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Abstract

In this paper we define maximal MV -algebras, a concept similar to the
maximal rings and maximal distributive lattices. We prove that any maximal
MV -algebra is semilocal, then we characterize a maximal MV -algebras as
finite direct product of local maximal M V-algebras.

We recall that an MV-algebra A = (4,+,-,—,0,1) is a system such that
(A,+,0) is a commutative monoid with identity, z +1 = 1, # = z, 0 = 1,
z-y=(Z+y) andz-g+y=y -T+axforallz,y € A; by settingxVy =2+ -y,
zAy=(x+gy)-yand z <y if z Ay =z for all z, y € A, we induce on A the
structure (A, V,A,0,1) which is a bounded distributive lattice. In the sequel, for
brevity, we write xy instead of x - y.

We refer to [1], [7] and [8] for all the unexplained notions on MV -algebras. The
following definitions and results are well known and drawn from [8].

A nonempty subset I C A is an ideal of A if I is closed under “+” and x € I,
y€ A y<xzimplyy € I. Iis proper iff 1 # I. A proper ideal P of A is prime
iff for x, y € A, x Ay € P implies either z € P or y € P. A mazimal ideal of A is
a proper ideal of A which is maximal with respect to the inclusion. We denote by
Spec A the set of all prime ideals of A and by Max A the set of maximal ideals of
A.

The ideals of an MV-algebra A are in bijective correspondence with the con-
gruence relations on A.

The relation “x =y (mod I) iff d(z,y) = z§ + Ty € I” is a congruence relation
on A for every ideal I, and each congruence relation on A is of this form; we denote
by A/I the quotient algebra obtained in this way. An MV-algebra A is linearly
ordered if the underlying lattice is linearly ordered and A is locally finite iff for
eachz € A, 1 =nx =z +...+x (n-times) for some positive integer n. An ideal P
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of A is prime if and only if A/P is linearly ordered and an ideal M is maximal if
and only if A/M is locally-finite. For brevity, we put a1 +as +...4+a, = > i, a;.

We denote by Rad A the intersection of all maximal ideals of the MV -algebra
A; A is semisimple iff Rad A = 0, i.e. A is a subdirect product of locally-finite
MV -algebras [1].

Furthermore, A is local if Max A is singleton and in this case Max A = Rad A.

If Ais an MV-algebra, we denote by B(A) = {z € A/z+x = z}; B(A) is called
the center of A and has a natural structure of Boolean algebra with respect to the
operations induced by those of A. Moreover, it is the largest Boolean subalgebra
of A.

If e € B(A), then the ideal generated by {e} is equal to (e] = {z € A/x < e} and
in this case the system ((e],+,~,0,¢e) is an MV-algebra, where & = Z - e (see [2]).
Further, the map defined by he(z) = ze for any z € A is an M'V-homomorphism
of A onto (e].

Lemma 1. [2]. Lete, f € B(A). Then
i) forallz,y € A, e(z +y) = ex + ey;
ii) forallz € A, ex =eAx;
iii) if e f=0, thenz(e+ f) =xe +xf.
The following is the M V-version of an elementary result in ring theory.
Lemma 2. For an MV -algebra A the following are equivalent:
(1) A is isomorphic to a finite product of MV -algebras TIT_; A;;
(2) there ezisteq,... ,e, € B(A) such thateje; =0 fori# j andei+...+e, = 1.

Proof. Let ¢ : A — TI_; A; be an isomorphism, then ¢(B(A4)) = I, B(4;). For
i=1,...,n, we remark that the elements e; = ¢=1(0,...,1,...,0), with 1 at the
i-th place, satisfy (2). Thus (1) implies (2).

Conversely, let ¢ : A — I, (e;] such that ¢(z) = (ze,...,xey) for every
x € A. Tt is plain to prove that ¢ is an MV -homomorphism; ¢ is surjective since
if (x1,...,2,) € T, (e;], using (i) of Lemma 1 and by setting & = z1 + ... + x,,
we get p(z) = (z1,...,2y). Using (ili) of Lemma 1, it is easily seen that ¢ is
one-one. (]

Remark 1. Under the hypothesis (1) of Lemma 2, A; is M V-isomorphic to (e;] for
every t = 1,... ,n. Indeed, let ¢ : A — I, A; be the isomorphism, used in the
previous proof and h; : A; — I, A; be defined by h;(z) = (0,...,z,...,0), with
x € A; at the i-th place. Then ¢ ' oh; : A; — A is an MV-isomorphism which
applies A; onto (e;].

A well known result in ring theory is the Chinese remainder theorem.

The following M V-version of such theorem was proved in [12]. We also remark
that it can be deduced from a general result [11]. If I, J are two ideals of the
MV -algebra A, the ideal generated by I U J is denoted by I+ J and I+ J = {z €
Alr <y+z forsome yel,ze€ J}
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Proposition 1. Let I1,... , I, be ideals of the MV -algebra A such that I; +1; = A
fori#j,i,j€{l,...,n}. Then, for every x1,... ,x, € A, there is x € A such
that x = x; (mod I;) for i =1,... n.

Proof. For n = 2,if I} + I = A, then there exist a;o € I; and az; € I3 such that
a2 + a1 = 1. From that, @31 < a;2, that implies as; = 1 (mod I;). If we consider
T = Ti1a21 + T20a12, we get

l‘/Il =xI -a21/I1 +332/Il '012/11 =
= 561/[1 . 1/[1 +CU2/[1 . 0/]1 = 2171/11
ie. x =x1 (mod I) and similarly = 2 (mod I).
For an arbitrary n, for i # j, i, j € {1, ... ,n} there exist a;; € I;, aj; € I; such
that a;; + a;; = 1. Then the thesis follows by considering = = Z?:l TiQ1g .. Qi1

@it1,i..-an; and reasoning as above, it is seen that z = z; (mod I;) for i =
1,...,n. O

As in maximal rings [6] and maximal distributive lattices [10], we introduce
maximal MV -algebras connecting this notion with the one of semilocal MV-
algebra.

Definition 1. A is called semilocal if Max A is a finite set.
Ezxample 1.
1) A local MV-algebra [5] is semilocal because Max A is singleton.

2) A perfect MV-algebra A [5] is semilocal, A being generated by its radical,
ie., A=Rad AURad A, where Rad A = {z € A/Z € Rad A}.

Proposition 2. For an MV -algebra A, the following are equivalent:

(1) A is semilocal;

(2) A/ Rad A is isomorphic to a finite direct product of locally-finite M'V -algebras.
Proof.

(1) = (2).

If MaxA = {Mi,...,M,} , then RadA = N, M; and the map ¢ :
A/Rad A — N7, A/M;, given by p(x/Rad A) = (x/M,...,x/M,) is an
MYV-isomorphism. Indeed, it is clearly an MV-homomorphism. Further,
¢ is surjective by Proposition 1, because M; + M; = A for i # j, and ¢
is injective because p(x/Rad A) = ¢(y/Rad A) means z/M; = y/M;, i.e.
d(z,y) € M; for any i = 1,... ,n, hence 2/ Rad A = y/ Rad A.

(2) = (1).
Let A be isomorphic to II"_, A;, where each A; is a locally-finite M V-algebra.

Denoting by 0; the zero element of A4;, by [4, Prop. 2.2], Spec(A/Rad A) =
Max(A/RadA) = {{O1} x Ao x...xAp, ..., Au x ..o x {0} x ... x Ay, o
Ay x ... x Ap_1 x {0p}}. Thus Max A is finite, i.e. A is semilocal.

O
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Corollary 1. For an MV -algebra A, the following are equivalent:
(1) A is semisimple and semilocal;
(2) A is isomorphic to a finite direct product of locally-finite MV -algebras.

Definition 2. Let {a;};er be a family of elements of an MV -algebra A and {Pi};ecr
be a family of ideals in A. We shall say that the family {(a;, P;)/i € I} has the
property (e) if for any finite subset A of I, there exists xa € A such that zo = a;
(mod P;) for any i € A.

Definition 3. The MV-algebra A will be called maximal if for any family
{(a;, P;)/i € I} with the property (e) , there exists x € A such that z = a;
(mod P;) for any ¢ € I.

Remark 2. Let A= {0,¢,2¢,...,1—2¢,1—c¢, 1} be the MV-algebra defined in ([7],
pag. 474). A is a perfect MV -algebra and it has only three ideals: 0, Rad A =
{0,¢,2¢,...} and A. Clearly A is maximal because has a finite number of ideals.

Lemma 3. Any finite direct product of mazimal MV -algebras is a mazimal MV -
algebra.

Proof. Tt suffices to prove that A = A; x A, is maximal if 4; and Ay are maximal.
By Lemma 2 and Remark 1, A;~(e], A2~(€] with e € B(A). If P is an ideal of A
and z = a (mod P), it follows ze = ae (mod P N (e]) since, using Lemma 1 and
elementary facts from [7], zeae + Teae = ze(a V €) + (T V €)ae = (xzea V wee) +
(ZaeVeae) = (za+Za)e. Similarly zé = aé (mod PN (e]). Now let {(a;, P;)/i € I'}
be a family in A with property (e). Then the families {(a;e, P; N (e])/i € I} and
{(a;e, P;N(€])/i € I} verify the property (o) in the maximal MV -algebras (e] and
(€], respectively. Let y € (e] and z € (€] such that y = a;e (mod P; N (e]) and
z = a;€ (mod P; N (€]) for any i € I. Then y + z = aje + a;€ (mod F;), i.e.
y+z =a; (mod P;) for any i € I, since a;e+a;é = a;(e+ &) = a; by (iii) of Lemma
1. o

Proposition 3. If A is a mazimal MV -algebra, then A is a semilocal MV -algebra.

Proof. Any family {(zp, M)/M € Max A} has the property () because for any
finite family {Mi,..., My} C Max A, if ¢ # j, we have M; + M; = A, and by
Prop. 1 there is * € A such that zx =z, (mod M;) fori =1,... ,n. Since A is
maximal, there exists z € A such that z = xz; (mod M) for any M € Max A.

Let I = {a € A/{M € MaxA/a ¢ M} isfinite }. Then I is an ideal of A.
We shall prove that the family

{(0,H}U{(1,M)/M € Max A} (@)

has the property (o). If we take a finite subfamily {(0,1), (1, M;),...,(1,M,)},
using the definition of I, we obtain N{M/M € Max A\{M1,...,My}} C I and
considering the family

{(1,My), ..., (1, M)} U {(0, M)/M € Max A\{ M, ..., M,}},
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as at the beginning of the proof, there exists € A such that x = 1 (mod M;),
i=1,...,nand x =0 (mod M) for M € Max A/{M,...,M}.

It follows that € I and thus the family («) has the property (). By hy-
pothesis, there is y € A such that y = 0 (mod I) and y = 1 (mod M) for any
M € Max A; it follows that y € I and for any M € Max A, y ¢ M. Then we
deduce Max A = {M € MaxA/y € M}. Since y € I, Max A is finite, i.e. A is
semilocal. O

Proposition 4. For an MV -algebra A, the following are equivalent:
(1) A is semisimple and mazimal;
(2) A is isomorphic to finite direct product of locally-finite MV -algebras.
Proof.
(1) = (2).
By Prop. 3 and Corollary 1.
2) = ().

It suffices to observe that any locally-finite MV -algebra is maximal, because

it has only two ideals, and then to use Lemma 3.
O

Corollary 2. Let A be a semisimple MV -algebra. Then A is maximal iff A is
semilocal.

Remark 3.

a) There exist semisimple MV -algebras which are not maximal. By example, if
A =1I;c1 A; where I is infinite and every A; is locally-finite, we observe that
A is semisimple but not semilocal (Max A is infinite), hence, by Prop. 3, A
is not maximal.

b) There exist maximal MV -algebras which are not semisimple: by example,
the perfect MV-algebra A of Remark 2.

Lemma 4. Let A be an MV -algebra and x € A. If x AT € Rad A, then (2z)? =
22° € B(A) and 222 = 22°.

Proof. By [2, Thm. 1] and from the hypothesis,
(i) (22)2 A (22)2 = 2z A22)2 =[2(x AE)> =0
and

20 A 272 =2(22 AT?) = 2(z A T)? = 0.

This last equality implies that
(ii) (22)? V (22)? = 222V 222 = 1.
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i), it follows that (2z)? € B(A). Further, (27)? = (27)2 = 222.
2.

Thus, from (i) and (i
Then 222 = (22)2 =
(]

Proposition 5. Let A be an MV -algebra. For any f € B(A\Rad A), there is
e € B(A) such that f =e\Rad A.

Proof. Tf f = g\Rad A € B(A\Rad A), then g> = g (mod Rad A); hence g - g% =
g(g+g) = gANg € RadA. By Lemma 4, e = 2g° € B(A) and g\RadA4 =
2¢g?\ Rad A = e\ Rad A. O

Lemma 5. If an MV -algebra A is such that A = II?_, A; and Max A has n ele-
ments, then Ay, ..., A, are local MV -algebras.

Proof. Let MaxA = {My,M>...M,}. By [4], for any i = 1,2,...,n, M; =
Al oo X Ai—l X Nz X Ai+1 .. .An, for some Nl € MaxAi.

If one of the MV -algebras Ay,..., A, is not local, then Max A has more than
n elements. O

Theorem 1. For an MV -algebra, the following are equivalent:
(1) A is isomorphic to a a finite direct product of local mazimal MV -algebras;
(2) A is mazimal.

Proof.

(1) = (2).
By Lemma 3.

2) = (1).
Let Max A = {My,... ,M,}. By Prop. 3 and Prop. 2, A/ Rad A is isomor-
phic to II?* ; A/M;. By Lemma 2, there exist f1,..., f, € B(A/Rad A) such
that fi +...4+ fn, = 1/Rad 4 and f;f; = 0/Rad A for i # j. By Prop. 5,
there exist eq,...,e, € B(A) such that f; = e;/RadA,i=1,...,n. Since
eiej/ Rad A = 0/Rad 4, it follows that e;e; € B(A) NRad A = {0} for i # j.
Similarly "7 e;/ Rad A = 1/Rad A implies e; + ...+ e, = 1. By Lemma
2 and Remark 1 is isomorphic to I ; (e;]. Because Max A has n elements,
it follows via Lemma 5 that (e;], i = 1,...,n are local MV-algebras. Now
we shall prove that any MV-algebra of the form (e], e € B(A), is maxi-
mal. Assume that the family {(z;, P;)/i € I} has property (e) in (e]. Since
P; are ideals also in A and, since A is maximal, there is z € A such that
z = x; (mod P;) for any ¢ € I. Thus d(z,z;) = xZ; + Tx; € P; for any
i € I, hence z%; + Tx; < e for any ¢ € I. But z; < e and by [8, Th. 3.1]
x=uzl =x(x; + %) <z;+2%; <e+e=ce, hence z < e. Thus z € (€]
and = z; (mod P;) in (e] because, d(.)(z, ;) = 2%; + Tz; = vel; + Tex; =
e(zZ; + Tx;) < xZ; + Tx; € P; by i) of Lemma 1.

O



Maximal MV-algebras 59

Definition 4. An MV-algebra A has the property P if for every M, N € Max A
such that M N B(A) = NN B(A), itis M = N.

Proposition 6. If A is a mazimal MV -algebra, then A has the property P.

Proof. By Theorem 1, A is isomorphic to IIX, A;, where every A; is a local MV-
algebra; so Max A; = {Rad 4;} for i = 1,2,... ,n. Let us denote by ¢ an isomor-
phism from A onto II7, A;. If M, N € Max A, then ¢(M) = A; x ... x Rad 4}, x
... A, for some h € {1,...,n} and p(N) = A; x ... x Rad Ay x ... A, for some
ke{l,...,n}.

If we suppose M N B(A) = N N B(A), then o(M) NI, B(4;) = ¢(N)N
7, B(A;). Let (a1,a9,...,an) € (M) NI, B(A;) such that ap, =0ea; =1
for j # h. Such element must belong also to o(N) NI, B(A;). Hence a;, = 0 and
h=k,ie @o(M)=@(N), which implies M = N. O

Remark 4. The property P is not sufficient for an MV -algebra to be maximal.
Indeed, the Boolean algebra {0, 1}?V obviously has property P, but it is not maximal
by Corollary 1.

We shall end the paper with two examples. The first one is an example of a
semilocal MV -algebra which is not maximal, while the second one is an example
of a maximal M V-algebra with infinite many ideals.

Let *R be a non-standard model of real numbers with natural order and € be
a positive infinitesimal element of *R. Let €2 = €-¢,...,6" =€~ ... € (n-times)
where - is the usual product in the field *R; then €’ > 0 for any 4 € N and €’ <« €’
fori > j.

The unit interval *[0,1] C* R is an M V-algebra under the operations: z +y =
min{l,z +y}, Z = 1 — z and zy = max{0,z + y — 1}. Let N be the ordered set
of positive natural numbers. For every n € N, let E,, be the subalgebra of [0, 1]
generated by {e,€%,...,e"} and E be the subalgebra U,enE,. E is a perfect
MV -algebra. We recall from [3] the following results:

(a) E=<(e"))i € N>;

(b) Every z € Rad E\{0} is a finite linear combination of €, i € N by integer
coefficients n; such that if z = Y| n;e’ and if 4o = min{i/n; # 0}, then
n;, > 0. Thus £ = npe” +npp1€” + ... +nget with 7 > 1, r > t and n, > 0.

(c) Every x € Rad E is of the form z = 1 — y with y € Rad E.

(d) The set of all ideals of E is {0}, <€ >,...,<¢€ >, ..., where i € N.
Set Pi =< €' > for any i € N; thus P; C P; for any i > j and &’ € P;\P;11.
Denote a; =0, a; =€, a3 =€e+¢€2,...,a;=c+e>+...+e L foranyi €N,

thus (a;);en is an increasing sequence of elements in E.
Proposition 7. {(a;, P;)/i € N} has the property (e).

Proof. Let A = {i1,...,is} be a finite subset of N where i1 < is < ... < is.
Set x = a;,, then © = a;, (mod P;) for every k = 1,...,s. Indeed, we have
d(z,a;,) = a;,a;, = (e+...+e T +e* + . . +e)(et+...+e* )" =(e+...+
e I N (o U e <l = A O
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Proposition 8. FE is not a mazimal MV -algebra.

Proof. Suppose E is maximal. Then if we consider the family {(a;, P;)/i € N} of
Prop. 7 there is an € E such that d(z,a;) € P; for every i € N.
Claim 1. a; < z for every i € N.

If + < a, for some k € N, then d(z,ar41) = ap1Z > apriar = €+ €2+ ...+
e+ 4.+ )T = (e++.. .+ )T A = b ¢ Ppyy, therefore z £ ag i
(mod Py11). We have a contradiction , so Claim 1 holds.

Claim 2. For every i € N there is k; € N such that z < a; + k€’

By hypothesis and by Claim 1, d(z,a;) = za; € P; =< € >. Thus za; < k;e'
for some k; € N, hence zée?...ei=1 < kie'. By adding € to both sides of this
inequality we have:

eVae.. . e < kel +e. (B)
By Claim 1, e + €2 + ... + €71 <z, then
(4. e ) e+ +.. .+ <a(@4... +€7h
Thus

hence
e<z(E+.. .+ =z 3. e

It follows, by (8), that ze2 .. 61 < ki€l + .
Again, by adding €2 to both sides of the above inequality, we have € V:Ue3 el

k.e +e +§ By finite iterations of this procedure, one obtains z < k;e* + ¢ + -+
€1 = k;e* + a;, and Claim 2 holds.

By Claims 1 and 2, # € Rad E\{0}, thus from (b), = n,€" + nyp1e’ ! +

.+ nget, w1thr>tandnr>0 By Claim 1, z > as = €, thus r = 1 and by
Clalm 2, there exists ks such that © < as + ko€ = € + kse®. Thus n, = 1 and so
T =e+nye? +...+nel. By Claim 1, 2 > a3z = e + €2, thus ny > 0, so by Claim 2
there exists ks such that © < ag + kse® = € + €2 + kse>.

Thus n» = 1 and after finite iterations, we have z = e + €2 + ... + € = a?t!
which contradicts Claim 1. O

We proved that E is a semilocal M V-algebra which is not maximal.

Now we shall give an example of a maximal MV -algebra with infinite many
ideals.

Let G = ®{Z;/i € N} be the lexicographic product of denumerable infinite
copies of the abelian (-group Z of the relative integers and e’ € G such that e} =0
if k#iandel =1if k=1.

Consider the perfect MV-algebra A = G(G), where G is a functor from the
category of Abelian ¢-groups to the category of perfect MV -algebras [9].

If we set P; =< (0,e) >, then P; C P; for i > j, hence the prime spectrum of
A is Spec A = {P;/i € N}. Every infinite subfamily of {P;/i € N} will be denoted
{P;,/k € N}, where {iy/k € N} is a stricty increasing sequence of elements in N.
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Lemma 6. With the above notations, let {P;, [k € N} be an infinite subfamily of
{P;/i € N} and {b*/k € N} C A such that {(b*,P;.)/k € N} has the property
(o). Then the following properties hold:

(i) {b%*/k € N} C Rad 4 or {b"* /k € N} C Rad A.
(i) If {ir,... ,ir} is a finite subset of {ir/k € N} and i, = max{i1,... i} then
bie = b (mod P, ) for any k=1,...,r.
(iti) If b = (z,a*) and b* = (y,a*), then © = y and a* = a* for every
1< min{ih,ik}.
Proof.

(i) Suppose there is k € N such that b € Rad A. If b"* > b% then b € Rad A.
Assume b < b*. By hypothesis, there is # € A such that = b™* (mod P;,)
and z = b* (mod P;,), so d(bi»,b*) < d(z,b*) + d(x,b*) € P;, + Pi C
Rad A; from bi* = bi» + d(b», bi*), it follows b* € Rad A.

(ii) By hypothesis, there is 2 = b** (mod Piy) for k = 1,...,r. Thus d(b%,bi*) <
d(be,z) + d(z,b*) € P;, + P;, = P;,, because i, > i implies P;, C P;,.

(iii) Suppose now h < k. By (ii), b’» = b** (mod P;, ), so (0,2) = d(b,b*) € P;,
hence there is r € N such that z < re and z; = 0 for i < i). It follows that
a;* = a;* for any i < iy,

o
Proposition 9. G(G) is a mazimal MV -algebra.

Proof. Suppose {(b™, P;,)/k € N} has the property () and b = (0,a’), where
a** € ®{Z;/i € N}. Define y = (0, (z;)ien) € A by @; = aj* for i <ip; by (iii) of
the previous lemma, z is well defined. Now we shall prove that y = b%* (mod P;,)
for any k € N. Let (0,w) = d(y, b’ ). For every i < iy, z; = aﬁ’“, hence w; = 0 for
i < iy, and there is r € N such that w; < re’*, therefore (0,w) € P;,.

If b’ = (1,a™), then we choose y = (1, (x;)ien) With z; = a* for i < iy and
the proof is analogue. O
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