a single truth value, or the complements of such sets.”

8This amounts to the strategy adopted by Friihwirth in his implementation of annotated logic
programming [Fr94].

9The upset of an element p in a partially order set (A, <) is the set {8 € Alu < 8}, and is
denoted 1 p.



Computing Multiple-Valued Logic Programs 143

Certainly for both annotated and fuzzy logics, the restriction to regular signs are
always assumed. With the assumption, a sign is completely characterized by an
element of A, and we may write the signed atom (1 u) : p as simply u : p.

Now in lattice-based formalisms (e.g. [Fit91], [KS92], [LNS96]), regular logics
have the property that if u; : p and ps : p are entailed with respect to the least
e-model Ep, then p : p, where p is the join of p; and ps, is also true in Ep. This is
a special case of the Reduction Lemma of the logic of signed formulas which states
that Sy : p & Sy : p is e-equivalent to (S; NS2) : p. As it turns out, this simple
property is at the heart of most research into deduction techniques for multiple-
valued logic programming. To answer the atom p : p in a query, methods for
gathering two facts p; : p and us : p to form a sufficiently large truth value is
required. That is, the join of u; and ps must be above p. This is the essential
idea behind the reduction inference rule of [KS92]. Conversely, it is possible to
replace the atom p : p by an equivalent set of atoms, each one answerable with
existing program clauses. Such a decomposition technique has been investigated
in [Fr94, Mes96]. None of these techniques, however, take into account the effect
of making an inference. In many cases, an application of any one of the inference
rules results in a query which is subsumed by some previous query. Preventing such
irrelevant subqueries from being generated will greatly enhance the effectiveness of
each of the inference rules. Here, we briefly examine a restriction technique through
the notion of partial solvability. The concept naturally fits into the use of constraint
solving in CLP, and appears applicable to a wide variety of lattice-based truth value
sets.

Definition 25 Given a lattice (A, <) and two elements u,5 € A, we denote
U(u, 8) the set of minimal elements (with respect to <) in the following set.

{y €Al 2U(B,7)}

Then, suppose u A (3, we say that S partially solves u if for each v € U(u, ),
wAY-

The intuition is that in the case where a signed atom p : p is to be answered,
then attention should be restricted to those signed clauses whose heads have atoms
that unify with p, and have signs that at least partially solve u. We provide some
examples to illustrate this idea.

Let A denote the set FOUR (see Figure 1) where the ordering of the elements
is given by the reflexive and transitive closure of the base ordering t < T, f < T,
1 <f and L <t. Given the SFLP {t:p <, f: p <}, only the first signed clause
should be considered when answering the query < t : p since t, but not f, partially
solves t. In the case of f, U(t,f) = {t}. Since the only element in the set, t, does
not satisfy t A t, the condition for partial solvability does not hold. Without the
restriction to partial solvability, the reduction inference of [KS92] will potentially
generate the new fact T : p < from the two program clauses which can be used to
answer the query, but it is unnecessary since the query is already answerable from
existing clauses. Similarly, the decomposition inference of [Fr94] will potentially
generate the subquery < f : p by decomposing the original query which results in



144 J. J. Lu, J. Calmet & .J. Schii

an extra inference step. In both cases, a careful test for partial solvability would
avoid the unnecessary inference.

The above example also raises the interesting question of what the relationship
is between solvability and partial solvability. The following lemmas shows that the
name partially solvable is well-chosen.

Lemma 26 Suppose p # L and g < 8 is solvable. Then g partially solves pu.

Proof Without loss of generality, assume that both u and B are variable free.
Clearly, for any element v € A, u < U{~, 8}. This holds in particular for L. By
the definition of U, U(u,8) = {L}. Thus, the condition for partial solvability is
trivially satisfied since p A L. a

Consider another example specified over a slightly larger space of truth values.
Let A denote the set {t,dt,f,df, T, L} where the ordering is given by the reflexive
and transitive closure of the base ordering t < T, f < T,dt <t,df <f, L <df,
and L < dt.'° Let P denote the SFLP {dt : p <+, f : p +}.

The fact T : p is entailed by the program, and hence the query < t : p should
yield a proof from the program. Interestingly, unlike the previous example, both
signed clauses in the program will be admitted under the restriction based on partial
solvability. In particular, f now partially solves t since U(t,f) = {dt} which does
satisfy the condition that for every element in the set, i.e. dt, t A dt.

This example illustrates the subtleties involved in the notion of partial solv-
ability and its dependence on the underlying lattice. The concept probably bears
a connection to the Birkhoff Representation Theorem in the case of distributive
lattices [DP90], but a closer examination of this relationship will be necessary and
is slated for future research.

4 Applications

4.1 Bilattice Logic Programming

This section uses SFLP as a tool for analyzing finitely valued bilattice logic pro-
grams [Fit91]. For simplicity, we again focus on variable-free formulas only.

We are interested in finding, for each bilattice logic program P, an SFLP
SFB(P) that can be used to answer questions of the form:

Given bilattice logic program P, a sign S and a atom A, can A evaluate
to some value in S, under the intended meaning |P] of P?

In bilattice logic programming, |P] is typically associated with a single interpre-
tation — though several acceptable choices exist. Hence formally, the relationship
desired is

SFB(P) =S : Fiff |P|(F) € S.

10The values dt and df can be read intuitively as default true and default false.



Computing Multiple-Valued Logic Programs 145

Figure 1: The Bilattice FOUR.

A logic of bilattice Ap is a multiple-valued logic whose set of truth values A is a
bilattice — a set equipped with two orderings, < and <, each inducing a complete
lattice on the elements in A. A contains four distinguished elements: 1, T, f, and
t, which denote respectively the least and the greatest elements with respect to <,
and <;. FOUR shown in Figure 1 is therefore the smallest non-trivial bilattice.
The least upper bound and greatest lower bound operations with respect to the
ordering < are denoted ® and & respectively, while with respect to the ordering
=<¢, they are denoted V and A respectively. The symbol — denotes negation, and
satisfies the properties a <y b = —a < —b and a <; b = —b <; —a. Furthermore,
A satisfies the interlacing condition, which says that each of the operations V, A
is monotone with respect to the ordering <y, and similarly, each of the operations
®, ® is monotone with respect to the ordering <; [Fit91].

There are a number of constants in the language of Ag. A body formula is
built out of atomic formulas, constants, and the connectives =, V, A, ®, and &. A
Ap-clause is an expression of the form A + F where A is an atomic formula, and
F is a body formula. A finite set of Apg-clauses is called a bilattice logic program.

A Ap-interpretation I assigns a value in A to each constant, each ground atom,
and are extended to each body formula according to the functions represented by
the operators -, V, A, ®, and @. It is assumed that all interpretations evaluate
the constants in the same way, in particular ¢rue is a constant that evaluates to t,
and false is a constant that evaluates to f under any A pg-interpretation.

As mentioned, several reasonable possibilities exist for the intended meaning of
a bilattice logic program P. We focus on the one provided by the operator ®p,
given by Fitting in [Fit91], which maps from and to Apg-interpretations.

Given a Ap-interpretation I, ®p(I) is the Ap-interpretation that assigns to
each atomic formula A, a truth value determined by the following.

Sp(I)(A) = \/{I(}")|A + F a ground instance in P}

® p is monotone with respect to <, and it is monotone with respect to <; provided
that the symbol — does not appear in P. In each case, the existence of the least
fixed point of ®p is guaranteed by Tarski’s theorem on monotone operators over
lattices [TAR55]. We denote Ifp;(®p) the least fixed point of ®p under the <
ordering.

Example 27 Consider the bilattice logic program P over FOUR
r—p®(gVvt)



146 J. J. Lu, J. Calmet & .J. Schii

s+ tdp
u—pRtL
p < true
q < true

Ifp(Pp) assigns t to each of r, p, and ¢. It assigns T to s, L to u, and f to t.

The fixed point [ fp;(®p) establishes [P[]. It tells us that for each ground atom
A, the truth value of A is at least [ fp,(Pp)(A), with respect to the ordering =<;.
To mimic this semantic using an SFLP, the signs that we choose must allow the
iteration of the operator W to reflect [fp;(®p). It turns out that the signs of
interest are of the form 1, u = {8 € Alu < 8}.

Definition 28 (SFB) Let P be a bilattice logic program P. SFB(P) is the SFLP
consisting of the following set, of signed clauses.

{Mtt: A+ | A« truee P} U

{1 f: A« | A+ falsee P} U

Mt V:A«V:F| A« F € P where F is a complex body formula, and
V' is a variable that does not occur in the clause} U

{1t t:true <, 1+ f: false <}

The last set in the above union ensures that the constants true and false are
interpreted faithfully in SFB(P).

Example 29 Continuing with the previous example, SFB(P) contains the fol-
lowing signed clauses.

P Vire<V:(p®(@Vt)
N Vis«V:(tdp)

P ViueV:(pt)
{t}:p«+

{t}:q«
{t,f, L, T}: false +

{t} : true «

The function [ fp(Wsrp(p)) is shown below.
true false t r

{t} | {t,f, L, T} {llft} {t.f, L, T} {Ts,t} {t} {z} {IZ}

For each proposition A, I fp(Wsppp))(A) =1 piff [fp(®p)(A) = p. Indeed, this
relationship holds for any negation-free bilattice logic program, as the next theorem
indicates. First, given S and T subsets of A and * € {®,®,V, A}, we denote

S*T = {po* PBolpo € S,80 € T}.

Lemma 30 Suppose S =1; p and T =1; 8 and * € {®,®,V,A}. Then S *T Cty
(u* B).




Computing Multiple-Valued Logic Programs 147

Proof In the case where x € {A,V}, the lemma follows easily. We thus consider
the case where x = @. The case where * = ® follows by duality.

Suppose v € S@® T, it suffices to show that ®&{u, 8} <¢v. We have v = o @ Bo
for some p <; o and B < Bo. That is, ®{uo, B0} is a <g-upper bound of both
and 8, and hence of ®{u, }. By the interlacing condition, it is a <;-upper bound
of ®{u, B} as well. m|

This lemma does not apply in the case of the negation operator (i.e. —). Hence,
the theorem below holds only if we assume that P is negation-free.

Theorem 31 Suppose P is a negation-free bilattice logic program. Then I fp:(®p)(A) =
piff Lfp(Wspp(p)) e-satisfies the signed atom 1 @ A.

Proof Recall [fp,(®p) = 8} and Ifp(Wsrp(p)) = Wg;B(P).

Suppose ®7(A) = p. Then ®"(A) = p for some n € w. The proof is by
induction on n that t; p : A is e-satisfied by Wg;‘;B(P). The base case holds
trivially. In the inductive case, there is a set of clauses

A(—f1
A(—fQ

A F,
such that \/{@}L"(}')} = pr. We may simplify the proof by assuming that the above
set of clauses is written in the form of a single clause

n

i=1
By the induction hypothesis, for each atom B in \/_, F;, <I>TIT,"(B) = B iff Wg;B(P)
e-satisfies 1, 3 : B. By Lemma 30, the sign assigned to \/}_, (F;) by Wg;B(P) is a
subset S of 1; u such that u € S. It follows that, as the signed clause

NMViAeV:\/ R
i=1
is contained in SFB(P), Wg;B(P) assigns to A 1+ S =T .
In the reverse direction, suppose Wg;’B(P) e-satisfies T u : A. Then W;TSB(P)
e-satisfies T p : A for some n € w. The proof also is by induction on n that
(}f})w (A) = p. The key is in realizing that in the inductive case, for each clause

NV iACVF

in SFB(P), each atom in F is assigned a =<;-upset in Wg;B(P). By a simple
induction on the structure of 7, we may conclude that the least <;-element in the
sign of F is exactly the truth value computed according to values of the atoms and
the operators in F. O



148 J. J. Lu, J. Calmet & .J. Schii

SFB(P) can now be used to answer questions about P under the meaning |P].
Given an atom A and a subset S of A, the question of whether A evaluates to S
under the intended meaning of P can be expressed as a signed query < S : A, and
an answer may be obtained through procedures such as signed resolution.

4.2 Assumption-Based Truth Maintenance

A lattice of truth values similar to P(A) of Section 3 using the reverse subset order-
ing appears in assumption-based truth maintenance systems [DeK86]. The powerset
P(A) of a propositional language A forms a complete lattice when ordered under
the reverse subset ordering, denoted <. The basic idea of coding the assumptions
under which a proposition holds into its truth values was originally proposed by
Ginsberg [Gin88], but his work was carried out in the context of multiple-valued
logic theorem proving.

Here, we provide a semantical characterization of assumption-based reason
maintenance by means of signed formulas. In addition to gaining theoretical in-
sights, since we have revealed that signed formula logic programs can be opera-
tionalized by means of constraint logic programs, a possible parallel implementa-
tion of an assumption-based reason maintenance system by means of concurrent
constraint logic programming languages [Sar91] will therefore be possible.

Informally assumptions are primitive data from which all other data can be
derived through the use of justifications. A justification in the original ATMS is
just a propositional Horn-clause without negation. A node consists of a datum,
label and justifications. To illustrate the difference between a justification in the
ATMS and a clause in the problem solver, consider the following example from
DeKleer: the deduction of Q(a) from P(a) and Q(X) + P(X) is recorded as
a justification yp(a), YQ(X)«—P(X) = YQ(a) Where Yiatum refers to a datum in the
truth maintenance system. An ATMS determines beliefs based on the justifications
so far encountered not with respect to the logic of the problem solver. Therefore,
the propositional symbols occurring within labels are uninterpreted symbols and
justifications are material implications.

In our approach, the underlying logic of the problem solver does the bookkeeping
performed by the reason maintenance system. Since the problem solver is a signed
logic program, the inferences and data to be recorded by the reason maintenance
are restricted. The problem solver datum is either derived, or it is a program clause.
An environment is a set of given assumptions and a label is a set of environments.
Formally, a label is a propositional formula in disjunctive normal form, and a datum
holds in a given environment, if it can be derived from the justifications and the
environment. A Nogood is a minimal assumption set such that the assumptions
contained within cannot be true together with respect to the set of justifications.
An ATMS context is the set formed by the assumptions of a consistent environment
combined with all nodes derivable from those assumptions.

One particular difference between our formulation and the original ATMS is
that our semantics does not capture the removal of environments subsumed by
Nogoods (labels of atoms with inconsistent truth values). In other words, the
semantics of an SFLP is monotonic in contrast to the ATMS where just discovered



Computing Multiple-Valued Logic Programs 149

Nogoods are to be removed. In our case, a Nogood is simply an empty clause with
a nonempty sign.

The key idea in redefining assumption-based reason maintenance'! as signed
logic program is to write labels in the form of signs, i.e. define a suitable set
of truth values A. In this sense our reason maintenance system departs from
most other systems as it amalgamates the inference machine of the problem solver
and the reason maintenance component. Following the argument of [MS88], a
reason maintenance system itself should be able to detect inconsistencies and to
compute automatically the dependencies of new beliefs from older ones instead of
just recording them passively. Besides, the amount of time spent for communication
between the problem-solver and the reason maintenance system is reduced since the
dependency computation takes place without any extra costs during the inference
process. As pointed out earlier, we may define A as P(A). Then an appropriate
lattice function computing the minimal label from the sign of the body literals may
be written in the heads of signed clauses. In the next example we show how the
fixpoint operator Wp computes the label of ground atoms. In this example, the
function f, : P(A)"™ — P(A) is defined as

fnulBy, ... E,) = U Lli

Le(Ei1x...xEy)

TC>

where E; € P(A) for each 1 <i <n, and L | 7 denotes the i-th component of L.

Example 32 Let us consider a MVL A over A = P({A,B,C,D,E}) and the
following SFLP.

LV W):p <« V:igW:r
{{4,B},{B,C,D}}:q <+
HA,CHAD,E}}ir

Then, the label of p is computed as follows. The cartesian product V' x W is the
following set.

VxWw = {({4,B},{4,C}),({4, B},{D, E}),
({B,C,D},{A,C}),{B,C,D},{D, E})}

Then the collection of I; U l» for each pair (I1,l) in V' x W is the set
{{4,B,C},{A,B,D,E},{A,B,C,D},{B,C,D,E}}

This set is the result of fo(V,W). It is also the truth value assigned to p by Wgw.

U For historical reasons the term ATMS (assumption based truth maintenance) is sometimes
used in this paper.



150 J. J. Lu, J. Calmet & J. Schii

5 Related Work

Ideas described in this paper evolved from a number of recent work. Signed res-
olution was developed by Baaz and Fermiiller [BF92] for signed formulas whose
signs were restricted to singleton sets. A more general version of signed resolution
was studied independently by Héhnle [Hah93], and Murray and Rosenthal [MR94].
Each of these developments was set in the context of theorem proving. The appli-
cation of CLP to SFLP was based in part on the work of Friihwirth [Fr94]. His
method generated CLP-queries directly from the original program; the program
is not first transformed into a CLP. In addition, only applications to annotated
logic programming was considered. In order to characterize different reason main-
tenance systems semantically, a similar line of research has been pursued by Fehrer
[Feh93]. His work focuses on Gabbay’s labeled deductive system [Gab89] which
is a much broader framework than signed formulas that can be used for general
theorem proving in different kinds of logics.

The basic idea of transforming a multiple-valued logic program into a constraint
logic program was implemented in [Deb94]. Some benchmarking results can be
found there. However, the work again applies only to annotated logic programming,
which is a restricted form of SFLP.

6 Conclusion

The aim of the current paper is to examine the operational semantics of SFLP
more closely based on the declarative semantics set forth in [Lu96]. Section 2
summarizes the basics of SFLP. Section 3 presents the main result which shows
that any SFLP P may be suitably translated to CLP. Consequently, SFLP may be
computed through CLP-deduction. This enables the direct application of various
CLP implementation techniques. Moreover, the translation sheds insights on the
computational behavior of signed resolution. In Section 4, two applications of SFLP
are considered. The first shows the implementation of bilattice logic programming
using SFLP, and the second examines the connection of SFLP to ATMS.
Future research will extend existing results in several directions, including:

1. the clarification of the relationship between the semantics of base-level multiple-
valued logic programs and their corresponding meta-level signed formula logic
programs. Currently, the use of EMod as the declarative semantics of SFLP
represents only an “approximation” to the meaning of underlying multiple-
valued logic program, given by Mod. A more precise understanding of this
approximation will be useful in understanding the information conveyed by
computed answer.

2. the further development of partial solvability as a means for restricting the
search space of inference procedures.

3. the extension of signed logic programming with nonmonotonic operators
through a combination of tabling techniques [CW93] and constraint solving.



Computing Multiple-Valued Logic Programs 151

Nonmonotonicity makes possible the expression of meta-level information.
The addition of nonmontonicity to signed logic programs will enhance the
possible implementation of hybrid knowledge bases [LNS96] through signed
logic programs.

Acknowledgement: Reiner Hihnle’s provided numerous useful comments on a
preliminary draft of this paper. The reviewers detailed suggestions greatly im-
proved the presentation of the material.

References

[AW92]

[BF92]

[BS89]

[CW93]

[COL82]

[Deb94]

[DeK86]

[DP90]

[Feh93]

[Fit91]

A. Aiken and E. Wimmers. Solving systems of set constraints. In Proceed-
ings of the Tth Symposium Logic in Computer Science, pages 329-340.
Computer Society Press, 1992.

M. Baaz and C. G. Fermiiller. Resolution for many-valued logics. In
A. Voronkov, editor, Proceedings of Conference Logic Programming and
Automated Reasoning, pages 107-118. Springer-Verlag, 1992.

H.A. Blair and V.S. Subrahmanian. Paraconsistent logic programming.
Theoretical Computer Science, 68:135-154, 1989.

W. Chen and D.S. Warren. Query Evaluation Under the Well-Founded
Semantics. In Proceedings of the 12th ACM Symposium on Principles of
Database Systems, pages 168-179, ACM Press, 1993.

A. Colmerauer. Prolog and Infinite Trees. In K.L. Clark and S.A. Tarn-
lund editors, Logic Programming, pages 231-251, New York, 1982. Aca-
demic Press.

D. Debertin. Parallel inference algorithms for distributed knowledge
bases (in german). Master’s thesis, Institute for Algorithms and Cogni-
tive Systems, University of Karlsruhe, 1994.

J. DeKleer. An assumption-based TMS. Artificial Intelligence, 28:127—
162, 1986.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

D. Fehrer. A Unifying Framework for Reason Maintenance. In Michael
Clarke, Rudolf Kruse, and Serafin Moral, editors, Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty, Proceedings of EC-
SQARU ’93, Granada, Spain, Nov. 1993, volume 747 of Lecture Notes
in Computer Science, pages 113-120, Berlin, Heidelberg, 1993. Springer.

M. Fitting. Bilattices and the semantics of logic programming. Journal
of Logic Programming, 11:91-116, 1991.



152

[Fr94]

[Gab89]

[Ging8]

[H&hO1]

[Hh93)]

[Hiih94a]

[H&h94D]

[J187]

[KL92]

[KS92]

[LL94]

L1088

[LMR92]

[Lu96]

J. J. Lu, J. Calmet & J. Schii

T. Frithwirth. Annotated constraint logic programming applied to tem-
poral reasoning. In M. Hermengildo and P. Penjam, editors, Proceedings
of the Symposium on Programming Language Implementation and Logic
Programming, volume 844 of Lecture Notes in Computer Science, pages
230-243, Berlin, Heidelberg, 1994. Springer.

Dov M. Gabbay. Labelled Deductive Systems: Volume 1. Oxford Uni-
versity Press, 1996.

M.L. Ginsberg. Multivalued logics: A uniform approach to inference in
artificial intelligence. Computational Intelligence, 4(3):265-316, 1988.

R. Hihnle. Uniform notation of tableau rules for multiple-valued logics.
In Proceedings of the International Symposium on Multiple- Valued Logic,
pages 26—29. Computer Society Press, 1991.

R. Hahnle. Short normal forms for arbitrary finitely-valued logics. In
Proceedings of International Symposium on Methodologies for Intelligent
Systems, pages 49-58. Springer-Verlag, 1993.

R. Hahnle. Automated Deduction in Multiple- Valued Logics. Interna-
tional Series of Monographs on Computer Science, vol. 10. Oxford Uni-
versity Press, Oxford, UK. 1994.

R. Hahnle. Short conjunctive normal forms in finitely-valued logics.
Journal of Logic and Computation, 4(6):905-927, 1994.

J. Jaffar and J-L. Lassez. Constraint logic programming. In Proceedings
of the 14th ACM Symposium on Principles of Programming Languages,
pages 111-119. ACM Press, 1987.

M. Kifer and E. Lozinskii. A logic for reasoning with inconsistency.
Journal of Automated Reasoning, 9:179-215, 1992.

M. Kifer and V.S. Subrahmanian. Theory of generalized annotated
logic programming and its applications. Journal of Logic Programming,
12:335-367, 1992.

S. Leach and J.J. Lu. Computing annotated logic programs. In P. van
Hentenryck, editor, Proceedings of the International Conference on Logic
Programming, pages 257-271. MIT Press, 1994.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2
edition, 1988.

J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic
Programming. MIT Press, 1992.

J.J. Lu. Logic Programming with Signs and Annotations. Journal of
Logic and Computation, 6(6):755-778, 1996.



Computing Multiple-Valued Logic Programs 153

[LMR97]

[LNS96]

[LR95)

[Mes96]

[MRO4]

[MS8S]

[Sar91]

[TAR55]

[WTL93]

J.J. Lu, N.V. Murray, and E. Rosenthal. A Framework for Reasoning in
Multiple-Valued Logics. Journal of Automated Reasoning. To appear.

J.J. Lu, A. Nerode, and V.S. Subrahmanian. Hybrid Knowledge Bases.
IEEFE Transactions on Knowledge and Data Engineering, 8(5):773-785,
1996.

J.J. Lu and E. Rosenthal. Annotations, signs, and generally paraconsis-
tent logics. Intelligent Systems, pages 143-157, 1995.

B. Messing. Aggregation of Vague and Uncertain Knowledge with Many-
valued Logics. Data and Knowledge Engineering Journal. To appear.

N.V. Murray and E. Rosenthal. Adapting classical inference techniques
to multiple-valued logics using signed formulas. Fundamenta Informati-
cae, 21:237-253, 1994.

J.P. Martins and S.C. Shapiro. A model for belief revision. Artificial
Intelligence, 35:25-79, 1988.

V. Saraswat.  Concurrent Constraint Programming. PhD thesis,
Carnegie-Mellon, 1991.

A. Tarski. A Lattice-theoretical Fixpoint Theorem and its Applications.
Pacific J. Math., 5:285-309, 1955.

T.J. Weigert and J-P. Tsai and X. Liu. Fuzzy operator logic and fuzzy
reasoning. Journal of Automated Reasoning, 10:59-78, 1993.



