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Abstract

We introduce the notion of p-ideal of a QMV-algebra and we prove that
the class of all p-ideals of a QMV-algebra M is in one-to-one correspondence
with the class of all congruence relations of M.
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1 Introduction

Quantum MV-algebras (QMV-algebras) were introduced in [5] as a non lattice-
theoretic generalization of MV-algebras ([2],[3]). The prototypical model of MV-
algebras is based on the real interval [0,1]. The introduction of QMV-algebras
was mainly motivated by the search for an adequate algebraic structure for the
“quantum counterpart” of the real interval [0, 1], i.e., the class E(3) of all effects
of a Hilbert space H. An effect of H is a bounded and positive linear operator
of H whose spectrum is contained in [0,1]. In physical terms, effects are the
mathematical representatives of “unsharp properties” of a quantum physical system
in that their possible values are contained in [0, 1].

From an algebraic point of view, MV and QMV-algebras share a “core” set
of axioms, which S. Gudder [6] has called supplement algebra (S-algebra). What
makes an S-algebra an MV-algebra is the addition of the Lukasiewicz aziom ((a* ®
b)* ® b= (a®b*)* ®a). This axiom is precisely what makes lattice-theoretic an
MV-algebra. Effects of a Hilbert space do not determine a lattice. So, for an
algebraic structure to be a faithful abstraction of unsharp properties, the Luka-
siewicz axiom has to be weakened. Accordingly, QM V-algebras are obtained by
adding to S-algebras some consequences of the Lukasiewicz axiom. How much this
axiom has to be weakened is still an open problem. Solving this question, amounts
to axiomatizing the logic of unsharp properties of a quantum physical system. The
QMYV-algebras determined by effects of a Hilbert space belong to the class of quasi-
linear QMV-algebras, which is a particular (proper) subclass of QMV-algebras. An
MV-algebra is quasi-linear iff it is linear.

The first step in order to axiomatize the QMV-algebra of all effects is to show
that the variety generated by the class of all quasi-linear QMV-algebras is finitely
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based. However, as we will show in Section 4, the usual correspondence ide-
als/congruences (used by Chang to prove that every MV-algebra is the subdirect
product of linear MV algberas) fails in QMV-algebras. In this paper we will present
a new definition of ideal that allows us to recover this correspondence.

2 Quantum weakenings of MV-algebras: defini-
tions and examples

Definition 2.1. A supplement algebra (S-algebra) is a structure M = (M , @, *,1,0),
where M is a non-empty set, 0 and 1 are constant elements of M, & is a binary
operation and * is a unary operation, satisfying the following axioms Va,b,c € M:

(S1) (a@b)dc=ad (b®c),
(S2) a®b=>bDa,

(S3) ada*=1,

(S4) a®d0=a,

(S5) a®dl=1,

(S6) a** =a.

The class of all S-algebras will be denoted by S.

By (S4) and (S3), we get 0 = 0® 0* = 1; hence, by (S6), 1* = 0** = 0. Given
any S-algebra M = (M ,®, *,1,0), we can define the following binary operations
and relation:

a®b=(a"®b")*, (2.1)
amb=(a®b)®b,
aWb=(a®b")®b,

a=b <= a=amb. (2.4)

We assume ® to be more binding than &.

Definition 2.2. An MV-algebra is an S-algebraM = (M ,®, *,1,0) that satisfies
the following condition VYa,b € M:

(LA) (a*®b)*®b=(a®b")* Da.
The class of all MV-algebras will be denoted by MV.

Theorem 2.1. Let M = (M ,®, *,1,0) be an MV-algebra. The structure (M ,m,U,1,0)
is a bounded distributive lattice.

Definition 2.3. A quantum MV-algebra (QMV-algebra) is an S-algebra M =
(M ,®, *,1,0) that satisfies the following conditions Va,b € M:
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(QMV1) aU(bMma)=a,

(QMV2) (amb)mec=(ambdb)m(bmc),

(QMV3) ad(dmadc)*)=(adb)m(ad (adc)*),
(QMV4) a® (a*Mbd) =adb,

(QMV5)  (a*®b)u(b*da)=1.

The class of all QMV-algebras will be denoted by QMYV. (QMV1) and (QMV?2)
represent a weak formulation of the absorption and of the associativity laws, re-
spectively. Generally, M and W are not lattice-theoretic operations. (QMV3) and
(QMV4) represent a kind of conditional distributivity law of & over m.

As proved in [5], any MV-algebra is a QMV-algebra, but not the other way
around (cf. Counterexample 2.3).

Definition 2.4. A quantum involution algebra (QI-algebra) is an S-algebra M =
(M ,®, *,1,0) that satisfies the following condition Va,b,c € M:

Q) a®db#1 = a<Dd*
The class of all QI-algebras will be denoted by QI.
Definition 2.5. A QMV-algebra is said to be quasi-linear iff it satisfies (QI).
The class of all quasi-linear QMV-algebras will be denoted by QLQMYV.
Theorem 2.2. Let M be a QM V-algebra. The following conditions are equivalent:
(i) M is quasi-linear.
(ii) Va,be M:adb = amb=hb.
(i)  Va,bce M:ifa®c=bdc#1, thena=0b.

Theorem 2.3. [6] An S-algebra M is a QI-algebra iff M is a quasi-linear QM V-
algebra.

According to Theorem 2.3 , QI-algebras and quasi linear QMV-algebras are
equivalent structures. Clearly, an MV-algebra is quasi-linear iff it is totally ordered.
The class of all totally ordered MV-algebras will be denoted by TMV. The notion
of quasi-linearity can be further weakened as follows:

Definition 2.6. A weakly-linear QM V-algebra is a QMV-algebraM = (M ,®,* ,1,0)

that satisfies the following condition Va,b € M:
(WL) a®b*=lorb®a*=1.

The class of weakly-linear QMV-algebras will be denoted by WLQMYV. Every
quasi-linear QMV-algebras is a weakly-linear QMV-algebra, but not the other way
around (cf. Counterexample 2.4)

Theorem 2.4. Let M be a QM V-algebra. The following conditions are equivalent:
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QLQMYV = QI

Figure 1:

(i) M is weakly-linear.
(ii)) Na,be M:amb=Dborbma=>.

Example 2.1. (S-algebra)

Let L be any ortholattice. An ortholattice is a lattice (L ,M,U) with maximum (1)
and minimum (0), equipped with a unary operation ' s.t. Va,b € L: (i) a" =a ;
(i) (eUDd) =d' Nb; (iii)aNa =0.

The structure (L,U ,’,1,0) is an S-algebra.

Example 2.2. (Standard MV-algebra)
Let [0, 1] be the unit real interval. For all a,b € [0,1], let

a®b:=Min {a+0b,1} (truncated sum)
and
a*:=1-a. (2.5)

The structure Mo ;7 = ([0,1],®,* ,1,0) is an MV-algebra, called standard MV-
algebra. It turns out that the relation < (cf. 2.4) coincides with the restriction to
[0,1] of the usual order of IR. Consequently, Mg q] is linear (totally ordered), i.e.
Va,b € [0,1]: a <b orb<a.

It turns out that a ©b = Max {a+b—1,0}, amb = Min {a,b} and aUb =
Max {a, b}.

Example 2.3. (MV-algebra of fuzzy sets)
Let X be a non-empty set and let [0,1]% be the set all [0, 1]-valued functions on
X (fuzzy sets) . Let us define the following operations on [0,1]%, V£, g € [0, 1]%
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and Vx € X:
(f @ g)(z). = Min{1, f(z) + g(z)} (2.6)

and

(f) () =1 = f(z). (2.7)

Let 1 and 0 be the fuzzy sets s.t. Vz € X: 1(z) =1 and 0(z) = 0.
The structure [0,1]% := ([O, 1%, 2,7 ,1 ,0) is an MV-algebra.
It turns out that Vf,g € [0,1]¥ and Vz € X:

(f mg)(z) = Min{f(z), g(z)} (2.8)

and

(f Ug)(z) = Max{f(z), g(x)}. (2.9)

According to an important theorem proved by Belluce [1], an MV algebra M is
embeddable into an MV algebra of fuzzy sets iff M is semisimple (where an MV
algebra is said to be semisimple iff the intersection of all its maximal ideals is {0}).

Example 2.4. (Standard QMV-algebra)

Let E(H) be the class of all effects of a Hilbert space H. E(H) coincides with the
class of all bounded linear operators between O and 1, where O and 1I are the
null and the identity operators, respectively. The operations & and * are defined
as follows, for any E, F € E(H):

(2.10)

EoF = E+F 1fE+F€E(fH);
il| otherwise,

where + is the usual operator-sum.
E* .=1-FE. (2.11)

The structure E(H) = (E(H),®,*,1I,0) is a QMV-algebra, called standard
QMV-algebra[4]. It turns out that the relation < (cf. 2.4) coincides with the
usual partial order of E(J), induced by the class of all density operators of .
In other words, VE,F € E(HX): E < F iff for any density operator D of H:
Tr(DE) < Tr(DF'), where “Tr” is the trace functional. Moreover:

E if EXF,;
EMF = RS (2.12)
F  otherwise,
and
E if F<E;
EUF = BE=E (2.13)
F  otherwise.

As a consequence, E(H) is a quasi-linear QMV-algebra and therefore a QI-algebra
by Theorem 2.3.
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None of the arrows of Figure 1 can be reversed as the following counterexamples
show.

Counterexample 2.1. (S C QMYV)
Let Og be the ortholattice of six elements (see Figure 2). Let us consider the
elements a,b. We have: a ® (a* Mb) =a # b= a ®b. Thus, (QMV4) fails in Og.

Counterexample 2.2. (WLQMYV C QMYV)

Let us consider the orthomodular lattice S19 (see Figure 3). An orthomodular
lattice is an ortholattice L = (L,M,U," ,1,0) that satisfies the following condition
Ya,b € L:

(aM(a'U(anb))Ub=> (orthomodularity)

As proved in [5], every orthomodular lattice is a QMV-algebra, taking @ as L and
*as’. In Gig we have a @ a* = a* Mma = 0. Thus, G is not weakly-linear.
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Counterexample 2.3. (MV C QMV)
Take the QMV-algebra () of the Example 2.4. Let us consider two non trivial
effects E, F € E(H) s.t. E+ F* ¢ E(H) and F @ E* ¢ E(H). By definition of &:
EoF*=1Tand F® E* = 1. Hence: (E*0F) @ F=00F #E=00FE =
(E® F*)" @ F. Thus, the axiom (LA) (cf. Definition 2.2) fails in &(X).

The smallest QMV-algebra that is not an MV-algebra is determined by the set
M, ={0,1,a,b} with the operations @ and * defined in the following way:

*

= e e OO O Y Q2 22O O OO
= S QO QO SO -S>
o e e e e e O e e D =y 2 OB

- o 2 O
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It is easy the check that a Wb = b # a = bW a. Thus the axiom (LA) (cf.
Definition 2.2) fails in My. This example shows that QMV-algebras, differently
from MV-algebras, can contain more than one fixed point of the operation *.
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Counterexample 2.4. (QLQMYV C WLQMYV)
Let us consider the QMV-algebra M,,; (Figure 5) where the operation @, apart the
obvious conditions, is defined as follows:

57

a 1

a b 1

a b* 1

a* a* b
a* b 1
a* b* b
b b 1

b a 1

b a* 1

b* b* a
b* a 1
b* a* b

One can check that M, is a weakly-linear QMV-algebra. However, a* ® a* =
b# 1 and a* £ a. Thus, M, is not quasi-linear.

Counterexample 2.5. (TMV C MV)
Take any Boolean algebra containing more than two elements (where @ is the sup
and * is the complement).
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Since the QMV-algebra of all effects is quasi-linear, it follows that MV and
QLMY are unrelated.

3 Basic properties of QMV-algebras

In this Section, we will present some basic properties of the structures introduced
in Section 2, starting from the properties that are already derivable in S. The proof
of the Theorems of this Section can be found in [5].

Theorem 3.1. Let 8§ = (S,® ,* ,1,0) be an S-algebra. The following properties
hold:

(i) a®b=>b0a.

(ii)) a®(boc)=(a®b) oec.
(iii)) a®a* =0.

(iv) a®0=0.

(v) a®©1l=a.

(vi) aml=a=1ma.

(vii) am0=0=0Mma.
(viii)  a=aMa.

(iz) (aWb)* =a* mb*.

(z) (amb)* =a* Wb

(zi) Ifa=<b,then a=>bma.

In general, a = bma does not imply a = a M b.

Theorem 3.2. Let § = (S,® ,* ,1,0) be an S-algebra. The following properties
hold:

(i) Ifa®b=0, thena=">b=0.
(ii)) Ifa®b=1, thena=>b=1.
(ii)) IfaWb=0, thena=>b=0.
(iv) Ifamb=1, thena=b=1.

Theorem 3.3. (Cancellation law)
Let 8§ = (S,® ,*,1,0) be an S-algebra. For any a,b,c € M: ifa®c=bdc,
a=<c* and b < c*, then a =b.

Theorem 3.4. Let 8§ =(S,® ,*,1,0) be an S-algebra. If a < b, then a*®b=1.
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It should be noticed that, in general, a* & b = 1 does not imply a < b. The
property “Va,b€ M : a*®b =1 implies a < b ” characterizes MV-algebras w.r.t.
QMV-algebras as the following Theorem asserts

Theorem 3.5. Let M = (M ,® ,* ,1,0) be a QMV-algebra. The following condi-
tions are equivalent:

(i) M is an MV-algebra.
(ii) Va,be M: Ifa*®b=1, then a Xb.

As a corollary of Theorem 3.5, we obtain that no “genuine” QMV-algebra ad-
mits of an implication — being the right adjoint to the operation ®, i.e.

a®b<c < bXa—c (3.1)

More precisely, there exists no QMV-algebra M = (M ,@® ,* ,1,0) which satisfies
the following conditions:

(i) M is not an MV-algebra,
(if) (M, =,®) is a (commutative) autonomous poset (cf. [7], p. 26);
(iii) a* =a — 0.

Therefore, MV-algebras are precisely quantum QMV-algebras with implication in
the sense of (3.1). Similarly, Boolean algebras can be characterized as those or-
thomodular lattices admitting an implication in the sense of (3.1), whenever ©
and * are replaced by the lattice-theoretic operations of infimum and of ortho-
complementation, respectively. Hence the relationship between QMV-algebras and
MV-algebras is the same as between orthomodular lattices and Boolean algebras.

Theorem 3.6. Let M = (M ,® ,* ,1,0) be a QMV-algebra. The following prop-
erties hold:

(i) Ifa =0, then b* < a*.
(i) a=<biffb=bWa=alUb.
(iii)) am(bUa)=a.
Theorem 3.7. (M, <,* ,1,0) is an involutive bounded poset.

Theorem 3.8. Let M = (M ,® ,* ,1,0) be a QMV-algebra. The following prop-
erties hold:

(i) Ifa=<b,thenVee M: amc=<bmec. (weak monotony of m)
(ii) Ifa=0b,thenVece M: aUWc=<bWc. (weak monotony of U)

It should be noticed that, in general, amb A a,a AaWb and amb A bW a.
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Theorem 3.9. (Monotony of ® and ®)
Let M= (M ,® ,* ,1,0) be a QMV-algebra. The following properties hold:

(i) Ifa=<b,thenVceE M: a®c=<bdec.
(i) Ifa=<Db,thenVee M: a®c=<bdec.
(i5i)) Ifa=<b andc=<d then a®c<bdd.
(iv) a=bandc=d then a®c<bod.

Theorem 3.10. Let M = (M ,® ,* ,1,0) be a QM V-algebra. The following prop-
erties hold:

(i) a®b=a.
(i) a=<adb.
(iii)) a©b=<amb, a®b=<bma.
(iv) aUb=<a®db, bUa<adhb.

Corollary 3.1. If M is a linear (or totally ordered) QMV-algebra, then M is an
MYV-algebra.

Theorem 3.11. Let M be a QMV-algebra. The following conditions are equiva-
lent:

(i) b=bda*.
(ii)) aUWb=1.
(iii) a=a®b*.
(iv) bWa=1.

Definition 3.1. Let M be a QMV-algebra. Let us define the following binary
operations, for all a € M and for all n € IN:

(i) 0-a=0, (n+1l)-a=n-ada
(i) a® =1, "' =(a")Ga.

Clearly: (n-a)* = (a®)"; (@®)" = (n-a*);m-(n-a) = (m-n) ®a; a™™" =
(@)™ ® (@) a™* = (a™)".

Theorem 3.12. Let M be a QM V-algebra. If aWb =1, thenVn € IN: a"Wb" = 1.

Lemma 3.1. Let M be a weakly-linear QMV-algebra. The following property holds
Ya,b,c€ M:

(i) aU(bUec)=1 = aU(cWUb) =1.
Proof. Suppose a U (b W¢) = 1. By Theorem 3.11, (bWe¢) Wa = 1. Since M is

weakly-linear, we have either a =1 or bWe¢ = 1. If a = 1, then we are done. If
bWc =1, then again by Theorem 3.11, cU b = 1; hence, a U (cWb) = 1. O
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4 QMV-algebras, p-ideals and congruences

Let K be a class of algebraic structures of the same type. The wvariety generated
by K will be denoted by HSP(K). Chang has proved [3] that every MV-algebras
can be represented as a subdirect product of linear MV-algebras. Consequently,
HSP(TMV) = HSP(MV). Thus, the logic based on HSP(TMV) is the same
logic as the logic based on HSP(MV). Chang has proved also [3] that an equation
holds in TMV iff it holds in the standard MV-algebra Mg 1] (cf. Example 2.3).
Consequently, the Np-valued Lukasiewicz logic (Rg-L) can be equivalently char-
acterized by MV, TMV or Mjg;}. For both MV and QMV-algebras, the partial
ordering relation C can be seen to express a notion of logical entailment. Furthe-
more, inn Ro-L, the notion of entailment is reducible to that of logical truth, for any
MV-algebra M = (M ,®, *,1,0) admits a “good implication”, i.e., a polynomial
binary operation — s.t. Ya,b € M:

a—+b=1 < a=<b (4.1)

As Theorem 3.5 shows, a — b is just a* & b.

What about the axiomatizability of the logics based on QMYVY, WLQMYV, and
QLQMYV? The logic based on QMY is clearly axiomatizable since HSP(QMV) =
QMYV. In order to axiomatize the logics based on WLQMY and QLQMY one could
try and generalize Chang’s subdirect-product representation theorem. However,
this is not possible, for one can prove [4] that:

e there exists an equation a = 1 that holds in WLQMYV but fails in QMYV;
e there exists an equation that holds in QLQMY but fails in WLQMYV.

Furthermore, one can prove that not every QMV-algebra admits of a “good”
implication. . For instance, the smallest genuine QMV-algebra M, (Figure 4) does
not admit of any good implication. Thus, from a logical perspective, entailment
cannot be reduced to logical t ruth.

Accordingly, we are faced with the following problems:

1) is the notion of entailment of the logic based on WLQMYV (finitely) axioma-
tizable?

2) If not, is the class of all logical truths of the logic based on WLQMYV algebras
(finitely) axiomatizable?

3) Is the notion of entailment of the logic based on QLQMYV (finitely) axioma-
tizable?

4) If not, is the class of all logical truths of the logic based on QLQMYV (finitely)
axiomatizable?

LAn elegant proof of this result has been given da P. Minari.
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The first step to tackle these problems is to try and generalize some results
concerning the usual correspondence between ideals and congruence relations. In
order to present these results, it will be expedient to summarize the the main steps
of Chang’s subdirect-product representation theorem. These steps can be sketched
as follows:

(i) there is a bijection between ideals and congruence relations of any MV-
algebra Mj;

(ii) the quotient algebra M=, (where = is the congruence relation determined
by a prime ideal I) is a linear MV-algebra;

(iii) for every non-zero element a of an MV-algebra, there exists at least one prime
ideal I s.t. a & I.

The conclusion of the theorem then follows from a well known result of uni-
versal algebra. As proved in [5], the usual 1:1 correspondence between ideals and
congruence relations breaks down in QMV-algebras. In this Section, we introduce
a stronger notion of ideal (p-ideal), which allows us to generalize (i) and (ii) above.
Resul t (iii) will be proved only for a particular quasi-variety of QMV-algebra and
under the hypothesis that every ideal i s a p-ideal.

Definition 4.1. Let M = (M ,®,* ,1,0) be a QMV-algebra. An ideal of M is
any non-empty subset I C M s.t.

(i) Va,be M :a,be ]l = adbe I
(i) ae I =VbeM: a®bel
Definition 4.2. An ideal I is prime iff Va,b € M: a®b* €T ora*®be I.
One can easily show that an ideal I is prime iff Va,b € M:
ambel=aclorbel. (4.2)

Definition 4.3. Two elements a,b € M are perspective (P(a,b)) iff they have a
common complement, i.e., dc€ M s.t. a®c=bOc=0anda®c=bDc=1.

It should be noticed that the relation P in general is not transitive.

Definition 4.4. A p-ideal is an ideal I, which is closed under perspectivity: Va, b €
I be I and P(a,b) = a €.

Differently from MV-algebras, in QMV-algebras not every ideal is a p-ideal.
Facts 4.1.
(i) Let I be an ideal. I is a p-ideal iffa€ ] = VYVbe M:ambe I.
(i) Let I be a p-ideal. Ya,be M: ambel < bmacl.

(iii) Let I be a p-ideal. Ya,b€e M: aWbel = a€l.
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(iv) Let I be a p-ideal. a* ®b=1andbel = a€l.

By Fact 4.1(i), it follows that in every MV-algebra, every ideal is a p-ideal.

It is easy to see that if = is a congruence relation on a QMV-algebra M, then
the set I := {a | a = 0} is a p-ideal.

Let M be a QMV-algebra. Let us define the distance function d: M x M — M
in the usual way:

d(a,b) = (a®b*) @ (b a"). (4.3)
If I is an ideal, let us define the binary relation =; on M in the following way:
a=rb < d(a,b) €l (4.4)

If M is a MV-algebra, then =; is a congruence relation. Furthermore,
I={aeM|a=;0} (4.5)

and a = b iff d(a,b) = 0. Thus, in the case of MV-algebras, the correspondence
I — = is a bijection from the set of ideals of M onto the set of congruence relations
on M.

As we have seen, in the case of QMV-algebras, one can still prove that every
congruence relation gives rise to a p-ideal; however, not every p-ideal determines
a congruence relation according to (4.4) (cf. [5]). In order to recover this corre-
spondence, we will define a new relation, which turns out to be stronger (in QMV)
than the relation based on the distance function.

Definition 4.5. Let M be a QMV-algebra and let I be an ideal on M. Ya,b € M:
a ~1 b iff the following conditions are satisfied:

(i) Ix € M st. 2* <a,b and 2O a,zObeT
(il) Jy € M s.t. y* <a*,b* and y©®a*, y©b* € I.
Lemma 4.1. Let M be a QMV-algebra. The following properties hold:
(i) Let I be an ideal. Ya,b€ M: a ~;rb = d(a,b) € I.
(ii) Let I be a p-ideal: a € I anda ~r b= beI.
(153) If M is an MV-algebra, then Ya,b€ M: a ~; b < d(a,b) € I.

Proof. (i) Suppose a ~y b. Then, 3z* < a,bst. a®x € [ and b® x € I. Thus,
b®a* X b®x and a ®b* < a® x. Since I is an ideal, we have a ® b* € I and
a* ®b e I. Hence, d(a,b) € I.

(ii) Suppose a € I and a ~; b. By (i), b®a* € I. Thus, bWa=bGa*Da € I. By
Fact 4.1(iii), it follows b € I.

(iii) By (i), it suffices to show that d(a,b) € I = a ~r b. Suppose a®b*®a*Ob €
I. Let z := a*Wb*. Clearly, z* < a,b. Moreover,a®z = a® (a* Ub*) = a®b* € I.
Similarly, one can prove that a* ®b € I. O
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By Lemma 4.1(iii), the relation ~; coincides (in MV) with the relation =;
defined according to (4.4).

Theorem 4.1. Let M be a QMV-algebra and let I be a p-ideal. The following
properties hold Ya,b,c,d € M :

(Z) a~ya,
(ZZ) a~rb = b~ra,
(ZZZ) a~rb = a* ~g b*,
(iv) a~rbandc~rd = a®c~rbdd.
Proof. (i)-(iii) The proof is straightforward.
(iv) Suppose a ~y b and ¢ ~; d. We want to prove that 32 € M s.t. z* < aDc, bdd,
and z® (a®c), 2z (bhd) € I. The proof of condition (ii) of Definition 4.5 is similar.
By hypothesis, 3z,y € M s.t. 2* < a,b,y* < ¢,d, z0a,z0b € I and y©ec,yod € 1.
Let z := z®y. By monotony of @, we get z* = z*®y* < aPe. Similarly, z* < bPd.
Thus, it remains to prove that z®(a®c), z0(b&d) € I. By hypothesis, a®z, cOy € I
sothat a ®@x®c®y € I. In order to prove that 2 ® (a ® ¢) € 1, it suffices to show,
by Fact 4.1(iv), that (z ©y ® (a®c)) " ®a®rdcoOy = 1.
TPY PO PaOrdcOy=aVz*DcUy da*Oc*
=a®cda*Oc* (zF R a,y* <c)
=1.

The proof of z ® (b&® d) € I is similar. O

Let I be an ideal on a QMV-algebra M. Let =; be the transitive closure of the
relation ~;. Thus, Va,b € M:

a=rbiff dxy,...2z, € M s.t.
Ty =a, x; ~y it (with1<i<n-—-1)and z, =b (4.6)
By Theorem 4.1, =; is a congruence relation on M. Conversely, every congruence

relation determines a p-ideal in the usual manner (cf. 4.5).

Lemma 4.2. Let M be a QM V-algebra and let I be a p-ideal on M. The following
conditions are equivalent Ya € M :

(Z) a=r0,
(i) a €l
(iii) a ~1 0.

Proof. (i) = (ii) Suppose a =y 0. Then 3zy,...,z, € M. s.t. 1 = a,...,x; ~
Tit1,---,T, = 0. Now, 0 € I and therefore, by Lemma 4.1(ii), z,—1 € [. By
iteration, we get a € I.

The proof of (ii) = (iii) and (iii) = (i) is straightforward. O
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According to Lemma 4.2 and Theorem 4.1, if I is a p-ideal, then =; is a con-
gruence relation and the set {a | a =1 0} is easily seen to be equal to I. Conversely,
given a congruence relation =, the set I := {a | a = 0} is still a p-ideal and =7 < =;
however, in general, = £ = as the following counterexample shows.

Let us consider the QMV-algebra My (Figure 4). The set I = {0} is clearly a p-
ideal. The congruence relation =; determined by ~ is the identity relation. [ is the
only proper p-ideal on My; thus, the identity relation is the only congruence relation
determined by a p-ideal. We want to show that there exists a congruence relation
= on M4 and two elements z,y € My s.t. z Zr y (i.e., x #y) and x = y. Let us
define z = y iff d(z,y) = 0 (cf. (4.3)). It is easy to check that = is a congruence
relation on My. Take z = a and y = b. Then, d(a,b) = a* ©b® a ® b* = 0. Thus,
a=banda#b.

Let M be a QMV-algebra and let I be a p-ideal on M. Let us consider the
quotient algebra M,=,. Clearly, M=, is a QMV-algebra. The equivalence class
determined by any element a of M will be denoted by [a].

Theorem 4.2. M /=, is weakly-linear iff I is prime.

Proof. Suppose M=, is weakly linear. Thus, V[a],[)] € M/=,: a@mb =1 b or
bMa=ra. Then, b*® (amb)=r1ora*® (bMma)=r1. By (QMV4),b*Pa=s1
ora*®b=r 1. Thus, by Lemma 4.2, a* ®b €l or b*®a € I.

Suppose that I is a prime p-ideal. We have to show that amb=r bor bMa =y a.
Suppose a M b Z; b. Then, a ® b* #; 1. By Lemma 4.2, a* ® b ¢ I. Since I is
prime, we have that b* ®a € I. By Lemma 4.2, b* ®a =7 0. Hence, bMa =y a. O

Theorem 4.3. Let M be a QM V-algebra, which satisfies condition (i) of Lemma
3.1. Ya € M s.t. a # 0, there exists an ideal I on M s.t. a ¢ I and s.t. if I is a
p-ideal, then I is prime.

Proof. Let I be the ideal, which is maximal w.r.t. the property “a ¢ I”. Suppose,
by contradiction, that I is not prime. Thus, Jz,y € M s.t. z ® y* ¢ I and
y ©®z* ¢ I. Since I is maximal, we obtain that 3¢,d € I and Im,n € IN s.t.
a<cdm-(zoy*)anda Jd®n-(y©z*). Let u:=c®d and p := Max(m,n).
By monotonicity of M (Theorem 3.8(i)), we obtain

aX(udp-(zOy))M(wadp- (o). (4.7)

We want to prove that

(udp- oy )muep- (yoz))] eu=1. (4.8)
(uap-(zoy) ' U(uap (o) du=
(udp-(zoOy")

Youap yor)eu op (yor ) eu=

wo(zoy))  owap yor)eu o (o)) du=
(zey)) U o (o)) du) =

(oy)) u((or)) vu). (4.9)
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By (QMV5) and Theorem 3.12, ((z ® y*)*)" U ((y ® 2*)*)” = 1. Now,
(yo m*)*)p <uY((y © m*)*)p; hence, by weak monotonicity of W (Theorem 3.8(ii)),
we obtain

(zoy)) v (uwu (yoz*))’) =1 (4.10)
By hypothesis, M satisfies condition (i) of Lemma 3.1 so that
(zoy)) ' u(((yoz)) vu) =1. (4.11)

By (4.9), [(u®p-(zoy"))m(udp - (yor*))] @u=1
By hypothesis, I is a p-ideal; since u € I we obtain, by Fact 4.1(iv),

(udp - (zoy))M(udp-(yoz*)) el (4.12)
By (4.7), we obtain a € I, contradiction. O

As a corollary, we obtain that if M is a QMV-algebra (satisfying condition (i) of
Lemma 3.1) s.t. every ideal is a p-ideal, then Ya € M (a # zero), there exists a
prime p-ideal I s.t. a ¢ I.
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