Mathware & Soft Computing 4 (1997) 99-127

A Reduction-based Theorem Prover
for 3-valued Logic*

G. Aguilera Venegas, 1. P. de Guzman, M. Ojeda Aciego
Dept. Matematica Aplicada. Univ. de Mélaga.
E-29071 Malaga, Spain
{gabri,aciego} @ctima.uma.es, pguzman@ccuma.uma.es

Abstract

We present a new prover for propositional 3-valued logics, TAS-M3, which
is an extension of the TAS-D prover for classical propositional logic. TAS-M3
uses the TAS methodology and, consequently, it is a reduction-based method.
Thus, its power is based on the reductions of the size of the formula exe-
cuted by the F transformation. This transformation dynamically “filters”
the information contained in the syntactic structure of the formula to avoid
as much distributions (of A wrt V in our case) as possible, in order to improve
efficiency. In our opinion, this filtering is the key of the TAS methodology
which, as shown in this paper, allows the method to be extremely adaptable,
because switching to different kinds of logic is possible without having to
redesign the whole prover.

1 Introduction

In this work we present a new prover for propositional 3-valued logics, named TAS-
M3, which is an extension of the TAS-D prover for classical propositional logic.
TAS-M3 uses the TAS methodology which has been applied to classical proposi-
tional logic [2], first-order logic [5] and temporal logic [4]. As a reduction-based'
method, the power of TAS-M3 is based on processes (reductions) which reduce of
the size of the formula, grouped as the F transformation. This transformation
dynamically “filters” the information contained in the syntactic structure of the
formula to avoid as much distributions (of A wrt V in our case) as possible, in
order to improve efficiency. Roughly speaking, the idea is to get the information
given by unitary partial interpretations; this idea, as seen in the classical and modal
versions, has proved to be extremely useful.

*This work has been partially supported by CICYT project number TIC94-0847-C02-02.

I This name is introduced by the authors to refer to the TAS methods, since the core of all
of them is, essentially, the use of reductions on the input formula in order to avoid as much
distributions as possible.

99

100 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

TAS applies a sequence of transformations to the formula being considered. It
is worth to note that the transformations are not just applied one after the other;
through the efficient determination and manipulation of sets of unitary models of a
formula, the method investigates exhaustively the formula, to detect if it is possible
to decrease the size of the formula being analysed.

The power of the method is based not only on the intrinsically parallel design
of the involved transformations, but also on the fact that every transformation in
F reduces the size of the formula and, only when no information can be used, the
last transformation commissioned on the distributions is applied. The distribu-
tion is made gradually, so we distribute only once and then apply the reducing F
transformation once again on each parallel task.

Sets of unitary models, the A-sets, are associated to each node in the syntactic
tree of the formula, they can be considered the key tool of TAS methodology, since
they are used to conclude whether the structure of the syntactic tree has or has not
direct information about the validity of the formula. This way, either the method
ends giving this information or, otherwise, it decreases the size of the problem
before applying the next transformation. So, it is possible to decrease the number
of distributions or, even, to avoid them all.

The proposed theorem prover can be applied to any three-valued logic, not just
M3, but for the sake of simplicity we describe it explicitly for M3 and in Section 6.1
we show how the general case can be achieved.

The paper is organised as follows:

e Firstly, the classical propositional version is briefly presented, to help the
understanding of the method in the many-valued case.

e Later, the functionally complete M3 three-valued logic is introduced..

e Then, the TAS-M3 method is introduced, paying special attention to the F
transformation and to the different reduction processes involved in it.

e Finally, some examples, a sketch of how the method can be applied to any
three-valued logic, and the conclusions are presented.

1.1 The TAS prover in classical propositional logic (sketch)

Let L be the language of classical propositional logic, let T4 be the syntactic tree
of a well formed formula (wff) A.

Given a wif A, the input of TAS-D is the syntactic tree of = A, T_ 4. The flow
diagram of the TAS provers is shown in Figure 1, where the outputs are either
VALID or NON-VALID and a model for =A (countermodel). Each module for the
classical propositional version will be commented below.

A Reduction-based Theorem Prover for 3-valued Logic 101

S

VALID NON-VALID VALID NON-VALID

Figure 1: The flow diagram of a TAS method.

1.1.1 The Sign transformation

Definition 1.1 Given a wiff A and k € {1,—1}, A(k) is recursively defined as
follows:

p(1)=p p(=1)=-p

(=4) (1) = A(-1) (=A) (1) =A(1)
(AvB)(1)=AQ1)vB() (AvB)(-1)=A(-1)AB(-1)
(AAB)(1)=A(1)AB(1) (AAB)(-1)=A(-1)vB(-1)
(A=DB)(1)=A(-1)vB(l) (A=DB)(-1)=A(1)AB(-1)

Given a wif A, the first task in the method is to obtain T4 (1). It is obvious that if
A is a wif then A (1) is a formula in negation normal form (nnf) equivalent to A.

The idea to use the information given by partial interpretations, borrowed from
Quine’s method, is taken in TAS-D just for unitary partial interpretations, which
are used all over the method by means of the sets Ay and Aj, the key tools of
TAS-D:

Definition 1.2 Given a nnf A, the sets Ag(A) and A (A) are recursively defined
by:

Ao(p) ={p0}; Ailp) ={pl} Ao(—p) ={p1} Ay (=p) = {p0}

Ao (/\ Ai> =JAo(4); Ay (/\ Ai> = Ai(4)

Remark 1.1 Note the relationship between the definition of the sets Ay(A) and the
tableau rules for the extension of a- and f-formulas; the subscript b can be thought
of as the sign of the formula A.

It is obvious that the elements of Ag(A) can be seen as the unitary models of
—A and the elements of A;(A) can be seen as the unitary models of A.

If Ais a wff, the output of the Label transformation is T4 () whose nodes N

are labelled with the ordered pair (A (B), A{(B)) where B is the subformula of A
such that IV is the root of Ts.

102 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

s | |
4{ Update ‘—»‘ Simplify ‘ ——{ Reduce ‘ —_—
I

VALID NON-VALID

Figure 2: The F transformation.

1.1.2 The F transformation

The input of this transformation is a generalised syntactic tree T¢. In this stage we
try to detect by means of the labels (Ag, A;) whether the structure of T¢ provides
either complete information about the unsatisfiability of C' or useful information
to decrease the size of C before distributing.

The core of F is the sequence of performing, as many times as possible, the
processes simplify and reduce with their corresponding updates, as indicated in
Figure 2.

This transformation can be seen as a sequence of filters of the information
contained in the A sets, that is why it is called F.

How the information contained in the labels (Ag, A;) is used by any of the
previous processes is sketched below:

1. The process simplify (or strong reduction) allows to deduce that a subformula
B, in particular the whole formula, is equivalent to T, L or a literal. This is
done by using the following result: Let p be a propositional symbol, then

(a) If {p0,pl} € Ag(A) then A= 1.

(b) If {p0,p1} € A1(A) then A=T.

(c) I {p0} = Ag(A) and {p1} = A;(A) then A =p.

(d) If {p1} = Aog(A) and {p0} = A;(A) then A = —p.

where A = B means that A and B are logically equivalent, that is I(A4) =
I(B) for every interpretation I.

2. The process reduce (or standard reduction) uses again the information con-
tained in (Ag, A1) in order to decrease the size of the tree before distributing;
specifically, substituting A by a equisatisfiable formula in which the symbols
in Ag(A4) or A;(A) occur at most once. Note that after reducing a tree,
another simplifiable tree can be obtained and thus, a new simplification may
avoid distributions (or end TAS-D).

Here we use the following results:

(a) If p0 € Ag(A) then

A Reduction-based Theorem Prover for 3-valued Logic 103

i. A=pA Alp/T]
ii. A and A[p/T] are equisatisfiable.
(b) If pl € Ag(A) then
i. A=-pAAp/l]
ii. A and A[p/1] are equisatisfiable.
(c) fp0 € Ay(A) then A=-pV Alp/T].
(d) If pl € Ay(A) then A=pV A[p/L].
(e) If A1(A) # @ then A is satisfiable; in this case we say that A is finaliz-
able.

3. Essentially, the update transformation deletes the occurrences of the T and
1 introduced by the reductions, and recalculates the labels of the modified
nodes and their ascendants.

For most formulas, if TAS-D does not finish after executing F then the size of
the input tree of (A-V)-par is drastically decreased. The interest of this strategy
is based on the fact that it can reduce the size of the problem before applying the
transformation which holds most of the complexity ((A-V)-par in our case).

1.1.3 The (A-V)-par transformation

This transformation makes the distribution of A wrt V that the previous application
of F could not avoid. In (A-V)-par only single distributions are made each time and,
after generating parallel tasks (the children of a root node V), the F transformation
is applied again to every parallel task; thus, either the execution finish or the size
of the generated tasks is decreased (this can avoid ulterior distributions)

1.1.4 A traced example

Consider the following formula A = (p = (¢ = r)) = ((p = q) = (p — 1)), the
trace of the method to test the validity of A is sketched below:

1. Input —A:
~((p—=@—=r) > (=9 —>@—71)

2. Sign:
(=pV =gV T)A(=pVq) ApA-T

3. Reduction 2(a)ii wrt p and —r; update:
qN—g

4. Simplification la:

5. Output: The formula is valid.

104 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

2 The M3 logic

As indicated in the introduction, the aim of this work is to show how the TAS
methodology can be extended to many-valued logic. Specifically, we show a reduction-
based prover for the M3 logic, a functionally complete 3-valued logic, which is an
extension of that introduced in [11] and used in [7].

Definition 2.1 The M3 logic is defined by the pair (£, M) in which the algebra
L=(Q,L,®, T,~,~,V,A,—) has similarity type (0,0,0,1,1,2,2,2) and its asso-
ciated matrixis M = (3,1, L,®, T,=,~,V,A, =), where 3 ={0, ,1}. Elements in
Q are called propositional symbols, — is the strong negation, ~ is the weak negation,
V is the disjunction, a A is the conjunction and — is the weak implication.

The semantics of these connectives is defined as follows:
1. 1,2 and T (0-ary connectives) are, respectively, the constants 0,% and 1.
2. ni=1—1

3. ~i= {1 i€{0,5}
0 ifie {1}

4. i ANj=min{i,j}.
5.1V j=max{i,j}.

.. [1 ifiefo,1}
6"_”_{]' if € {1}

The truth tables for the connectives just defined are the following

-~ viol|i]t1 A[O] L] = lofs]1
011 0jo|i]1 0l0|0]0O 01f1]1
ol A ol AR 2 0]5]5 p L)1)l
1fofo 11|11 L{fo]i]1 L0351

Definition 2.2 An interpretation in M3 is, as usual, an assignment of truth values
to each formula of the language. These assignments are generated by any mapping
I:Q — 3, as I defines a unique homomorphism £ — M also denoted 1.

The truth value assertions J; can be defined in M3 using the subset of primitive
connectives {—,~, A} as follows:

JgA=—-~-A J%AENA/\N—'A JJA=-~A

where = means logical equivalence in M3, i.e. A = B if and only I(A) = I(B) for
every interpretation I.

Theorem 2.1 The M3 logic is functionally complete.

Proof. 1t follows directly from Lemma 2.9 in [12].

A Reduction-based Theorem Prover for 3-valued Logic 105

3 The TAS-M3 method

The design of the algorithm for the M3 logic is the same than that for classical
logic, and also has the same properties of efficiency, flexibility and parallelism.
This last property allows to execute in parallel the only part of the algorithm
whose complexity is exponential.

TAS-M3 is a refutation method; to analyse the validity of a formula A, we use
Theorem 3.1 in which we use the usual definition of validity, and we also introduce
the notion of quasi-satisfiability:

Definition 3.1 Let A be a wif in M3, we say that:
1. Ais valid if I(A) = 1 for every interpretation I.

2. A is quasi-satisfiable if there exists an interpretation I such that I(A) €

{z.1}-

It is easy to note that satisfiability in classical logic corresponds to quasi-
satisfiability in M3 in the sense of the following theorem:

Theorem 3.1 Let A and A; be wffs in M3, then
e A is not valid iff = A is quasi-satisfiable.
o A=\, A is quasi-satisfiable iff A; is quasi-satisfiable for some i € I.

The flow diagram of the method is the same as in the classical case, and it appears
in Figure 1, the input of TAS-M3 is the (syntactic tree of the) strong negation of a
formula with no constants; by analysing the structure of this tree, the method dy-
namically transforms it, avoiding as much distributions as possible, and decreasing
the size of the formula.

Definition 3.2 The syntactic tree of a wif A of M3, denoted by T4, is the binary
tree recursively defined as follows:

1L.IfAcQU{T,0,L}, then Ty is A.
*

|
2. If A==xB, where x € {=,~}, then Ty is T,

3. If A= B xC where x € {A,V,—}, then T}y is

.

106 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

3.1 The Sign transformation

The aim of this first process is to transform the syntactic tree of the input formula
into the syntactic tree of an equivalent unary normal form formula (see Defini-
tion 3.3) in M3, this concept will defined later.

The following laws will be used by this transformation:

1. Elimination of — laws:

A-B=~AvVvB —-(A—-B)=-~AAN-B ~(A—-B)=-~AA~B

2. de Morgan laws:
ﬁ(A/\B)EﬁAVﬁB ﬂ(A\/B)E—!A/\—!B
~(ANB)=~AV~B ~(AVB)=~AA~B
3. Multiple negation laws.

A if k is even
ﬁkA =
() = { —A i k is odd

-~A ifkiseven
b) ~*k A =
({NA if k£ is odd
(¢c) ~Ma~A=~A

From the multiple negation laws we have that the only sequences of — and
~, up to equivalence, are the sequences in the set A defined below, where € is the
empty sequence.

{eaﬁaNaﬁNaN_'a_'N_'}
using the semantics of M3, we can just consider the sequences in the set
{67) _'Jh J17 _'J07 JO}

Although J1 and —J:1 cannot appear in the input formula, they can be gener-
ated during the execution of the method, as we will see in the reduce transformation.
Consequently, we have the following definition:

Definition 3.3 A 3-valued literal is any wif ap where p € @@ and « € A, where
A= {67 J07J%7J17_'7_'J07_'J%7_'J1}

The prefiz of ap, is the sequence «, and the suffix of ap is the propositional
symbol p.

A wif A in the M3 logic is said to be a unary normal form formula (unf) if the
connectives in A are in the set {—, Jo, J%, Ji,A,V} and the scope of every unary
connective is either a propositional symbol or another unary connective.

A Reduction-based Theorem Prover for 3-valued Logic 107

Lemma 3.1 FEvery 3-valued literal is satisfiable.

Proof. The proof is trivial, since we have only to check that in every column in
the following table there is at least a 1.

e || Jo | 0y J% —IJ% Jy | oJh
0]0]1 0 0 1 0 1
slsl5/0 1 |1 0 |01
1{1101]0 1 0 1 0

The associative laws allow us to consider an expression like 4; V ---V A, or
Ai A+~ AN A, as a wif (in short form \/;_, A; and A;_, A;). This fact, and the
consideration of the new literal prefixes in A, leads to the following extension of
the definition of syntactic tree for a unf:

Definition 3.4 Given a formula in unf A of L, its generalised syntactic tree,
denoted by Ty, is defined as follows:

1 If A= Q" A;, where O is A or V/, then T} is

©

TN

~

fAl ng T

n

2. T\A = A in other case.

Remark 8.1 In the rest of the paper, the syntactic tree of A will always mean the
generalised syntactic tree of A and both of them will be denoted by T'4.

The transformation into an equivalent unf is done by a recursive process applied
to the root of the corresponding syntactic tree, eliminating the connective — and
putting the negations down to the leaves.

Definition 3.5 Let A be a wif and x € {—3,-2,—1,1,2,3}, then A(k) is recur-
sively defined as follows:

p(1) =p p(=1) =-p

p(2) = ~Jop p(=2) = Jop

p(3) = Jip p(=3) =-Jip

(AxB) (k) = A(k) * B (k) if Kk >0and x € {V,A}

(AxB) (k) = A(k)*B (k) itk <0, xe{V,A},V=Aand A=V
(A — B)(k) = A(-3) V B(k) ifk>0

(A — B)(k) = A(3) A B(k) if k<0

(~A)(k) = A(=3) itk >0

(~A) (k) = A(3) itk <0

(=A) (k) = A(v(k)) where v is the function defined below

108 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

v:{-3,-2,-1,1,2,3} — {-3,-2,-1,1,2,3}

(1) = -1 =1 =1
v(2)=-3 y(-2)=3
13) = —2 V(=3) =2

Given a wif A, to sign its syntactic tree T4 is to get the generalised syntactic
tree associated to A (1).

Example 3.1 Consider the formula A = p — (¢ — p). The input of TAS-M3 is
the syntactic tree of = A. After signing, the last tree of the sequence shown below
is obtained:

- (1) A
- — (-1) Jip g p

N N\
/\ D(3) K_l)

¢ P q(3) p(-1)

Example 3.2 Given the formula A = —=p — (~ p A —p), the input of TAS-M3 is
T- 4 and the application of the sign transformation is shown below

=(1)

| — (=1) A
%
N i T({\W
a]]
p p
b b

A
A A
@\ N N
— Jop — Jop
(-1) =(-1) /\ &
p(3) p(1) Jip

Note that although we have shown in both examples the whole trace of the
transformation, it is executed by traversing the syntactic tree only once.

2
So—

Theorem 3.2 The Sign process is meaning-preserving, that is Sign(A) = A.

Proof. The proof is immediate, since the transformation only uses equivalence
laws.

A Reduction-based Theorem Prover for 3-valued Logic 109

3.2 The A sets

The semantic basis of TAS-M3 is the same as in every TAS method, the use of
unitary partial interpretations. This information will be used all over the method
by means of the sets Ay, the key tools of TAS-M3. These A sets contain information
allowing either to detect subformulas which are logically equivalent to T or L or
to substitute a formula with a smaller sized one.

In the 3-valued case we are introducing, the definition of the A sets will contain
3-valued literals satisfying the following properties:

1.IfE(l - A) then A=IVB
2. If=(A—1)then A=IAB

where the size of B is smaller than that of A.

These sets are Ag, A% and Ajp; the elements in the A sets are shaped pb with
p € @ and b € 3. Our aim when defining Ay(A) is that whenever pb; € Ay, (A4),
where by, by € 3, then for any interpretation I satisfying I(p) = by we have I(A) =
b2. This idea leads to the following definition:

Definition 3.6 Let p be a propositional symbol, then

Ao(p) ={p0} Ai(p)={p3} Ailp)={p1}

the definition for the rest of the cases uses the semantics of the 3-valued literals
and the connectives A and V. Let A and A; be unfs. The sets Ay, A% and A; are
recursively defined as follows:

Ao(-p) = {p1} Ai(-p) ={pz} Ai(=p)={p0}
Ao(Jop) = {p3,p1} A1 (Jop) =@ A1 (Jop) = {p0}
Ao(=Jop) = {p0} Ay(~Jop) = & A (=Jop) = {p3,p1}
Ao(Jyp) = {p0,p1} Ai(Jip) =2 A1(J3p) = {p3}
No(~J1p) = {p3} Ar(=Jip) =2 Ai(=Jyp) = {p0,p1}
Ao(Jip) = {p0,p3} AL(ip) =@ Ay (Jip) = {pl}
Ao(=Jip) = {p1} Ai(nJip) =@ Ar(=Jip) = {p0,p3}
AO(/\ A;) = U Ao(4;) Al(. A) = ﬂ Ay (4;)
Ao<\/ 4;) = ﬂ Ag(A;) AV 40 = U Aj(4;)

Finally, we have to define A% for conjunctions and disjunctions; in the binary

case we have

(A1) N (A

(A2) U A1 (A2))] U (A1 (A1) NA1(Az))
(A2) U Ag(A2))] U (Ag(A1) NA1(Az))

=

1
2

[] A%(AlvAQ) :[A

1 1
2 2

110 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

and in the generalised case the set A% is built by left associativity and using the
binary definition, i.e.

n n—1 n n—1
Ay (/\1A> = A, (/\ Ai/\An> A, (\/Ai> = A, (\/lAivAn>

i=1 i=1

Remark 3.2 For a better understanding, it is worth to consider the correspondence
between the definition of the A sets and certain tableau rules. Note, for instance,
how our definition of Ay (A; V A3) coincides with the tableau rule in [7, pg. 87].

Remark 3.3 Note that the difficulty in the calculation of A 1 is only apparent, as
the following results show:

e If l is a literal whose prefix is neither € nor =, then Ay (l) = @.

o Let Ay,..., A, be wifs such that A%(Ai) =g foralli=1,...,n, then
Ar (Vi A) = A1 (N A) = @

Definition 3.7 Given a unf A, to label is a recursive process which associates to
each node N in T the triple (A¢(B), A1 (B), A1(B)), where B is the subformula
of A determined by N.

Example 3.3 Continuing with Example 3.1, after signing we get the syntactic tree
of Jip A Jiq A —p; the result of labelling this tree is the following:

A({p0,pL,p1,90,9}}, 2, 2)
T

.

———
——
—
—
——

Jip({p0,p3},2,{p1}) J1q({a0,q3},2,{a1}) —p({p1},{pi},{p0O})

Example 3.4 Let T be the output of Example 3.2, after labelling this tree we
get the following result

__A({p0,p3,p1},2,9)

—
e
—

Jop((ph.p1},, {p0}) V({p0}. (1}, {p1})

T
Jip({p0,p3},2,{p1}) P({p0},{p3}.{p1})

3.3 The information in the A sets

The information in the A sets associated to a formula allows to determine its
equivalence to T, to L or to a 3-valued literal, or to transform it into a smaller-
sized one by preserving quasi-satisfiability. The following sections show how to
extract this information.

A Reduction-based Theorem Prover for 3-valued Logic 111

3.3.1 Information in Aj

The lemma below shows the semantic content of the set Ag:

Lemma 3.2 Let A be a unf and pb € Ag(A), an interpretation I satisfies I(p) = b
iff I(A) =0.

Proof. Follows by the correspondence between the definition of the A-sets and
tableau rules, as stated in Remark 3.2.

The following theorem shows how the information in Ag can be used.

Theorem 3.3 Let A be a unf and p propositional symbol, then:

p0 € Ap(A) if and only if A= AA-Jyp
p% € Ap(A) if and only if A= AN —|J%p
pl € Ap(A) if and only if A= AA-Jip

{p0,p1} C Ag(4) if and only if A= ANJip
{p0,p1} C Ap(A) if and only if A=ANJip
{p3.p1} C Ag(4) if and only if A= AN Jop
{pO,p%,pl} C Ap(A) implies A=1

R A T o

Proof. The last item is immediate. To prove the necessity in the if and only if
items we have only to apply the definition of Ay to the conjunctions in the right
hand side. Let us prove the sufficiency:

1. Suppose p0 € Ag(A) and let I be a arbitrary interpretation. We have three
cases to consider:

e If I(p) = 0 then, by Lemma 3.2, we have I(A) = 0. Therefore, I(A4) =
I(A A —|J1p) =0.

o If I(p) € {3,1}, then I(=Jip) = 1. Therefore, I(A) = I(A A ~J1p).

The rest of the items are proved similarly.

3.3.2 Information in A4

The following results, whose proof are similar to that of Lemma 3.2 and Theo-
rem 3.3, show the usefulness of the set Aq:

Lemma 3.3 Let A be a unf and pb € A,(A), an interpretation I satisfies [(p) = b
iff I(A) = 1.

112 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

Theorem 3.4 Let A be a unf and p a propositional symbol, then:

1. p0e A(4) if and only if A= AV Jyp

2 p%EAl(A) if and only if AEAVJ%p

3. pleA(4) if and only if A= AV Jip

4 {p(),p%} C A (A) if and only if A=AV -~Jip

5. {p0,pl} C Ai(A) if and only if A=AV ~J1p

6 {p%,pl} C A (A) if and only if A=AV ~Jop

7 {pO,p%,pl} C A(A) implies A=T

3.3.3 Information in A%

The following lemma, whose proof is similar to that of Lemma 3.2, show the se-
mantic content of the set A 1t

Lemma 3.4 Let A be a unfand pb € Ay (A), an interpretation I satisfies I(p) = b
iff I(A) = 1.

4 The transformation F

The definitions and results in the previous section are used in the tree transforma-
tion F with the aim of decreasing the complexity of the formula before distributing.
Specifically, this transformation dynamically “filters” the information in the A-sets
to avoid as much distributions of A wrt V as possible.

The flow diagram of this transformation appears in Figure 2, and it is the
same as in the classical case. The input of TAS-M3 is the syntactic tree of the
strong negation of the formula to be analysed. After the transformation sign, the
tree corresponds to a formula in unary normal form which is the input of the
transformation F. The execution of F can either reduce the size of the formula or
end the execution giving the information VALID or NON-VALID.

Definition 4.1 A wiff A is said to be finalizable if it satisfies one of the following
items:

e A is one of the constants 1, ©® or T.
. A%(A) #+ O.

o A(A) #£2.

As a simple consequence of the definition we have the following result

Lemma 4.1 If A # 1 is a finalizable wff, then A is quasi-satisfiable, i.e., = A is
not valid.

A Reduction-based Theorem Prover for 3-valued Logic 113

Proof. 1If A is either @ or T, it is immediate. If A%(A) # &, by Lemma 3.4, if

pb € A1(A), then for any interpretation I satisfying I(p) = b we have I(4) = i

2
Therefore, A is quasi-satisfiable. If Aj(A) # &, the proof is similar.

The following section introduces the definition and theorems related to the
simplify transformation

4.1 The simplify transformation

The aim of this transformation is to detect, from the information contained in the
A sets, the existence of subformulas which are equivalent to a 3-valued literal or to
the constants T or L. To formally define the transformation we need to introduce
some definitions and results:
Definition 4.2
A 3-valued cube is either a 3-valued literal or a conjunction of 3-valued literals.
A 8-valued clause is either a 3-valued literal or a disjunction of 3-valued literals.
A 3-valued cube or clause is said to be restricted if it does not contain two
literals with the same suffix.
A wif is said to be in disjunctive normal form (dnf) if it is a 3-valued cube or
a disjunction of 3-valued cubes.

Remark 4.1 In the following we will use extensively the following notation:
If p is a propositional symbol, then P3 denotes the set {p0, pi,p1}

The following theorem shows in which cases it is possible to strongly reduce the
formula.

Theorem 4.1 Let A be a unf:
1. If there exists p € Q such that Ps C Ag(A), then A= L.
2. If there exists p € Q such that P3 C A{(A), then A=T.

3.

(@) If Ao(A) = {p0}, Ay(A)={pk}, Ai(4) = {p1} then A=p

() IF Ao(A) = {p1}, AL(A) = {pi}, Ar(4) = {0} then A=
(©) If Ao(4) ={pz,p1}, As(A) =2, A(4) = {p0} then A = Jop
(d) If Ao(A) = {p0}, AL(Ad) =9, A4 = {p3.pl} then A=-Jop
(e) If Ao(A) = {p0,p1}, AL(A) =@, A(4) = {p3} then A= Jip
DI Do) ={py}, Ay(A) =2, A(A)={p0,pl} then A=—Jyp
(9) If Ao(A) ={p0,p3}, As(A) =2, A(4) = {pl} then A= Jip
(h) If Ao(A) = {p1}, A(4) =9, Ai(A)={p0,p3} then A=-Jip

Proof.

1. If there exists p € such that P3 = {p0, p1,p1} C A(A), by the last item of
Theorem 3.3 we have that A = L.

114 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

2. Similar to the previous one, using Theorem 3.4.

3. (a) Suppose Ag(A) = {p0}, Ai(A) = {p3} and A;(A) = {p1} then, by
Lemmas 3.2, 3.3 and 3.4, for every interpretation I, we have that if
I(p) = b where b € 3, then I(A) =b. Therefore A = p.

(c) Suppose Ag(A) = {pi,pl}, A1 (A) = @ and Ay (A) = {p0} and let I be
an interpretation: if I(Jop) = 0 then either I(p) = 1 or I(p) = 1, and
by hypothesis I(A) = 0; if I(Jop) =1 then I(p) =0 and I(A4) = 1.
On the other hand, given an interpretation I, from {p%,pl} = Ag(A)
we have that if I(p) € {0,1} then I(A) = 0, by Lemma 3.2; and from
{p0} = A;(A) we have that if I(p) = 1 then I(A) = 1, by Lemma 3.3.

Therefore Jop = A.
The rest of the items can be proven similarly.

Remark 4.2 One can argue that, in the proof of item 3 above, only inclusions
{pi} C Ay(A) are used and, thus, the statement could be easily extended to allow
the strict inclusion. This greater generality is only apparent, since whenever the
theorem is applied one clearly notes that no propositional symbol different from p
could be in the A-sets.

The definition of simplify is closely related to the previous theorem, and it is
the following

Definition 4.3 Let A be a unf, we say that
1. Ais 0-conclusive if there exists p € () such that P3 C Ag(A).
2. Ais I-conclusive if there exists p € @) such that P3 C Aq(A).
3. A is p-simple if it satisfies one of the conditions in item 3 of Theorem 4.1.
4. Let A be a unf, to simplify A is to check if A has a b-conclusive or p-simple

subtree, and to apply the results in Theorem 4.1.

Example 4.1 In Example 3.4, after labelling the following tree was obtained:

__A({p0,p3,p1},2,9)

—
e
e
—
—

Jop({pL,p1}, @, {p0}) V({po}, {pL},{p1})
T
Jip({p0,p3},2,{p1}) P({p0},{p3}.{p1})

Note that Tg is 0-conclusive since P3 C Ag(B), thus simplifying the formula
we get L. Therefore the input formula is valid.

A Reduction-based Theorem Prover for 3-valued Logic 115

4.2 The reduce transformation

The aim of this transformation is to provide more general conditions which allow
to use the information in the A sets, that cannot be used by the simplify trans-
formation: The simplify transformation uses the information in the A sets in the
strong sense, that is, to globally substitute a formula by T, L or a 3-valued literal.

It is not always possible to use the information in the strong sense and, therefore
our next objective is to be able to use this information in the weak sense, that is, to
decrease the size of the formula obtaining another one in which the propositional
symbols occurring in (AO,A%,Al) appear at most once. This is the aim of the
reduce transformation.

The formal description requires to extend Theorems 3.3 and 3.4; and also needs
the notation below:

e A[B/C] means that all the occurrences of B in A have been substituted by
C.

e A[l/C] means that all the occurrences of the 3-valued literal / in A have been
substituted by C'.

For instance, if A is the formula (p A ¢ A J1p) V (—p A q), then

Alp/T] = (TAgALT)V(=TAgq) but
Alp/TI] (TAgAJip)V (=pAq)

The following theorem extends Theorem 3.3 using information in Ay in the
weak sense.

Theorem 4.2 Let A be a unf and let p be a propositional symbol:
1. If {p0,pi} C Ag(A) then A= Jip A Alp/T]
2. If{p0,p1} C Ao(A) then A= JipA Alp/0]
3. If {p3,p1} C Ao(A) then A= Jop A Alp/L]
4. If{pb} = Ao(A) N P53 then A= ~Jyp A A[~Jyp/ T, Jop/ L], for b€ 3.

Proof.
1. Suppose {p0,p5} C Ag(A).
Let I be any interpretation. We can distinguish two cases:

- If I(p) € {0,1}, by Lemma 3.2, we have I(A) = 0. Therefore, I(4) =
I(Jip) = 0= I(Jip A Alp/T]).

- If I(p) = 1 we have that I(Jip) = 1 and the behaviour of p in A
wrt to I is the same than that of T. Therefore, I(A) = I(A[p/T]) =
I(Jip A Alp/T]).

116 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

4. Suppose {p0} = Ag(A)NP5, then by Theorem 3.3 we have that A = AA-Jyp.
Let I be any interpretation. We can distinguish two cases:
- If I(p) = 0, by Lemma 3.2, we have that I(A) = 0. Therefore I(A) =
I(—|J0p) =0= [(ﬁJ()p A Aﬂ—!Jop/T, Jop/J_]]).

- If I(p) € {3, 1} we have that I(=Jop) = 1, that is, the behaviour of =Jop
in A wrt I is the same than that of T and the behaviour of Jop in A wrt
I is the same than that of L. Therefore I(A) = I(A[-Jop/ T, Jop/L]) =
I(=Jo AN A[~Jop/ T, Jop/ L]).

The cases b = 1 and i = 1 are proven in a similar manner.

Remark 4.3 Recall that the hypothesis in item 4 means that there is only one
occurrence of pi in Ag(A). It is worth to remark that all the information in the
A-sets can be used somehow: If P3 C Ag(A), then A is valid; if there are two
occurrences of symbol p in Ag(A4), then some of the items 1-3 can be applied; if
only there is one occurrence of p in Ag(A), then item 4 is applied.

By duality we get Theorem 4.3 as an extension of Theorem 3.4 using information
in Ay in the weak sense:

Theorem 4.3 Let A be a unf and p a propositional symbol:

1. If {pO,p%} CA(A) then A=-JipV Alp/T]

2. If{p0,pl} C Ai(4) then A=~JipV Alp/0]

3. If{p3.pl} CA(A) then A=~-JopV Alp/1]

4. If{pb} = A1(A)N P; then A= JypV AlJpp/L,~Jsp/T], for b € 3.
Remark 4.4 To analyse the usefulness of the previous theorems we have to recall

that TAS methods distribute As over Vs (if not all the distributions are avoided),
and consequently the following result is used:

ViEI A; is unsatisfiable if and only if A; is unsatisfiable for all i € T

Therefore the usefulness of Theorem 4.3 is clear; since it makes substitutions to
decrease the size of the formula and a V connective is taken up. On the other hand,
Theorem 4.2 decreases the size of the formula but, the A connective which is taken
up might introduce the necessity of a future A-V distribution.

The previous comments show that, as in the TAS methods in classical logic [2, 5],
we have to restrict the use of Theorem 4.2. That is why we introduce the following
definition:

Definition 4.4 Let A be a unf. If the root of T4 is A, then

1. A*(A) = {¢| ¢ is a 3-valued literal which is a child of the root of T4}
Otherwise, if the root of T4 is not A, then ALt(A4) = @.

2. A¥(A) = {pb | pb € Ag({) where £ € AL(A)}

A Reduction-based Theorem Prover for 3-valued Logic 117

On the one hand, the use of A}(A) allows to use Theorem 4.2 on the literals
of a conjunction, as in this case no A is generated. On the other hand, the use of
Al(A) allow to improve the results in Theorems 4.2 and 4.3 when literal children
exist. Note that the set AL?(A) is not a A set in the sense that its elements are not
pb but 3-valued literals; we retain the A notation since its elements can be used in
a similar manner.

Now, the following result is an immediate consequence of Theorem 4.2:

Corollary 4.1 Let A= \"_, A; be a unf andp € Q:

L. If {p0,p3} C Aj(A) then A= JipAA[p/T]
2. If{p0,pl} C AG(A) then A= JipAAlp/0]
3. If{p3.pl} CA;(A) then A=JopAAlp/l]
If there exists pb such that {pb} = P3N AL(A), then
4. Ifpe AGt(A) then A=pAAlp/T,Jop/L,~Jop/T]
5. If -p e Alt(A) then A= -pAA[-p/T,~Jip/T,Jip/1]
6. If ~Jyp € AFt(A) then A= -JypAA[~Jpp/T,Jsp/L]

Proof. The three first items are particular cases of Theorem 4.2.
4. Suppose p € ALt(A). By commutativity and associativity of A we have that
A=pAB.

In M3 we have the distributive property of A wrt V, then we can suppose
without loss of generality that the unf B is in dnf, that is, B = \/;.; D; where
D; is a 3-valued cube for all i.

Thus, we have A=pAB=pApAV,c; Di =p AV, (pADy).

Now, for all ¢ € I, we can distinguish two cases:

- Some of the 3-valued literals in D; have prefix either €, Jy or =Jy. In
this case, using the equivalences

PAD=Dp; pAJop = L; pA-Jop=p

we have that p A D; = p A Di[p/T, Jop/ L, ~Jop/T].

- None of the 3-valued literals in D; have prefix either €, or Jy or —.Jy. It
is obvious in this case that D;[p/T, Jop/L,~Jop/T] = D; and, conse-
quently, p A D; = p A Di[[p/ T, Jop/ L, ~Jop/T]-

Therefore, A=pAB=pApAB=pAA[p/T, Jop/L,~Jop/T].
The rest of the items are particular cases of Theorem 4.2.

Corollary 4.1 shows which substitutions can be used when using information
from Ag; this will correspond to the concept of 0-reduction (to be used on proper
subtrees). Moreover, Theorem 4.2 is used again in the complete O-reduction process
(to be used only on the whole tree), whose theoretical justification appears below:

118 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

Corollary 4.2 Let A be a unf and p a propositional symbol:
1. If {p0,pi} C Ao(A), then A and Alp/T] are equi-quasisatisfiable.
2. If {p0,p1} C Ag(A), then A and A[p/@] are equi-quasisatisfiable.
3. If {p3,p1} C Ag(A), then A and A[p/L] are equi-quasisatisfiable.

Proof.
L If {p0,p5} C Ag(A).

If A is quasi-satisfiable, let I be an interpretation such that I(A4) € {3,1};
by Theorem 4.2 we have A = A[p/T] A Jip, then I(A[p/T]) € {3,1}, that is
A[p/T] is quasi-satisfiable.

Reciprocally, if A[p/T] is quasi-satisfiable let I be an interpretation such that
I(A[p/T]) € {3,1}. Then, for every interpretation I’ such that I'(p) = 1 and
I'(q) = I(q) for all ¢ € Q — {p} we have that I'(4) € {3,1}, that is, A is
quasi-satisfiable.

The other two items are proved similarly.

Finally, here we have an improved result wrt 1-reduction, which uses the set
Alt(A) whose definition is dual to that of ALf(A):

Corollary 4.3 Let A= \"_| A; be a unf and p € Q:
1. If{p0,p3} C Ay (4) then A=-JipV Alp/T]
2. If{p0,p1} CAy(A) then A=-=JipV A]p/0]
3. If{ps,p1} C Ay (4) then A=-JopV Alp/1]
If there exists pb such that {pb} = P3N A1(A), then
4. Ifb=10 and -p € Al*(A) then A=-pV A[-p/L,Jop/L,~Jop/T]
otherwise A = JopVA[Jop/ L, Jop/T]
5. Ifb=1% then A= J%pVAﬂJ%p/J_,ﬁJ%p/T]]
6. Ifb=1andpec Ait(A) then A=pV Alp/L,Jip/L,~Jip/T]
otherwise A = JipVA[Jip/L,~Jip/T]

Proof. Similar as Corollary 4.1, but use Theorem 4.3 instead.

The reduce transformation is based on the following definitions:

Definition 4.5 Let A be a unf which is neither a 3-valued cube nor a 3-valued
clause, A is said to be:

e (-reducible if AL(A) # @.
e I-reducible if there exists a proper subformula B of A such that Ay(B) # <.

o completely 0-reducible if there exists p € @) such that {pbi,pb2} C Ag(A)
where b1, by € 3, with b; ;é bs.

A Reduction-based Theorem Prover for 3-valued Logic 119

o reducible iff it is O-reducible, 1-reducible or completely 0-reducible.

Definition 4.6 Let A be a reducible unf:

a) If T4 is completely O-reducible, then to reduce T4 is to make the substitutions
in Corollary 4.2 in the tree T'4.

b) Otherwise, reduce T4 is to traverse depth-first the tree T4 and, in the first
proper O-reducible or 1-reducible subtree T'5, to make either the substitutions
in Corollary 4.1 if B is 0-reducible, or the substitutions in Corollary 4.3 if B
is 1-reducible.

Theorem 4.4 Let A, B be unfs such that Reduce(A) = B, then A is quasi-satisfiable
if and only if B is quasi-satisfiable.

Proof. Immediate consequence of Corollaries 4.1, 4.2, and 4.3.

Example 4.2 Let us consider the formula (p = ¢) = ((p = r) = (p = (g A T))).
After signing and labelling we get the following tree T¢:

A({p0,pt,q1,r1},2,2)

e o
— T ——

V(2,2,{p0,pl,q1}) V(2,2,{¢0,q%,r1})J1p g -r

~Jip Jig -Jig Jir

Tc is completely 0-reducible since {pO,p%} C Ag(C), then reduce Tc means to
apply the substitution [p/T] obtaining:

A({q0,¢%,q1,71},2,2)

— S
— ———
——— —
— —
— —
—
——

—

~Jig V(2,2,{q0,q5,71}) 74 r

—'qu Jl’l‘

This tree T is 0-conclusive, since Q3 C Ag(D), therefore it can be simplified
to L.

120 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

4.3 The update transformation

The update transformation, the first time it is applied, as seen in Figure 1, labels the
tree and checks if it is finalizable (if the answer is affirmative then the method ends).
When it is applied after simplifying or reducing it has to eliminate the constants
T, L and/or © that these processes might have introduced, it also recalculates
the labels of the modified nodes and their ancestors, and checks finalizability (once
again, if the answer is affirmative then the method ends). This way update can
either force the method to end or decrease the size of the analysed formula.
To eliminate the constants, update uses the following theorem:

Theorem 4.5

1. For every unf A in M3 the following logical equivalences hold:

AVT =T ANT =A
Av1i=A ANL =1

2. The constants 1, @ and T satisfy the following equivalences wrt the unary
connectives —, Jy, —Jy, J% , ﬁJ% s 1,

—1l=T —-0o=0 -T=1

JoL =T Joo=1 JT=1L =Jyl=1 =Joo=T —JgT =T
J%J_EJ_ Jé@ET J%TEJ_ ﬁJ%J_ET ﬁJé@EJ_ ﬁJ%TET
J1l=1L Jjo=L LhT=T -JL1L=T -Jjo=T -L1T=1

3. Let A be a unf and let BA© be a subformula of A, then A is quasi-satisfiable
if and only if A[(B A @)/B] is quasi-satisfiable.

4. Let A be a unf and let BV © be a subformula of A, then A is quasi-satisfiable
if and only if A[(BV ©)/T] is quasi-satisfiable.

Proof. The proof of the equivalences is straightforward.

3. By structural induction using the fact that B is quasi-satisfiable if and only
if BA O is.

4. Similar to the previous one.

4.3.1 The output of update

If the method ends because T is finalizable then TAS-M3 can give one of the
following outputs:

(i) VALID, if Tp is L.
(ii) NON-VALID otherwise.

A Reduction-based Theorem Prover for 3-valued Logic 121

If the input tree is not finalizable then it is the output of the update transfor-
mation, which is the input of simplify.

Example 4.3 Continuing with Example 3.3, the input of F was the syntactic tree
of JipA Jig A —p. When the update transformation is applied, it labels every node
and we get the tree T below:

A({p0,p%,p1,90,q3},2,9)
—7

—
—
——
—— —
— —_—
— —
e ———

— L

The obtained tree Tg is 0-conclusive since P3 C Ag(B), therefore simplify substi-
tutes it by L, this is finalizable and TAS-M3 ends with the output VALID.

Note that, as the processes sign and label can be implemented in a single traverse
of the syntactic tree, the validity of the previous formula is detected by traversing
the tree only once.

Theorem 4.1 shows that all the transformations executed when simplifying a
tree preserve logical equivalence; Corollaries 4.1, 4.2, and 4.3 show that reducing
preserves quasi-satisfiability; Lemma 4.1 shows that the finalizability test preserves
quasi-satisfiability. Formally, we have:

Theorem 4.6 Let A and B be unfs, if F(Ta) = Tg then A is quasi-satisfiable if
and only if B is quasi-satisfiable.

4.4 The tree-transformation (A-V)-par

As other automated theorem provers, the complexity of TAS-M3 is exponential
in the worst case; on the other hand, the reductions made by F solve tractable
problems. Consequently, the exponential complexity of TAS-M3 is due to its last
stage, thus TAS-M3 will be a good method provided this last stage has an accept-
able behaviour for most inputs. In our opinion, this will only be possible if the
following aims are reached:

1. Make feasible the parallel execution of non-avoidable distributions.

2. Avoid as many distributions of A over V as the structure of the formula
admits. For this, the minimum non-avoidable distribution is executed and
then the tree-transformation F is used on each generated subtask to try to
reduce them before a new distribution.

These two goals have led the design of the tree-transformation (A-V)-par, which is
based on the tree-transformation (A-V) which is the translation in terms of syntactic
trees of the generalised distributive law A A (\/] B;) = V(A A B;)

Now, (A-V)-par is described by the flow diagram in Figure 3.
rThe output of (A-V)-par is:

e NON-VALID if some of the generated subtasks has the output NON-VALID.

122 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

e VALID if all of the generated subtasks have the output VALID.

It is important to note that the trace of the execution of (A-V)-par can be
represented by an n-ary tree, whose nodes are labelled with syntactic trees (that
is, a tree of trees). The root of the execution trace tree is the input of (A-V)-par;
any node has just one child if it is the output of F, otherwise, it has as many
children as generated subtasks. Obviously, every leaf of the execution trace tree is
either 1 or T (if all of them are L, then the output is VALID; otherwise, if at least
one leaf is T, then the output is NON-VALID).

Tg

Is V the root?

YES l NO

Apply (A-V)

|

Generate as many (parallel) subtasks as children of the root

|

| TIsit NON VALID?

YESl l NO
Stop the process Is it VALID?
‘ YES¢ NO

NON VALID DISPOSABLE

Figure 3: The tree-transformation (A-V)-par.

A Reduction-based Theorem Prover for 3-valued Logic 123

5 Complete examples

Example 5.1 Given the formula A = (-p — (~p A —p)), taken from [7], the
transformation of —A into an equivalent unf is shown below:

i
I
D(3) (1)
Now, the labelling of the previous tree yields the following result:

A({p0,p3%,pl}, 2, 9)
A

—
e

P

—

1 \ 1
Jop({p3,p1}, 2,{p0}) V({p0}, {p5}, {p1})
Jip({p0,p3},2,{p1}) p({p0},{p3},{r1})

This tree T is O-conclusive, since Ps C Ag(T's), simplify substitutes it by L, which
is a finalizable formula. The method ends with the output VALID.

As in the previous example, the validity of the formula is detected by traversing
the tree only once.

Example 5.2 Consider the formula A = (p — q) = (~pV ¢), taken from [6], the
syntactic tree of the strong negation of A is signed and labelled:

124 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

A({p0,p%,q1}, 2, 9)
V(2,2,{p0,p3,q1}) Jip({p0,p5}, 2, {p1}) —q({q1},{a5} {q0})

~Jip({p1}, 2, {p0,p5}) J19({40,45}, 2, {q1})

This tree T is not simplifiable, but reducible, specifically it is completely 0-
reducible since {p0,p3} C A¢(B) and it is 0-reducible since =g € A}(B), reducing
wrt both literals making the substitutions [p/T] and [Jiq/L]) we obtain the tree
below. Finally, by updating the constants we get the tree L :

//\\\ — 1
/\ T —q

-1 T 1

As 1 is finalizable, the output of the method is that the formula is VALID.
The last example we show, includes an application of the (A-V)-par transfor-
mation

Example 5.3 Let us consider the formula A

(pV(r—=1))AaV(t—~(sA-p))))
= ((pA=(g=)V (r = ((g = (s 2> 7))A~5)))

Because of the size of this formula, we will only sketch the trace of the method.

The tree T- 4 is the input of the method and after signing and labelling we
obtain the tree T where

B = (le \Y ﬁJ17“ \Y Jlt) A (qu \Y ﬁjlt \% J()S \ le)/\

(=pV =JigViE)ANJor A((JigA Jis A—r) V Jys)

The tree T is simplifiable, specifically it is s-simple since the label of the node
corresponding with the subformula ((Jig A Jis A —r) V Jyis) is ({s0,s3},,{s1})

so the method substitutes the corresponding subtree by Jis, thus the tree T¢ is
obtained where

C = (le \Y ﬁjl’r' \Y J1t) A (qu \Y ﬁjlt \Y J()S \Y le) A (—|p \Y —|J1q \Y t) A J()T' A J18
The tree T¢ is reducible, specifically, it is completely 0-reducible since {r%,rl} C
Ao(C) and {s0,s1} C Ag(C), so the substitutions [r/ L] and [s/T] are applied in

C'. After removing the constants using update the tree T is obtained, where

D = (qu V ﬁjlt V le) A (—|p Vv ﬁqu V t)

A Reduction-based Theorem Prover for 3-valued Logic 125

This tree T is the output of the process F since it is not simplifiable and not
reducible. Now, the process (A-V)-par is applied, generating three tasks corre-
sponding to the formulas

E = JigA(-pV-digVt)
F = =JitA(=pV-JigVit)
G = JipAN(—pV-JigVi)

when labelling the tree T}, its root is labelled with ({¢0,q3}, @, {q1}). As A;(E) #
&, Tg is finalizable and its output is T, that is, is NON-VALID.

As one of the tasks ends with the output NON-VALID then TAS-M3 ends with
the output NON-VALID.

6 Flexibility and efficiency of TAS-M3

The presented theorem prover can be extended to arbitrary three-valued logics;
and this can be done easily, by only modifying the Sign transformation, since the
rest of the prover is logic-independent.

6.1 A straight generalisation to any three-valued logic

As any (finite) many-valued logic can be expressed in Signed Logic [3, 9, 10] with
only polynomial increasing of the formula [8]; by extending TAS-M3 to Signed Logic
we will show the generality of our approach. The main, and only, point is to re-
define the Sign transformation for a signed many-valued formula S:6(A4,..., A4,),
where S is a set of truth values (i.e. a sign) and 6 is any connective.

It is known that any such formula can be expressed in the form \/; A;(Si;:4i;)
for suitable signs S;;, obtained from a tableau rule for S:6(Ai,..., Ay,). By using
this transformation the literals would be of the form S:p. Now, the definition of
the A sets can be done by using the sign S as follows:

Ao(Sip)={pili¢ S} A(Sp)={pi|ie S}

being the definition for A and V the same as before.

The rest of the sections remain unchanged, we have only to keep in mind the
equivalences between our 3-valued literals in the set A and the signed literals S:p.
It is straightforward to obtain the following correspondence

{0}:17 e Jop {I}Zp s Jip
{%71}:17 e =Jop {0,%}:]) o =Jip
{3}p e~ Jip Fp e L

{0,1}:p o~ ~J1p Sip e T

and we have now a theorem prover for Signed Logic.
It is worth to notice that in the description of the method we have used two
more literals (p and —p) and the constant @; this is due to our use of the strong

126 G. Aguilera Venegas, I. P. de Guzman & M. Ojeda Aciego

negation — to refute the input formula. If we used the weak negation ~ then our
set of literals and constants would be in one to one correspondence with the signed
literals, and all the A% sets would be empty.

6.2 On the efficiency of TAS-M3

On the one hand, the determination of which simplification or reduction could be
applied to a certain node in the tree is an easy matter: the labels of each node
are calculated just once at the beginning of the method by traversing the tree only
once; when a reduction is applied only the labels corresponding to the ascendants
of the modified nodes are calculated. As a consequence, although there are many
potentially applicable rules, that one which is to be applied is dynamically and
univocally selected by the reading of the label of the node.

On the other hand, although we have not presented a complexity analysis of
the algorithm, it is clear that all processes involved in TAS-M3, but the last one,
have at most polynomial complexity. Obviously, this fact does not guarantee a
good performance of the method; but efficiency is achieved because we consider
the philosophy of making a distribution only in the worst case, when no more
reductions are possible.

7 Conclusions

We have presented a new reduction-based ATP for propositional 3-valued logics
which is an extension of the TAS-D prover for classical propositional logic. The
use of reductions, as in every TAS method, allows to filter the information contained
in the syntactic structure of the formula to avoid as much distributions (of A wrt
V in our case) as possible, in order to improve efficiency; this filtering of syntactic
information is the key of the efficiency of the TAS methods. In our opinion, the
main advantage of our method wrt others is the use of the reductions to avoid
distributions.

On the other hand, it is shown the adaptability of the TAS reduction method,
because switching to different kinds of logic is possible without having to redesign
the structure of the whole prover. Indeed, the flow diagram of TAS-M3 is the same
than that of TAS-D, only some modules have to be adapted.

Acknowledgements

We would like to acknowledge Daniele Mundici for his great interest in the TAS
methodology and for encouraging the authors to extend it to many-valued logics.
We also thank the referees for many helpful suggestions.

A Reduction-based Theorem Prover for 3-valued Logic 127

References

[1] G. Aguilera. Reducciones totales y parciales para el andlisis de validez y con-
struccion de modelos en M3. PhD thesis, Dept. Matemédtica Aplicada. Univ.
de Malaga, 1997.

[2] G. Aguilera, I. P. de Guzmén, M. Ojeda. Increasing the efficiency of automated
theorem proving. Journal of Applied Nonclassical Logics 5(1):9-29, 1995.

[3] M. Baaz, C. G. Fermiiller. Resolution-based theorem proving for many-valued
logics. Journal of Symbolic Computation, 19(4):353-391, April 1995.

[4] M. Enciso, I. P. de Guzmén. A new and complete theorem prover for temporal
logic. In Proceedings of the IJCAI Workshop on Ezecutable Temporal Logics,
Montreal, 1995.

[5] I. P. de Guzméan, M. Ojeda. TAS methods in first-order logic. In Proceedings
of Logic Colloguium’96, San Sebastidn. To appear in the Bulletin of Symbolic
Logic, 1997.

[6] W.A. Carnielli. Systematization of finite many-valued logics through the
method of tableaux. Journal of Symbolic Logic 52(2):473-493, 1987.

[7] R. Hahnle. Automated deduction in multiple-valued logics. Oxford University
Press, 1994.

[8] R. Hdhnle. Short conjunctive normal forms in finitely valued logics. Journal
of Logic and Computation 4(6):905-927, 1994.

[9] N. Murray, E. Rosenthal. Signed formulas: A liftable meta logic for multiple-
valued logics. In Proceedings ISMI1S°93, Trondheim, Norway. LNCS 689, pages
275-284. Springer-Verlag, 1993.

[10] N. Murray, E. Rosenthal. Adapting classical inference techniques to multiple-
valued logics using signed formulas. Fundamenta Informaticae, 21(3):237-253,
1994.

[11] J.B. Rosser, A.R. Turquette. Many-valued logics. North Holland, 1952.

[12] A. Urquhart. Many-valued logics. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, Vol. III: Alternatives in Classical Logic, chap-
ter 2, pages 71-116. Reidel, Dordrecht, 1986.

