Maximal MV-algebras

A. Filipoiu¹, G. Georgescu² & A. Lettieri³

¹ Dept. of Mathematics 1, Univ. Politechnica,
Str. Spl. Independentei 313, Bucharest, Romania.

² Inst. Mathematics, Str. Academiei 14, Bucharest, Romania.

e-mail: george@main.atm.ro

³ Ist. di Matematica, Fac. di Architettura, Univ. di Napoli,
Via Monteoliveto 3, 80134 Napoli, Italia.

e-mail: lettieri@ds.unina.it

Abstract

In this paper we define maximal MV-algebras, a concept similar to the maximal rings and maximal distributive lattices. We prove that any maximal MV-algebra is semilocal, then we characterize a maximal MV-algebras as finite direct product of local maximal MV-algebras.

We recall that an MV-algebra $A=(A,+,\cdot,-,0,1)$ is a system such that (A,+,0) is a commutative monoid with identity, x+1=1, $\bar{\bar{x}}=x$, $\bar{0}=1$, $x\cdot y=(\bar{x}+\bar{y})$ and $x\cdot \bar{y}+y=y\cdot \bar{x}+x$ for all $x,y\in A$; by setting $x\vee y=x+\bar{x}\cdot y$, $x\wedge y=(x+\bar{y})\cdot y$ and $x\leq y$ iff $x\wedge y=x$ for all $x,y\in A$, we induce on A the structure $(A,\vee,\wedge,0,1)$ which is a bounded distributive lattice. In the sequel, for brevity, we write xy instead of $x\cdot y$.

We refer to [1], [7] and [8] for all the unexplained notions on MV-algebras. The following definitions and results are well known and drawn from [8].

A nonempty subset $I \subseteq A$ is an ideal of A if I is closed under "+" and $x \in I$, $y \in A$, $y \leq x$ imply $y \in I$. I is proper iff $1 \neq I$. A proper ideal P of A is prime iff for $x, y \in A$, $x \land y \in P$ implies either $x \in P$ or $y \in P$. A maximal ideal of A is a proper ideal of A which is maximal with respect to the inclusion. We denote by Spec A the set of all prime ideals of A and by Max A the set of maximal ideals of A.

The ideals of an MV-algebra A are in bijective correspondence with the congruence relations on A.

The relation " $x \equiv y \pmod{I}$ iff $d(x,y) = x\bar{y} + \bar{x}y \in I$ " is a congruence relation on A for every ideal I, and each congruence relation on A is of this form; we denote by A/I the quotient algebra obtained in this way. An MV-algebra A is linearly ordered if the underlying lattice is linearly ordered and A is locally finite iff for each $x \in A$, $1 = nx = x + \ldots + x$ (n-times) for some positive integer n. An ideal P

of A is prime if and only if A/P is linearly ordered and an ideal M is maximal if and only if A/M is locally-finite. For brevity, we put $a_1 + a_2 + \ldots + a_n = \sum_{i=1}^n a_i$.

We denote by Rad A the intersection of all maximal ideals of the MV-algebra A; A is semisimple iff Rad A = 0, i.e. A is a subdirect product of locally-finite MV-algebras [1].

Furthermore, A is local if Max A is singleton and in this case Max A = Rad A. If A is an MV-algebra, we denote by $B(A) = \{x \in A/x + x = x\}$; B(A) is called the center of A and has a natural structure of Boolean algebra with respect to the operations induced by those of A. Moreover, it is the largest Boolean subalgebra of A.

If $e \in B(A)$, then the ideal generated by $\{e\}$ is equal to $(e] = \{x \in A/x \le e\}$ and in this case the system $((e], +, \sim, 0, e)$ is an MV-algebra, where $\tilde{x} = \bar{x} \cdot e$ (see [2]). Further, the map defined by $h_e(x) = xe$ for any $x \in A$ is an MV-homomorphism of A onto (e].

Lemma 1. [2]. Let $e, f \in B(A)$. Then

- i) for all $x, y \in A$, e(x + y) = ex + ey;
- ii) for all $x \in A$, $ex = e \wedge x$;
- iii) if $e \wedge f = 0$, then x(e + f) = xe + xf.

The following is the MV-version of an elementary result in ring theory.

Lemma 2. For an MV-algebra A the following are equivalent:

- (1) A is isomorphic to a finite product of MV-algebras $\prod_{i=1}^{n} A_i$;
- (2) there exist $e_1, \ldots, e_n \in B(A)$ such that $e_i e_j = 0$ for $i \neq j$ and $e_1 + \ldots + e_n = 1$.

Proof. Let $\varphi: A \to \prod_{i=1}^n A_i$ be an isomorphism, then $\varphi(B(A)) = \prod_{i=1}^n B(A_i)$. For $i = 1, \ldots, n$, we remark that the elements $e_i = \varphi^{-1}(0, \ldots, 1, \ldots, 0)$, with 1 at the *i*-th place, satisfy (2). Thus (1) implies (2).

Conversely, let $\varphi: A \to \Pi_{i=1}^n(e_i]$ such that $\varphi(x) = (xe_1, \dots, xe_n)$ for every $x \in A$. It is plain to prove that φ is an MV-homomorphism; φ is surjective since if $(x_1, \dots, x_n) \in \Pi_{i=1}^n(e_i]$, using (i) of Lemma 1 and by setting $x = x_1 + \dots + x_n$, we get $\varphi(x) = (x_1, \dots, x_n)$. Using (iii) of Lemma 1, it is easily seen that φ is one-one.

Remark 1. Under the hypothesis (1) of Lemma 2, A_i is MV-isomorphic to $(e_i]$ for every $i=1,\ldots,n$. Indeed, let $\varphi:A\to \Pi_{i=1}^nA_i$ be the isomorphism, used in the previous proof and $h_i:A_i\to \Pi_{i=1}^nA_i$ be defined by $h_i(x)=(0,\ldots,x,\ldots,0)$, with $x\in A_i$ at the i-th place. Then $\varphi^{-1}\circ h_i:A_i\to A$ is an MV-isomorphism which applies A_i onto $(e_i]$.

A well known result in ring theory is the Chinese remainder theorem.

The following MV-version of such theorem was proved in [12]. We also remark that it can be deduced from a general result [11]. If I, J are two ideals of the MV-algebra A, the ideal generated by $I \cup J$ is denoted by I + J and $I + J = \{x \in A | x \leq y + z \text{ for some } y \in I, z \in J\}$.

Proposition 1. Let I_1, \ldots, I_n be ideals of the MV-algebra A such that $I_i + I_j = A$ for $i \neq j, i, j \in \{1, \ldots, n\}$. Then, for every $x_1, \ldots, x_n \in A$, there is $x \in A$ such that $x \equiv x_i \pmod{I_i}$ for $i = 1, \ldots, n$.

Proof. For n=2, if $I_1+I_2=A$, then there exist $a_{12} \in I_1$ and $a_{21} \in I_2$ such that $a_{12}+a_{21}=1$. From that, $\overline{a_{21}} \leq a_{12}$, that implies $a_{21} \equiv 1 \pmod{I_1}$. If we consider $x=x_1a_{21}+x_2a_{12}$, we get

$$x/I_1 = x_1I_1 \cdot a_{21}/I_1 + x_2/I_1 \cdot a_{12}/I_1 =$$

= $x_1/I_1 \cdot 1/I_1 + x_2/I_1 \cdot 0/I_1 = x_1/I_1$

i.e. $x \equiv x_1 \pmod{I_1}$ and similarly $x \equiv x_2 \pmod{I_2}$.

For an arbitrary n, for $i \neq j$, $i, j \in \{1, \ldots, n\}$ there exist $a_{ij} \in I_i$, $a_{ji} \in I_j$ such that $a_{ij} + a_{ji} = 1$. Then the thesis follows by considering $x = \sum_{i=1}^n x_i a_{1i} \ldots a_{i-1,i}$ $a_{i+1,i} \ldots a_{ni}$ and reasoning as above, it is seen that $x \equiv x_i \pmod{I_i}$ for $i = 1, \ldots, n$.

As in maximal rings [6] and maximal distributive lattices [10], we introduce maximal MV-algebras connecting this notion with the one of semilocal MV-algebra.

Definition 1. A is called semilocal if Max A is a finite set.

Example 1.

- 1) A local MV-algebra [5] is semilocal because Max A is singleton.
- 2) A perfect MV-algebra A [5] is semilocal, A being generated by its radical, i.e., $A = \operatorname{Rad} A \cup \operatorname{\overline{Rad}} A$, where $\operatorname{\overline{Rad}} A = \{x \in A / \overline{x} \in \operatorname{Rad} A\}$.

Proposition 2. For an MV-algebra A, the following are equivalent:

- (1) A is semilocal;
- (2) $A/\operatorname{Rad} A$ is isomorphic to a finite direct product of locally-finite MV-algebras. Proof.
 - $(1) \Rightarrow (2)$.

If $\operatorname{Max} A = \{M_1, \dots, M_n\}$, then $\operatorname{Rad} A = \cap_{i=1}^n M_i$ and the map $\varphi: A/\operatorname{Rad} A \to \prod_{i=1}^n A/M_i$, given by $\varphi(x/\operatorname{Rad} A) = (x/M_1, \dots, x/M_n)$ is an MV-isomorphism. Indeed, it is clearly an MV-homomorphism. Further, φ is surjective by Proposition 1, because $M_i + M_j = A$ for $i \neq j$, and φ is injective because $\varphi(x/\operatorname{Rad} A) = \varphi(y/\operatorname{Rad} A)$ means $x/M_i = y/M_i$, i.e. $d(x,y) \in M_i$ for any $i=1,\dots,n$, hence $x/\operatorname{Rad} A = y/\operatorname{Rad} A$.

$$(2) \Rightarrow (1).$$

Let A be isomorphic to $\Pi_{i=1}^n A_i$, where each A_i is a locally-finite MV-algebra. Denoting by 0_i the zero element of A_i , by [4, Prop. 2.2], $\operatorname{Spec}(A/\operatorname{Rad} A) = \operatorname{Max}(A/\operatorname{Rad} A) = \{\{0_1\} \times A_2 \times \ldots \times A_n, \ldots, A_1 \times \ldots \times \{0_i\} \times \ldots \times A_n, \ldots, A_1 \times \ldots \times \{0_n\}\}$. Thus $\operatorname{Max} A$ is finite, i.e. A is semilocal.

Corollary 1. For an MV-algebra A, the following are equivalent:

- (1) A is semisimple and semilocal;
- (2) A is isomorphic to a finite direct product of locally-finite MV-algebras.

Definition 2. Let $\{a_i\}_{i\in I}$ be a family of elements of an MV-algebra A and $\{P^i\}_{i\in I}$ be a family of ideals in A. We shall say that the family $\{(a_i, P_i)/i \in I\}$ has the property (\bullet) if for any finite subset Δ of I, there exists $x_{\Delta} \in A$ such that $x_{\Delta} \equiv a_i \pmod{P_i}$ for any $i \in \Delta$.

Definition 3. The MV-algebra A will be called maximal if for any family $\{(a_i, P_i)/i \in I\}$ with the property (\bullet) , there exists $x \in A$ such that $x \equiv a_i \pmod{P_i}$ for any $i \in I$.

Remark 2. Let $A = \{0, c, 2c, \ldots, 1-2c, 1-c, 1\}$ be the MV-algebra defined in ([7], pag. 474). A is a perfect MV-algebra and it has only three ideals: 0, Rad $A = \{0, c, 2c, \ldots\}$ and A. Clearly A is maximal because has a finite number of ideals.

Lemma 3. Any finite direct product of maximal MV-algebras is a maximal MV-algebra.

Proof. It suffices to prove that $A=A_1\times A_2$ is maximal if A_1 and A_2 are maximal. By Lemma 2 and Remark 1, $A_1\bar{\sim}(e]$, $A_2\bar{\sim}(\bar{e}]$ with $e\in B(A)$. If P is an ideal of A and $x\equiv a\pmod{P}$, it follows $xe\equiv ae\pmod{P\cap(e]}$ since, using Lemma 1 and elementary facts from [7], $xe\overline{ae}+\overline{xe}ae=xe(\bar{a}\vee\bar{e})+(\bar{x}\vee\bar{e})ae=(xe\bar{a}\vee xe\bar{e})+(\bar{x}ae\vee\bar{e}ae)=(x\bar{a}+\bar{x}a)e$. Similarly $x\bar{e}\equiv a\bar{e}\pmod{P\cap(\bar{e}]}$. Now let $\{(a_i,P_i)/i\in I\}$ be a family in A with property (\bullet) . Then the families $\{(a_ie,P_i\cap(e])/i\in I\}$ and $\{(a_i\bar{e},P_i\cap(\bar{e}])/i\in I\}$ verify the property (\bullet) in the maximal MV-algebras (e] and $(\bar{e}]$, respectively. Let $y\in (e]$ and $z\in (\bar{e}]$ such that $y\equiv a_ie\pmod{P_i\cap(e]}$ and $z\equiv a_i\bar{e}\pmod{P_i\cap(\bar{e}]}$ for any $i\in I$. Then $y+z\equiv a_ie+a_i\bar{e}\pmod{P_i}$, i.e. $y+z\equiv a_i\pmod{P_i}$ for any $i\in I$, since $a_ie+a_i\bar{e}=a_i(e+\bar{e})=a_i$ by (iii) of Lemma 1.

Proposition 3. If A is a maximal MV-algebra, then A is a semilocal MV-algebra.

Proof. Any family $\{(x_M, M)/M \in \operatorname{Max} A\}$ has the property (\bullet) because for any finite family $\{M_1, \ldots, M_n\} \subseteq \operatorname{Max} A$, if $i \neq j$, we have $M_i + M_j = A$, and by Prop. 1 there is $x* \in A$ such that $x* \equiv x_{M_i} \pmod{M_i}$ for $i = 1, \ldots, n$. Since A is maximal, there exists $x \in A$ such that $x \equiv x_M \pmod{M}$ for any $M \in \operatorname{Max} A$.

Let $I=\{a\in A/\{M\in \operatorname{Max} A/a\notin M\}$ is finite $\ \}.$ Then I is an ideal of A. We shall prove that the family

$$\{(0,I)\} \cup \{(1,M)/M \in \text{Max } A\}$$
 (\alpha)

has the property (\bullet) . If we take a finite subfamily $\{(0,I),(1,M_1),\ldots,(1,M_n)\}$, using the definition of I, we obtain $\cap \{M/M \in \operatorname{Max} A \setminus \{M_1,\ldots,M_n\}\} \subseteq I$ and considering the family

$$\{(1, M_1), \dots, (1, M_n)\} \cup \{(0, M)/M \in \operatorname{Max} A \setminus \{M_1, \dots, M_n\}\},\$$

as at the beginning of the proof, there exists $x \in A$ such that $x \equiv 1 \pmod{M_i}$, $i = 1, \ldots, n$ and $x \equiv 0 \pmod{M}$ for $M \in \text{Max } A/\{M_1, \ldots, M_n\}$.

It follows that $x \in I$ and thus the family (α) has the property (\bullet) . By hypothesis, there is $y \in A$ such that $y \equiv 0 \pmod{I}$ and $y \equiv 1 \pmod{M}$ for any $M \in \operatorname{Max} A$; it follows that $y \in I$ and for any $M \in \operatorname{Max} A$, $y \notin M$. Then we deduce $\operatorname{Max} A = \{M \in \operatorname{Max} A/y \in M\}$. Since $y \in I$, $\operatorname{Max} A$ is finite, i.e. A is semilocal.

Proposition 4. For an MV-algebra A, the following are equivalent:

- (1) A is semisimple and maximal;
- (2) A is isomorphic to finite direct product of locally-finite MV-algebras.

Proof.

 $(1) \Rightarrow (2)$.

By Prop. 3 and Corollary 1.

 $(2) \Rightarrow (1)$.

It suffices to observe that any locally-finite MV-algebra is maximal, because it has only two ideals, and then to use Lemma 3.

Corollary 2. Let A be a semisimple MV-algebra. Then A is maximal iff A is semilocal.

Remark 3.

- a) There exist semisimple MV-algebras which are not maximal. By example, if $A = \prod_{i \in I} A_i$ where I is infinite and every A_i is locally-finite, we observe that A is semisimple but not semilocal (Max A is infinite), hence, by Prop. 3, A is not maximal.
- b) There exist maximal MV-algebras which are not semisimple: by example, the perfect MV-algebra A of Remark 2.

Lemma 4. Let \underline{A} be an MV-algebra and $x \in A$. If $x \wedge \bar{x} \in \operatorname{Rad} A$, then $(2x)^2 = 2x^2 \in B(A)$ and $\overline{2x^2} = 2\bar{x}^2$.

Proof. By [2, Thm. 1] and from the hypothesis,

(i)
$$(2x)^2 \wedge (2\bar{x})^2 = (2x \wedge 2\bar{x})^2 = [2(x \wedge \bar{x})]^2 = 0$$

and

$$2x^2 \wedge 2\bar{x}^2 = 2(x^2 \wedge \bar{x}^2) = 2(x \wedge \bar{x})^2 = 0.$$

This last equality implies that

(ii)
$$(2x)^2 \lor (2\bar{x})^2 = \overline{2\bar{x}^2} \lor \overline{2x^2} = 1.$$

Thus, from (i) and (ii), it follows that $(2x)^2 \in B(A)$. Further, $(2x)^2 = \overline{(2\bar{x})^2} = 2x^2$. Then $\overline{2x^2} = \overline{(2x)^2} = 2\bar{x}^2$.

Proposition 5. Let A be an MV-algebra. For any $f \in B(A \setminus \operatorname{Rad} A)$, there is $e \in B(A)$ such that $f = e \setminus \operatorname{Rad} A$.

Proof. If $f = g \setminus \text{Rad } A \in B(A \setminus \text{Rad } A)$, then $g^2 \equiv g \pmod{\text{Rad } A}$; hence $g \cdot \overline{g^2} = g(\overline{g} + \overline{g}) = g \wedge \overline{g} \in \text{Rad } A$. By Lemma 4, $e = 2g^2 \in B(A)$ and $g \setminus \text{Rad } A = 2g^2 \setminus \text{Rad } A = e \setminus \text{Rad } A$.

Lemma 5. If an MV-algebra A is such that $A = \prod_{i=1}^{n} A_i$ and Max A has n elements, then A_1, \ldots, A_n are local MV-algebras.

Proof. Let $\operatorname{Max} A = \{M_1, M_2 \dots M_n\}$. By [4], for any $i = 1, 2, \dots, n$, $M_i = A_1 \dots \times A_{i-1} \times N_i \times A_{i+1} \dots A_n$, for some $N_i \in \operatorname{Max} A_i$.

If one of the MV-algebras A_1,\ldots,A_n is not local, then Max A has more than n elements. \square

Theorem 1. For an MV-algebra, the following are equivalent:

- (1) A is isomorphic to a a finite direct product of local maximal MV-algebras;
- (2) A is maximal.

Proof.

 $(1) \Rightarrow (2).$

By Lemma 3.

$$(2) \Rightarrow (1).$$

Let $\operatorname{Max} A = \{M_1, \dots, M_n\}$. By Prop. 3 and Prop. 2, $A / \operatorname{Rad} A$ is isomorphic to $\prod_{i=1}^n A/M_i$. By Lemma 2, there exist $f_1, \ldots, f_n \in B(A/\operatorname{Rad} A)$ such that $f_1 + \ldots + f_n = 1 / \operatorname{Rad} A$ and $f_i f_j = 0 / \operatorname{Rad} A$ for $i \neq j$. By Prop. 5, there exist $e_1, \ldots, e_n \in B(A)$ such that $f_i = e_i / \operatorname{Rad} A$, $i = 1, \ldots, n$. Since $e_i e_j / \operatorname{Rad} A = 0 / \operatorname{Rad} A$, it follows that $e_i e_j \in B(A) \cap \operatorname{Rad} A = \{0\}$ for $i \neq j$. Similarly $\sum_{i=1}^{n} e_i / \operatorname{Rad} A = 1 / \operatorname{Rad} A$ implies $e_1 + \ldots + e_n = 1$. By Lemma 2 and Remark 1 is isomorphic to $\prod_{i=1}^{n} (e_i]$. Because Max A has n elements, it follows via Lemma 5 that $(e_i]$, $i=1,\ldots,n$ are local MV-algebras. Now we shall prove that any MV-algebra of the form $(e], e \in B(A)$, is maximal. Assume that the family $\{(x_i, P_i)/i \in I\}$ has property (\bullet) in (e]. Since P_i are ideals also in A and, since A is maximal, there is $x \in A$ such that $x \equiv x_i \pmod{P_i}$ for any $i \in I$. Thus $d(x, x_i) = x\bar{x}_i + \bar{x}x_i \in P_i$ for any $i \in I$, hence $x\bar{x}_i + \bar{x}x_i \leq e$ for any $i \in I$. But $x_i \leq e$ and by [8, Th. 3.1] $x = x1 = x(x_i + \bar{x}_i) \le x_i + x\bar{x}_i \le e + e = e$, hence $x \le e$. Thus $x \in (e]$ and $x \equiv x_i \pmod{P_i}$ in (e) because, $d_{(e)}(x, x_i) = x\tilde{x}_i + \tilde{x}x_i = xe\bar{x}_i + \bar{x}ex_i = xe\bar{x}_i + xe\bar{x}_i = xe\bar{x}_i +$ $e(x\bar{x}_i + \bar{x}x_i) \leq x\bar{x}_i + \bar{x}x_i \in P_i$ by i) of Lemma 1.

Definition 4. An MV-algebra A has the property \mathbf{P} if for every $M, N \in \operatorname{Max} A$ such that $M \cap B(A) = N \cap B(A)$, it is M = N.

Proposition 6. If A is a maximal MV-algebra, then A has the property **P**.

Proof. By Theorem 1, A is isomorphic to $\Pi_{i=1}^n A_i$, where every A_i is a local MV-algebra; so $\operatorname{Max} A_i = \{\operatorname{Rad} A_i\}$ for $i = 1, 2, \ldots, n$. Let us denote by φ an isomorphism from A onto $\Pi_{i=1}^n A_i$. If $M, N \in \operatorname{Max} A$, then $\varphi(M) = A_1 \times \ldots \times \operatorname{Rad} A_h \times \ldots A_n$ for some $h \in \{1, \ldots, n\}$ and $\varphi(N) = A_1 \times \ldots \times \operatorname{Rad} A_k \times \ldots A_n$ for some $k \in \{1, \ldots, n\}$.

If we suppose $M \cap B(A) = N \cap B(A)$, then $\varphi(M) \cap \prod_{i=1}^n B(A_i) = \varphi(N) \cap \prod_{i=1}^n B(A_i)$. Let $(a_1, a_2, \ldots, a_n) \in \varphi(M) \cap \prod_{i=1}^n B(A_i)$ such that $a_h = 0$ e $a_j = 1$ for $j \neq h$. Such element must belong also to $\varphi(N) \cap \prod_{i=1}^n B(A_i)$. Hence $a_k = 0$ and h = k, i.e. $\varphi(M) = \varphi(N)$, which implies M = N.

Remark 4. The property **P** is not sufficient for an MV-algebra to be maximal. Indeed, the Boolean algebra $\{0,1\}^N$ obviously has property **P**, but it is not maximal by Corollary 1.

We shall end the paper with two examples. The first one is an example of a semilocal MV-algebra which is not maximal, while the second one is an example of a maximal MV-algebra with infinite many ideals.

Let * \mathbb{R} be a non-standard model of real numbers with natural order and ϵ be a positive infinitesimal element of * \mathbb{R} . Let $\epsilon^2 = \epsilon \cdot \epsilon, \dots, \epsilon^n = \epsilon \cdot \dots \cdot \epsilon$ (n-times) where \cdot is the usual product in the field * \mathbb{R} ; then $\epsilon^i > 0$ for any $i \in \mathbb{N}$ and $\epsilon^i \ll \epsilon^j$ for i > j.

The unit interval $*[0,1] \subseteq *\mathbb{R}$ is an MV-algebra under the operations: $x+y=\min\{1,x+y\}, \ \bar{x}=1-x \ \text{and} \ xy=\max\{0,x+y-1\}.$ Let \mathbb{N} be the ordered set of positive natural numbers. For every $n\in\mathbb{N}$, let E_n be the subalgebra of *[0,1] generated by $\{\epsilon,\epsilon^2,\ldots,\epsilon^n\}$ and E be the subalgebra $\cup_{n\in\mathbb{N}}E_n$. E is a perfect MV-algebra. We recall from [3] the following results:

- (a) $E = \langle (\epsilon^i)/i \in \mathbb{N} \rangle$;
- (b) Every $x \in \text{Rad } E \setminus \{0\}$ is a finite linear combination of ϵ^i , $i \in \mathbb{N}$ by integer coefficients n_i such that if $x = \sum_{i=1}^n n_i \epsilon^i$ and if $i_0 = \min\{i/n_i \neq 0\}$, then $n_{i_o} > 0$. Thus $x = n_r \epsilon^r + n_{r+1} \epsilon^r + \ldots + n_t \epsilon^t$ with $r \geq 1$, $r \geq t$ and $n_r > 0$.
- (c) Every $x \in \overline{\text{Rad } E}$ is of the form x = 1 y with $y \in \text{Rad } E$.
- (d) The set of all ideals of E is $\{0\}$, $<\epsilon>$,..., $<\epsilon^i>$,..., where $i \in \mathbb{N}$. Set $Pi = <\epsilon^i>$ for any $i \in \mathbb{N}$; thus $P_i \subset P_j$ for any i>j and $\varepsilon^i \in P_i \setminus P_{i+1}$. Denote $a_1 = 0$, $a_2 = \epsilon$, $a_3 = \epsilon + \epsilon^2$,..., $a_i = \epsilon + \epsilon^2 + ... + \epsilon^{i-1}$ for any $i \in \mathbb{N}$, thus $(a_i)_{i \in \mathbb{N}}$ is an increasing sequence of elements in E.

Proposition 7. $\{(a_i, P_i)/i \in \mathbb{N}\}\$ has the property (\bullet) .

Proof. Let $\Delta = \{i_1, \ldots, i_s\}$ be a finite subset of \mathbb{N} where $i_1 < i_2 < \ldots < i_s$. Set $x = a_{i_s}$, then $x \equiv a_{i_k} \pmod{P_{i_k}}$ for every $k = 1, \ldots, s$. Indeed, we have $d(x, a_{i_k}) = a_{i_s} \bar{a}_{i_k} = (\epsilon + \ldots + \epsilon^{i-1} + \epsilon^{i_k} + \ldots + \epsilon^{i_s-1})(\epsilon + \ldots + \epsilon^{i_k-1})^- = (\epsilon + \ldots + \epsilon^{i_s-1})^- \wedge (\epsilon^{i_k} + \ldots + \epsilon^{i_s-1}) = \epsilon^{i_k} + \ldots + \epsilon^{i_s-1} \in P_{i_k}$.

Proposition 8. E is not a maximal MV-algebra.

Proof. Suppose E is maximal. Then if we consider the family $\{(a_i, P_i)/i \in \mathbb{N}\}$ of Prop. 7 there is an $x \in E$ such that $d(x, a_i) \in P_i$ for every $i \in \mathbb{N}$.

Claim 1. $a_i < x$ for every $i \in \mathbb{N}$.

If $x \leq a_k$ for some $k \in \mathbb{N}$, then $d(x, a_{k+1}) = a_{k+1}\bar{x} \geq a_{k+1}\bar{a}_k = \epsilon + \epsilon^2 + \ldots + \epsilon^k)(\epsilon + \epsilon^2 + \ldots + \epsilon^{k-1})^- = (\epsilon + \epsilon^2 + \ldots + \epsilon^{k-1})^- \wedge \epsilon^k = \epsilon^k \notin P_{k+1}$, therefore $x \not\equiv a_{k+1} \pmod{P_{k+1}}$. We have a contradiction, so Claim 1 holds.

Claim 2. For every $i \in \mathbb{N}$ there is $k_i \in \mathbb{N}$ such that $x \leq a_i + k_i \epsilon^i$.

By hypothesis and by Claim $1, d(x, a_i) = x\bar{a}_i \in P_i = \langle \epsilon^i \rangle$. Thus $x\bar{a}_i \leq k_i \epsilon^i$ for some $k_i \in \mathbb{N}$, hence $x\bar{\epsilon}\epsilon^{2} \dots \bar{\epsilon}^{i-1} \leq k_i \epsilon^i$. By adding ϵ to both sides of this inequality we have:

$$\epsilon \vee x\overline{\epsilon^2} \dots \overline{\epsilon^{i-1}} \le k_i \epsilon^i + \epsilon.$$
 (\beta)

By Claim 1, $\epsilon + \epsilon^2 + \ldots + \epsilon^{i-1} < x$, then

$$(\epsilon^2 + \ldots + \epsilon^{i-1})^- (\epsilon + \epsilon^2 + \ldots + \epsilon^{i-1}) \le x(\epsilon^2 + \ldots + \epsilon^{i-1})^-.$$

Thus

$$(\epsilon^2 + \ldots + \epsilon^{i-1})^- \wedge \epsilon < x(\epsilon^2 + \ldots + \epsilon^{i-1})^-,$$

hence

$$\epsilon < x(\epsilon^2 + \ldots + \epsilon^{i-1})^- = x\overline{\epsilon^2} \cdot \overline{\epsilon^3} \ldots \overline{\epsilon^{i-1}}.$$

It follows, by (β) , that $x\overline{\epsilon^2} \dots \overline{\epsilon^{i-1}} \leq k_i \epsilon^i + \epsilon$.

Again, by adding ϵ^2 to both sides of the above inequality, we have $\epsilon^2 \vee x\overline{\epsilon^3} \dots \epsilon^{i-1} \leq k_i \epsilon^i + \epsilon + \epsilon^2$. By finite iterations of this procedure, one obtains $x < k_i \epsilon^i + \epsilon + \dots + \epsilon^{i-1} = k_i \epsilon^i + a_i$, and Claim 2 holds.

By Claims 1 and 2, $x \in \operatorname{Rad} E \setminus \{0\}$, thus from (b), $x = n_r \epsilon^r + n_{r+1} \epsilon^{r+1} + \dots + n_t \epsilon^t$, with $r \geq t$ and $n_r > 0$. By Claim 1, $x > a_2 = \epsilon$, thus r = 1 and by Claim 2, there exists k_2 such that $x \leq a_2 + k_2 \epsilon^2 = \epsilon + k_2 \epsilon^2$. Thus $n_r = 1$ and so $x = \epsilon + n_2 \epsilon^2 + \dots + n_t \epsilon^t$. By Claim 1, $x > a_3 = \epsilon + \epsilon^2$, thus $n_2 > 0$, so by Claim 2 there exists k_3 such that $x < a_3 + k_3 \epsilon^3 = \epsilon + \epsilon^2 + k_3 \epsilon^3$.

Thus $n_2 = 1$ and after finite iterations, we have $x = \epsilon + \epsilon^2 + \ldots + \epsilon^t = a^{t+1}$ which contradicts Claim 1.

We proved that E is a semilocal MV-algebra which is not maximal.

Now we shall give an example of a maximal MV-algebra with infinite many ideals.

Let $G = \bigoplus \{Z_i / i \in \mathbb{N}\}$ be the lexicographic product of denumerable infinite copies of the abelian ℓ -group \mathbb{Z} of the relative integers and $e^i \in G$ such that $e^i_k = 0$ if $k \neq i$ and $e^i_k = 1$ if k = i.

Consider the perfect MV-algebra $A = \mathcal{G}(G)$, where \mathcal{G} is a functor from the category of Abelian ℓ -groups to the category of perfect MV-algebras [9].

If we set $P_i = \langle (0, e^i) \rangle$, then $P_i \subset P_j$ for i > j, hence the prime spectrum of A is Spec $A = \{P_i | i \in \mathbb{N}\}$. Every infinite subfamily of $\{P_i | i \in \mathbb{N}\}$ will be denoted $\{P_{i_k} | k \in \mathbb{N}\}$, where $\{i_k | k \in \mathbb{N}\}$ is a stricty increasing sequence of elements in \mathbb{N} .

Lemma 6. With the above notations, let $\{P_{i_k}/k \in \mathbb{N}\}$ be an infinite subfamily of $\{P_i/i \in \mathbb{N}\}$ and $\{b^{i_k}/k \in \mathbb{N}\}\subseteq A$ such that $\{(b^{i_k}, P_{i_k})/k \in \mathbb{N}\}$ has the property (\bullet) . Then the following properties hold:

- (i) $\{b^{i_k}/k \in \mathbb{N}\} \subseteq \operatorname{Rad} A \text{ or } \{b^{i_k}/k \in \mathbb{N}\} \subseteq \overline{\operatorname{Rad} A}$.
- (ii) If $\{i_1,\ldots,i_r\}$ is a finite subset of $\{i_k/k\in\mathbb{N}\}$ and $i_o=\max\{i_1,\ldots,i_r\}$ then $b^{i_o}\equiv b^{i_k}\pmod{P_{i_k}}$ for any $k=1,\ldots,r$.
- (iii) If $b^{i_h}=(x,a^{i_h}_i)$ and $b^{i_k}=(y,a^{i_k}_i)$, then x=y and $a^{i_h}_i=a^{i_k}_i$ for every $i<\min\{i_h,i_k\}$.

Proof.

- (i) Suppose there is $k \in \mathbb{N}$ such that $b^{i_k} \in \overline{\operatorname{Rad} A}$. If $b^{i_h} > b^{i_k}$ then $b^{i_h} \in \overline{\operatorname{Rad} A}$. Assume $b^{i_h} < b^{i_k}$. By hypothesis, there is $x \in A$ such that $x \equiv b^{i_h} \pmod{P_{i_h}}$ and $x \equiv b^{i_k} \pmod{P_{i_k}}$, so $d(b^{i_h}, b^{i_k}) \leq d(x, b^{i_h}) + d(x, b^{i_k}) \in P_{i_h} + P_{i_k} \subseteq \operatorname{Rad} A$; from $b^{i_k} = b^{i_h} + d(b^{i_h}, b^{i_k})$, it follows $b^{i_k} \in \overline{\operatorname{Rad} A}$.
- (ii) By hypothesis, there is $x \equiv b^{i_k} \pmod{P_{i_k}}$ for $k = 1, \ldots, r$. Thus $d(b^{i_o}, b^{i_k}) \le d(b^{i_o}, x) + d(x, b^{i_k}) \in P_{i_o} + P_{i_k} = P_{i_k}$, because $i_o > i_k$ implies $P_{i_o} \subseteq P_{i_k}$.
- (iii) Suppose now h < k. By (ii), $b^{i_h} \equiv b^{i_k} \pmod{P_{i_h}}$, so $(0, z) = d(b^{i_h}, b^{i_k}) \in P_{i_h}$, hence there is $r \in \mathbb{N}$ such that $z \leq re^{i_h}$ and $z_i = 0$ for $i < i_h$. It follows that $a_i^{i_h} = a_i^{i_k}$ for any $i < i_h$.

Proposition 9. $\mathcal{G}(G)$ is a maximal MV-algebra.

Proof. Suppose $\{(b^{i_k}, P_{i_k})/k \in \mathbb{N}\}$ has the property (\bullet) and $b^{i_k} = (0, a^{i_k})$, where $a^{i_k} \in \bigoplus \{Z_i/i \in \mathbb{N}\}$. Define $y = (0, (x_i)_{i \in \mathbb{N}}) \in A$ by $x_i = a_i^{i_k}$ for $i < i_k$; by (iii) of the previous lemma, x is well defined. Now we shall prove that $y \equiv b^{i_k} \pmod{P_{i_k}}$ for any $k \in \mathbb{N}$. Let $(0, w) = d(y, b^{i_k})$. For every $i < i_k$, $x_i = a_i^{i_k}$, hence $w_i = 0$ for $i < i_k$ and there is $r \in \mathbb{N}$ such that $w_i \le re^{i_k}$, therefore $(0, w) \in P_{i_k}$.

If $b^{i_k} = (1, a^{i_k})$, then we choose $y = (1, (x_i)_{i \in \mathbb{N}})$ with $x_i = a_i^{i_k}$ for $i < i_k$ and the proof is analogue.

References

- [1] L. P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canadian J. Math. 38, (1986), 1356–1379.
- [2] L. P. Belluce, Semisimple and complete MV-algebras, Algebra Univ., 29 (1992), 1–9.
- [3] L. P. Belluce, A. Di Nola, A. Lettieri, On some lattice quotients of MV-algebras, Ricerche di Matematica, Vol. XXXIX, fas.10, (1990), 41–59.
- [4] L. P. Belluce, A. Di Nola, A. Lettieri, Subalgebras, direct products and associated lattices of MV-algebra, Glasgow Math. J., 34, (1992), 301–307.

- [5] L. P. Belluce, A. Di Nola, A. Lettieri, Local MV-algebra, Rend. Circ. Mat. Palermo, 42, (1993), 347–361.
- [6] W. Brandal, Commutative rings whose finitely generated modules decompose, Lectures Notes in Mathematics, Vol. 723, Springer-Verlag, (1979).
- [7] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88, (1958), 467–490.
- [8] C. C. Chang, A new proof of the completeness of Lukasiewicz axioms, Trans. Amer. Soc. 93 (1959), 74–80.
- [9] A. Di Nola, A. Lettieri, Perfect MV-algebras are categorically equivalent to Abelian ℓ-groups, Studia Logica 53 (1994), 417–432.
- [10] G. Georgescu, Finite products of local maximal lattices, Math. Japonica 37, No.5 (1992), 913–917.
- [11] G. Gratzer, Universal algebra, Van Nostrand, Princeton, (1968).
- [12] C.S. Hoo, Semilocal MV-algebras, Math. Japonica 40, No.3, (1994), 451–453.
- [13] D. Mundici, Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Analysis 65, (1986), 15–63.