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Abstract

A maximal disjoint subset S of an MV-algebra A is a basis iff {z € A :
z < a} is a linearly ordered subset of A for all a € S. Let Spec A be the set
of the prime ideals of A with the usual spectral topology. A decomposition
Spec A = U;erT; U X is said to be orthogonal iff each T; is compact open and
S = {ai}icr is a maximal disjoint subset. We prove that this decomposition
is unrefinable (i.e. no T; = O NY with © open, ©NY =0, int Y = §) iff S
is a basis. Many results are established for semisimple MV -algebras, which
are the algebraic counterpart of Bold fuzzy set theory.
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1 Introduction

Given a topological space T one may try to study T by examining the various
quotient spaces that T" admits. Equivalently one may look at the different types of
decompositions 7" admits. One thus may obtain information about T by examining
related structures.

We shall apply this method to the class of MV -spaces. These spaces are the
prime ideal spaces of MV -algebras. To date there is no known purely topological
description of these spaces and this work may be considered as an attempt to obtain
more information towards that purpose.

This work may also be considered as a contribution to the duality between
an MV-space and its associated algebra. In this regard we endeavour to obtain
theorems of the form: an MV-space T" admits a decomposition of a certain type
iff the corresponding algebra A has certain properties. In order to obtain results
with substance we shall in general restrict ourselves to a particular type of de-
composition, namely what we shall call here “orthogonal” decompositions. These
decompositions will naturally relate to “orthogonal” subsets of the corresponding
MV -algebra and thereby set up an interchange between this type of decomposition
and properties of the algebra.
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We present some theorems already known in lattice-ordered group theory ex-
tendible to MV-algebras by using the I' functor [17]; however, in order to get a
self-contained paper, we exhibit the proofs using properly MV -machinery.

2 Definitions

An MV-algebra is a system < A,+,-,—,0,1 > where A is a non-empty set, “+”,
“” are binary operations, —a is an unary operation on A, 0,1 € A, 0 # 1.
We denote this by its underlying set A. The following axioms are to be satis-
fied: (A,+,0), (A4,-,1) are commutative monoids with identity 0, 1, respectively;
(a+b)=a-ba-b=a+b,a=a,0=1,;finally, a + ab = b + ba.

Introducing the operation “V” on A by defining a Vb = a + a - b, the final
axiom says a V b = bV a. We also introduce the operation “A” by aAb=aV b=
a-(a+b)(=b-(b+a)). The induced system (4, V,A,0,1) becomes a distributive
lattice with the least element 0, the greatest element 1 and the order defined by
a <bif aAnb = a. An ideal I of the MV-algebra A is a subset with 0 € I, I
is closed under +, and a € I, b € A implies a-b € I. Equivalently a € I, b < a
implies b € I. An ideal I of A is always a lattice ideal in the induced distributive
lattice < 4,V,A,0,1 > but lattice ideals in general are not MV -ideals. An ideal
P C Ais prime iff a Ab € P implies a € P or b € P or equivalently iff for each a,
be A, ab€ P or ab € P. All maximal ideals are prime.

For definitions and concepts on MV -algebras used here, we refer the reader to
[1] and [9]. Some of the next definitions can be found in detail in [7], however we
recall those essential for our purposes.

We denote by Spec A the set of prime ideals of A with the usual spectral topol-
ogy, i.e. © C SpecA is open iff for some ideal (or subset) I C A, we have
© =V(I) = {P € SpecA : I ¢ P}. It is known that this is a spectral space
[1]. An MV-space Z is a spectral space such that Z = Spec A for some MV-
algebra A. Not all spectral spaces are MV -spaces [4]. Now let a € A, the open
sets V(a) = {P € Spec A : a ¢ P} constitute a basis for the open sets of Spec A.
Each V'(a) is compact open, any compact open T is such that T' = V' (a) for some
a € A. An orthogonal or disjoint subset S C A is a nonempty set such that 0 ¢ S
and a, b€ S, a # b implies a A b =0 ([8],7.3.1).

Given any subset W C A, W # 0, weset Wh={z € A:zAw=0Vwe W}
and W+ is always an ideal of A. For brevity, (W+)t = Wt and {a}t = a*,
a € A. Let B(A) = {a € A: a+ a = a} be the subalgebra of idempotents of A4,
then we note that V'(a) is clopen in Spec A iff a € B(A).

By decomposition of a topological space is meant an expression T = U;crT5,
where each T; is a nonempty subspace of T' and T; N T; = () whenever i # j.

In what follows the following theorem will be useful (“Riesz decomposition
property”):

Theorem 1. Forz,y,z€ A, (z+y)Az<(zA2)+ (ZAYAz).

Proof. Let d = (z+y)Az. Thend <z +yandlet a =dAz. Soda=d-(dVz)=
dz by ([9], Ax.11’), which implies d = dV a = da+ a = dz + (d A ). Now
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dz < (x+y)-z=yAzand dz <d, then d < (dAyAz)+ (dAz). Therefore the
thesis since dAy=yAzand dAz=x A z. O

Finally we recall some elementary facts [9]. If I is an ideal of A, the congruence
(/I = y/I iff 2§ + Ty € I) defines the quotient M V-algebra A/I whose the
operations are those naturally induced by the operations of A.

A is said to be linearly ordered if the underlying lattice is linearly ordered and
obviously A/P is linearly ordered if P € Spec A.

An element a € A, a # 0, is an atom of A if a is an atom in the underlying
lattice.

3 Orthogonal decompositions

It is already known that Spec A has a decomposition SpecA = U{Ty : M €
Max A}, where Max A denotes the maximal ideals of A and Th = {P € Spec A :
P C M} ([7], Cor. 5).

Let C' C Spec A. Now C' is closed in Spec A iff C = V(I) = {P € SpecA: I C
P} for some ideal I of A. Then, in the above decomposition, each T is closed
since Tar = V(Onr) where Oy = N{P : P € Tas} ([7], Prop. 2).

Let Y be a nonempty subset of A. As usually, we denote by id(Y) ={z € A :
z<y1+ ...+ Yn,Y1,Y2,-.- ,yn € Y} the ideal of A generated by V. If Y = {y},
we put id(Y) = id(y).

Further, we set Rad A = N{M : M € MaxA}; Min A denotes the minimal
prime ideals of A.

The following result holds:

Theorem 2. Let M € Max A. Then Oy = M?, where M? =id{z-y : =,y € M}.

Proof. We note that Oyy = N{P € MinA : P € Ty }. Further, Min A coincides
with the set of minimal prime ideals of the underlying lattice ([10], Lemmal.2).
Hence Oy ={z € A : 2+ € M} by ([12], Prop. 2.2).

Let P € Ty, so M/P is an ideal in A/P. Moreover M /P # A/P, thus M/P =
Rad(A/P). If x, y € M, then z/P, y/P € Rad(A/P), and hence z/P -y/P =
zy/P = 0 by ([2], Thm. 1). This means xy € P for any P € Ty, i.e. M2 C Oyp.

Now let z € Oy, then - ¢ M and choose y € - — M. For some integer n,
u=g" € M. Let P € SpecA. If z € P, then /P = 0 < u*/P for any integer
k. Ifx ¢ P,theny € Psincexz Ay =0. Soy/P =0, ie. §/P =1 which implies
u/P = 1. So again x/P < u*/P for any integer k. P is arbitrary in Spec A, it
follows that 2 < u* for all integers k. In particular, z < u? € M? and therefore
Onr € M?, which gives the thesis. O

The subspaces Ts are, in general, not open. Were each T); open, then, as
Spec A is compact, we would see that A is semilocal, that is Max A would be finite.
The converse is true as well so we have:

Theorem 3. The decomposition Spec A = U{T : M € MaxA} has each T
clopen iff A is semilocal.
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We can of course have decompositions Spec A = U;c;T; with each T; clopen
even if A is not semilocal. The partitioning of Spec A into clopen subsets requires
an adequate supply of idempotents in A. As some M V-algebras have no non-trivial
idempotents, clopen decompositions of the corresponding MV -space do not always
exist,.

Let us examine first the case where we have a decomposition Spec A = U;erT;
where each T; is a closed subspace. Let M € Max A, then M € T; for some 3.
We claim that Th C T;. M contains certainly some m € Min A. If m ¢ T;, then
m € T; with j # ¢. But then M € T; which is impossible. Thus T C T;. We have
T, =U{Ty : M € T;}. Indeed, let P € T; and M € Max A be such that P C M,
hence M € T;, so Thy C T; and P € T);. Therefore we have

Proposition 4. If Spec A = U;ciT; is a decomposition of closed sets, then T; =
U{Tyw : M € Max ANT;} for eachi € 1.

Thus all “closed” decompositions refine to Spec A = U{Ty : M € Max A}. Let
us then focus on decompositions where as many components as possible come from
the basis of compact open sets. That is, where as many components as possible are
of the form V(a), some a € A. If two compact open sets V(a), V(b) are disjoint,
then we have V(a) NV (b) = V(a Ab) = 0 and so a Ab = 0. Let us then look for
partitions of Spec A related to orthogonal subsets of A. Every orthogonal subset
of A can be extended, via an application of Zorn lemma, to a maximal orthogonal
subset and we shall look for decompositions correlated with such subsets. Given
A call a decomposition Spec A = U;e;T; U X an orthogonal decomposition if each
T; = V(a;) for some a; € A, where the set S = {a; : ¢ € I} is a maximal
orthogonal subset and X NT; = ¢ for any ¢ € I. We have the following:

Theorem 5. Let A be an MV -algebra and suppose Spec A = U;e;T; U X is a
decomposition with each T; compact open. Then the decomposition is orthogonal iff
int X = 0.

Proof. Suppose first that Spec A = U;c;T; U X is an orthogonal decomposition.
There is an a; € A such that T; = V(a;) and S = {a; : i € I} is a maximal
orthogonal subset of A. Suppose int X # @) and let V(b) C X for some 0 # b € A.
As XNT; = 0 for any i € I, we have V(b)NV (a;) = 0 for any i € I. Hence b € S+.
But as S is a maximal orthogonal set, S+ = {0} and so b = 0.

We infer int X = (). Conversely, suppose we have a decomposition Spec A =
UierT;UX with each T; compact open and int X = (). Let S = {a; : i € I}, where
T; = V(a;). If S is not a maximal orthogonal set, then S+ # 0. Choose b € S+, b #
0, then V (b) # 0. But then V(b) = V(b)NSpec A = U;cr(V(D)NV (a;))U(V ()UX).
AsV(b)NV (a;) = V(bAa;) = V(0) = Bforany i € I, we have V(b)) = V(b)NX C X.
Thus int X # 0 and hence it follows that S is a maximal orthogonal set and so the
given decomposition is orthogonal. O

Remark 6. With the same notations of the proof of Theorem 5, we note that X =
V(S).

Thus we have a correspondence between maximal orthogonal subsets of a given
MV -algebra A and the maximal decomposition of Spec A. Note however that this
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correspondence is many-one, different maximal orthogonal sets corresponding to
the same orthogonal decomposition.

Observe that not all spectral spaces admit a decomposition of this type. Con-
sider, for example, the sublattice £ (with 0,1) of the lattice of all open subsets of
the real line generated by the open sets that contain the number 0. This sublattice
has no orthogonal subsets. As the argument in Theorem 5 could be carried out in
a distributive lattice, it follows that Spec £ has no orthogonal decompositions. By
contrast ([8], 7.3.2),

Theorem 7. If an MV -algebra A contains a non-linearly ordered subset L, then
A contains a maximal orthogonal subset.

Proof. By assumption, there are x, y € A with z £ y and y £ z. Hence zy, Zy
are non-zero. By ([9], Thm. 3.3), z§ A Zy = 0, so {z7, Ty} is an orthogonal set.
An application of Zorn lemma guarantees that {zg, Zy} is contained in a maximal
orthogonal set. O

Corollary 8. If A is a non-linearly ordered MV -algebra, then Spec A admits an
orthogonal decomposition.

If in a given orthogonal decomposition T = U;crT; U X, we have X = (), then
all the T; become clopen. We can ask if this happens even if X # (), so the same
MYV -space T can have two different orthogonal decompositions, one with the X =0
and the other with the X # (). Some examples will clarify this.

In the Examples below C will denote the MV-algebra C = {0,¢,2¢,...,1 —
2¢,1—¢,1} [9) and N={1,2,...}.

Ezample 1. Let A = C"* with n € N fixed and we denote by b(i) the i-th component
of a generic b € A. Let b; be the element of A with b;(m) =0, i # m, b;(i) = 1; let ¢;
be the element of A with ¢;(m) =0, i # m, ¢;(i) = ¢. Then both S; = {b; : i <n}
and S> = {¢; : @ < n} are maximal orthogonal subsets of A. With respect to
Sy, SpecA = V(b)) U...UV(b,) and each V(b;) is clopen. With respect to
S2,Spec A =V(er)U...UV(en)UV(S2). As ¢; ¢ B(A), we see that V(¢;) is not
clopen. Now V(S2) = Max A since id(S;) = Rad A.

Ezample 2. Let A = C¥, b;, c;, defined analogously as above. Again S; = {b;

i € N} and Sz = {¢; : i € N} are maximal orthogonal sets. id(S;) is a proper
ideal, hence V(S1) # 0, thus Spec A = (U;enV (b;)) U V(S1), each V (b;) is clopen.
Also Spec A = (U;enV (¢;)) UV(S2), no V(¢;) is clopen. Now Max A Z V(S;) while
V(S2) = Max A since again id(S,) = Rad A.

Ezample 3. Let A = [0,1]N, b; as before. Here V' (b;) = {M;} where M; = {z € A :
z(i) = 0} € Max A. V(S) contains all the other primes where S = {b; : i € N}.

Ezample 4. Let A = C([0,1],[0,1]), the MV-algebra of continuous functions [6].
We have B(A) = {0,1}, hence in any orthogonal decomposition Spec A = U;c;T; U
X, no T; will ever be clopen.

Given the data of these examples, we may wish to impose further conditions on
the orthogonal decompositions in order to be able to distinguish their properties.
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Furthermore we would like the compact open component of an orthogonal decom-
position to be “minimal” in some sense. The above examples provide us with two
notions of “minimal”.

Consider in Examples (1), (2) above the clopen sets V(b;). If P; = {x : z(i) =
0}, M; = {z : =z(i) € RadC}, then V(b;) = {P;, M;},V(c;) = {F;}, and so
V(b;) = V(ei) U{M;}. V(e;) is compact open and int{M;} = 0. On the other hand
the only proper compact open subset of V(c;) is #. Thus we distinguish the two
different orthogonal decompositions by these properties.

Let A be an MV -algebra and suppose Spec A = U;e;T; U X is an orthogonal
decomposition. We shall say the decomposition is unrefinable if no T; = O U Y,
where © is open, ©NY =0, int Y # . We shall call the decomposition atomic if
no 7; contains a nonempty compact open proper subset, i.e. 7; is an atom in the
lattice of compact open subsets of Spec A.

Unrefinable means of course that we cannot replace each 7; by two proper
disjoint compact open subsets of T;. Atomic means that each T; is an atom in the
locale of open subsets of Spec A. We shall deal with the unrefinable case first but
we need to recall some definitions. For z € A and n € N, we define inductively
(n+1)z=nx+z 2°=1, 2" =2".2. We say z has finite order n if n is the
least integer such that nx = 1. If no such n exists, we say that x has infinite order,
ordz = oco. If each z € A has finite order n, A is said locally finite ([9], Def. 3.10).

Theorem 9. Suppose a € A, orda = oo, is such that {x € A : z < a} has
orthogonal elements. Then V(a) = OUY, ONY =0, int Y # 0 for some compact
open © C V(a).

Proof. By hypothesis there are a1, as < a, a1, as #0, a1 Aas = 0. Let © =V (ay),
Y=V(a)—0. Then V(a) =0OUY,0NY =0 andso V(a) CY,V(a) #0. O

Corollary 10. Suppose Spec A has an unrefinable orthogonal decomposition. Then
A contains a mazimal orthogonal subset S such that {x € A : x < a} is linearly
ordered for each a € S.

Proof. Let Spec A = U;erV (a;) U X be an unrefinable orthogonal decomposition
and let S = {a; : i € I'}. We know that S is a maximal orthogonal set. Let
a; €S, Ly ={x €A : z<a;}. If L; is not linearly ordered, then, as in Theorem
7, there are x, y € L;, z, y # 0 with x Ay = 0. But then V(a;) = V(z) UY with
V(z)NY =0, int Y # 0. This contradiction proves the Corollary. O

Referring back to Example (4), as it is clear that for a non-zero function
f € C([0,1],[0,1]), the set {g : g < f} is not linearly ordered, we see that
SpecC([0, 1],]0,1]) admits no unrefinable orthogonal decompositions.

Converse to the preceding Corollary, we ask, if S is a maximal orthogonal subset
of A such that {z € A : z < a} is linearly ordered for each a € S, does Spec A
admits an unrefinable decomposition?

Given such an S we know that Spec A = U,csV (a) UX, int X = (). Suppose for
some a € S we have V(a) =OUY, ONY =0, int Y # (), © compact open. Then
© = V(b) for some b € A; since int Y # ), thereisa c € A with § # V(c) CY.
Hence V(b)) NV (c) =0, s0 bAc=0.
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Now V(b), V(c) C V(a) = V(id(a)). Thus there are m, n such that b < ma,
¢ < na. We can choose m, n minimal, hence b £ (m —1) -a, ¢ £ (n — 1) - a. Thus
ba™~' # 0 # ca™ .

Now ba™ ! < ma-a™ ! < a; similarly ca” ! < a. By assumption {z € A :
r < a} is linearly ordered, so ba™ ! A ca™ ! # 0, but ba™ t Aca® ! <bAc=0.
This contradiction establishes the converse to the Corollary.

Following ([8], 7.3) or ([13], Def.19.2), we call a maximal orthogonal subset
SCAabasisifforallae S, {x € A : x <a} is alinearly ordered set.

Summarizing we have

Theorem 11. Spec A admits an unrefinable orthogonal decomposition iff A con-
tains a basis.

Remark 12. In Example (1) we see that {z € A : x < b;} is linearly ordered for
each b;, so that S = {b1,ba,... ,b,} is a basis.

As each V(b;) = O©UY, © compact open, int Y = () we see that Theorem 11
is “best” in some sense. On the other hand, we see in Example (1) that the V(¢;)
contain no proper nonempty compact open sets. The corresponding decomposition
is atomic. Similarly in Example (2). The V(¢;) of Example (2) are also atoms in
the corresponding locale. It is clear in these examples, and from the definitions,
that an atomic decomposition is unrefinable. This relation is reflected in the basis.

Then we define a strong basis to be a maximal orthogonal subset S C A such
that id(a) is a minimal ideal for each a € S (here minimal ideal always means
minimal non-zero ideal).

Theorem 13. FEvery minimal ideal is linearly ordered.

Proof. Suppose I is a minimal ideal and that there are x, y € I, z £ y, y £ z.
Then {zy,Zy} C I is an orthogonal set. Let J = (z7)*, J # 0 as 7y € J. But
gy eI, solIndJ # {0}, hence INnJ =1. Thus I C J and so zj € J, which is
impossible. O

Corollary 14. If S C A is a strong basis, then it is a basis.

Proposition 15. Let a € A. Then V(a) is an atom in the lattice of compact open
subsets of Spec A iff id(a) is a minimal ideal.

Proof. Suppose there’s an ideal J # 0, J C id(a), J # id(a). Then there is a prime
ideal P, J C P, a ¢ P. Choose b € J,b# 0. As b € id(a), we have V(b) C V(a).
V(b) # 0, hence V(a) = V(b) by hypothesis. Since a ¢ P, we see that b ¢ P, i.e.
J ¢ P which is absurd.

Conversely, let ) # © C V(a) with ® = V(b) for some b € A. Then, from
V(b) C V(a), it follows id(b) C id(a), hence id(b) = id(a) and this means © =
V(b) =V(a). O

For an MV -algebra A, we define the socle of A, Soc A, to be the sum of the minimal
ideals, or 0 if no minimal ideals exist. Thus Soc A =id (U{I : I minimal ideal}).

Theorem 16. The following are equivalent:
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(i) Spec A admits an atomic orthogonal decomposition,

(ii) A has a strong basis,
(iii) (Soc 4)*+ = {0}.

Proof. Assume (i). Let Spec A = U;erV(a;) U X be an atomic partition. Let
S ={a; : i€ I}. Sisa maximal orthogonal set and, by Theorem 13 and
Proposition 15, we see that S is a strong basis.

Assume (ii). If S is a strong basis for A, we have id(a) is a minimal ideal for each
a € S, hence evidently S C Soc A. Thus we see (Soc A)* C S+ = {0}.

Assume (iii). Since (SocA)t = {0}, we see that Soc A # {0}, hence A contains
minimal ideals. For each minimal ideal I, choose an a; € I, af # 0. Then
id(ar) =1. Let S = {ay : Iis a minimal ideal}.

Claim 17. S is a strong basis. Clearly S is an orthogonal set. Let b € S+ and
x € Soc A. Then there are minimal ideals I, I, ..., I, such that x < ar, +...+ar,
with ay, € I; foreach i =1,2..., n. Now 2 Ab < (af, Ab)+ ...+ (ar, AD) =0
by Theorem 1. Thus b € (Soc A)*, so b = 0 and then S is maximal orthogonal.
Now the decomposition Spec A = Uy, esV (ar) U X, with X = V(S5), is atomic by
Proposition 15.

O

Later we will examine the notion of basis and strong basis when A is semisimple,
ie. Rad A = {0}.

Besides the notions of unrefinable and atomic decompositions, another some-
what natural condition we may wish to impose on an orthogonal partition Spec A =
User T; U X is that X be an irreducible closed subset. Since Spec A is a spectral
space, this would mean that X is the closure of a point, that is X = V(FP) =
{P € Spec A : Py C P}. The corresponding maximal orthogonal set .S must then
satisfy id(S) = B.

Consider, for example, the subalgebra A C CY generated by the ideal I = {z €
CY : =x(n) € RadC and x(n) = 0 on a cofinite subset of N}, i.e. A = IT'UT,
where I = {z € A : ¥ € I}. Letting ¢;, i € N, be as in Example (2), we see
that each ¢; € A. We obtain the partition Spec A = (Usen V(¢;)) U V(S), where
S ={e¢; : i € N}. Tt is easy to see that I = Rad A4, id(S) = I and V(S) =1,
I being the unique maximal ideal of A and A is a perfect MV-algebra ([7], p.
342). Call an orthogonal decomposition Spec A = U;c;T; U X irreducible if X is an
irreducible closed nonempty subset of Spec A. We have that

Proposition 18. For an MV -algebra A, Spec A admits an irreducible orthogonal
decomposition iff there is a maximal orthogonal subset S C A with id(S) € Spec A.

Proof. We saw that X irreducible implies that id(S) is a prime ideal where S is the
corresponding maximal orthogonal set for the irreducible partition. Suppose now
that S is a maximal orthogonal subset of A and id(S) € Spec A. We then have the
orthogonal decomposition Spec A = UyesV (a) UV(S). Since V(S) = V(id(S)) and
id(S) is prime, it follows that V(S) is an irreducible closed subset. O
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We also have:

Proposition 19. For a mazimal orthogonal set S C A, idS € Spec A iff id S N
s’ # 0 for all orthogonal sets S’ C A.

Proof. If id(S) is prime, then clearly id(S) N S" # § for any orthogonal set S’
Conversely suppose that id SN S’ # () for any orthogonal set S'. Let z,y € A,
then 2y AZy = 0. If x £ y and y £ z, then S = {zy,Zy} is an orthogonal set, so
zy € id(S) or zy € id(S). If z < y, then 0 = zg € id(S). Similarly if y < z. Hence
id(S) is prime. O

Suppose then that SpecA admits an irreducible decomposition
Spec A = U;erT; U X. Since X = V(P)) for some Py € Spec A, we see that X
is a chain under inclusion and contains exactly one maximal ideal. The remaining
maximal ideals are spread amongst the T;. Now M € T; implies Ty C T;. We can
ask whether or under what conditions T; = U{Ty : M € T;}. Recalling [7] that
an hypernormal MV -algebra is an MV -algebra A such that Spec A is a disjoint
union of chains of prime ideals under inclusion, we shall prove that

Proposition 20. Let A be hypernormal. Suppose Spec A = U;er T; U X is an
irreducible orthogonal decomposition. Then T; = U{Ty @ M € Ty} for alli € T
except at most one. The exception T; , if it exists, satisfies T;, = U{Ty : M €
T; } U (Ta, — X), where M, is the unique mazimal ideal in X.

Proof. Clearly for all ¢, U{T,y : M € T;} C T;. Suppose for some i, that
UWTy : MeT;, } #P C M for some M € Max A and M ¢ T;,. Were M € T;,
i #1i,, then P € T; as well. Thus M € X and M = M, the unique maximal ideal
in X. Hence P € Ty, — X. Let Q € Ty, — X. Now Q C Por P C @ as A is
hypernormal. If Q C P, then Q € T;,. If P C @ and Q € T}, then P € T;. Thus
again we have @ € T;,. Thus T;, = U{Ty : M € T;,} U (T, — X). As M, is
unique, we see there can be at most one such Tj_. O

It would be interesting to know under what conditions we would have T; =
T, — X and whether we ever have X = Ty, . The latter means that X = V(m,),
where m, is the unique minimal prime contained in M,.

4 Annihilators ideals and orthogonal sets

By an annihilator ideal I is meant an ideal I C A such that I = H* for some subset
H C A. We note that H can be taken to be an ideal in A as H+ = (id(H))*.

Lemma 21. Suppose a € A is such that if x < a, then {y € A : y <z} is not a
linearly ordered set. Then A contains an infinite ascending sequence of annihilators
ideals.

Proof. Tt follows from the assumptions, as in Theorem 7, that there z1, y; < a, 0 #
x1, y1 and 71 Ay = 0. Hence y; € zi-. Suppose we have constructed annihilator
ideals 7 C 73 C ... C o} with 2, < ¥y < ... <21 < a and vr — 7y # 0.
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As z, < a, there are Tpy1, Ynt1 < TnyTntt, Yntt 7 0, Tnt1 A Yne1 = 0. Hence
T Cap . NOW yny1 € Ty — T @S Ynt1 A Ty = Yny1. By induction we have
an infinite ascending sequence of annihilator ideals. O

We shall say that A satisfies the ascending chain condition (acc) on annihilator
ideals if every ascending sequence of annihilator ideals is finite, where we assume
A not linearly ordered, that is the order of the underlying lattice is not linear.

Proposition 22. Suppose A satisfies acc on annihilator ideals. Thus every or-
thogonal subset of A is finite.

Proof. Suppose to the contrary that S = {a;,as,...} is a denumerable orthogonal
subset of A. Forn =1,2,...,1let S,, =S —{a1,...,a,}. Then SO S, D S2 D ....
Hence Si- C S5~ C .... By acc, there must be an n € N with S;- = S, |. Now
an+1 € Sy q, hence a,q1 € Sp. But any1 € S, and this is impossible. O

Proposition 23. Suppose A is such that all orthogonal sets are finite. Then A
satisfies acc on annihilator ideals.

Proof. Suppose we have an infinite ascending sequence Hi- C Hy C ... of an-
nihilator ideals. For each n = 1,2,..., let D, = H;** N H;,,. There is an
x € H;- | — H;-, so there is a y € H, such that 2 Ay # 0. Now H, C H-*, so
y € Hi. Hence x Ay € Hi-*. Asz € H;- |, s0is z Ay. Then 0 # z Ay isin D,,.
For each n, therefore choose a, € Dy, a, # 0 and let S = {a;,as,...}. Consider
a; A\ aj, j > 1. Since a; € D; = HiJ-J- N Hf;l and Hf;l - Hf;j, then a; € Hf;]
But a;1; € Diy; C HZJ;JJ- So a; A a;+j = 0, therefore S is an infinite orthogonal
sequence and the proposition is proved. O

The next theorem is called the ”Finite Basis Theorem” and it is similar to
the one for lattice-ordered groups (([8], 7.4.6), ([13], Thm. 46.12)) and relatively
normal lattices [18].

Theorem 24. The following are equivalent:
(i) Min A is finite with at least two members,

)
(ii) A satisfies acc on annihilator ideals,
(iii) A has a finite basis,
(iv)
Proof. (iii) and (iv) are equivalent by Theorem 11, hence we show the equivalence
of (i), (ii) and (iii).

Assume (i). Let Min A = {my, ma, ... ,my} and since N, m; = 0, we can write
ACA/my x A/my x ... X A/m,, subdirectly. Each A/m; is linearly ordered and
A is not linearly ordered as n > 2. Clearly orthogonal sets in A/my x ... x A/m,

are finite, thus the same must be true for A. Hence A satisfies acc on annihilator
ideals by Proposition 23.

Spec A admits an unrefinable orthogonal finite decomposition.
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Assume (ii). Let S = {a1,as,... ,a,} be an orthogonal set. By Lemma 21, there
are b; < a; such that {x € A : x < b;} is linearly ordered. Hence {by,bs,... by}
is an orthogonal set as well, suppose {b1,ba,...,b,}+ # {0} and choose a # 0,

a € {b,...,b,}*. Then {a,b;,...,b,} is an orthogonal set. Applying Lemma 21
again, there is a b, 1 < a such that {x € A : x < b,41} is linearly ordered. So
{b1,... ybpt1} is orthogonal, {b1,... ,b,} C {b1,...,bn,bnt1}. By Proposition 22,
all orthogonal sets are finite, so this process must end with a maximal orthogonal set

{b1,... by} such that {x € A : x < b;} is linearly ordered for any i =1,... ,m.
Hence we have a finite basis.
Assume (iii). Let S = {ay,...,an} be a finite basis. Since {x € A : z < q;}

is a linearly ordered lattice ideal of A, we know a; is a prime ideal. Since S is a

maximal orthogonal set, we also know {0} = S+ =ai N...Nal. Let m € Min A,

then ai N...Na}r C m and so aj C m for some i € {1,...,n}; thus we infer
Min A = {ai,...,a}}. As S is an orthogonal set, it has at least two members,
hence so does Min A. O

An analysis of the above results would show if A has a finite basis, then the
cardinality of any orthogonal set would be less than or equal to 2" where n =
card(Min A). We would also have an upper bound on the length of any ascending
sequence of annihilator ideals. A, of course, must be semilocal with card(Max A) <
card(Min A).

If S = {a,as,...,a,} is a basis, then Min 4 = {ai,... ,at}. a; € ai but
a; € aj- when i # j. Hence a; € V(a;). Suppose M; is the unique maximal ideal
over ai. If M; € V(ay), then a;- € V(a;) and so i = j. So if for i # j, we have af,
ajL C M € Max A, then S C M. More can be said in the semisimple case and we
will treat this later.

The cardinality of any basis must be equal to the cardinality of Min A, thus
all bases have the same cardinality. This fact is true even when the basis are not
finite. That is

Proposition 25. Suppose an MV -algebra A has bases S1 and Ss.
Then card S; = card S-.

Proof. Index S1, Sy by A1, Ay so S1 ={an : o€ A} and So ={b, : v € Ay}
For each v € Ay, there is an a(y) € Ay with byAaq(s) # 0 as Si- = {0}. Moreover
if by Aag, #0, by Aag, #0, then a1 = as. For as {& € A : x < by} is linearly
ordered, we can assume by A aq;, < by A ag,. Thus by Aag, = by Ay, Aag, =0
if ay # ay. Thus we have an injection 7 — a(y) of Ay into Ay. By symmetry,
there is an injection A; into As, so by the Schroeder-Bernstein theorem, card Ay =
card A, hence card S; = card Ss. O

Observe, in the above, that if by Aa, # 0, then b, and a, must be comparable.
For if b, £ a, and aq £ b,. Then 0 # b,@a, byas by ([9], Thm. 1.13) but
byda A bya, = 0 by ([9], Thm. 3.3). Let = = anby, y = byla. S0z < aqa, y < by,
zAy=0,z,y#0. Hence z < by A ay or by Aay < z. Similarly y < by A a, or
by Nag <y. If by Nag <z, y,then by Aay <z Ay=0. If y <b,Aaq <z, then
y = 0. Similarly if < b, Aa, <y, then £ = 0. Thus we must have z, y < by Aa,.
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Thus z <y or y < x which is impossible as z A y = 0. Hence b, < a, or ay < b,.
Thus we proved ([13], Cor.19.4):

Proposition 26. Given two basis S1, So and a € Sy, there exists a unique b € Sy
with a < b or b < a.

A linearly ordered MV -algebra A is local, that is has a unique maximal ideal
which is Rad A. By ([5], Prop. 3.1), B(4) = {0,1}. This allows to show

Proposition 27. If Min A is finite, then B(A) is a finite Boolean algebra.

Proof. Let Min A = {my,ma,... ,m,}. Clearly A C A/my X ... x A/m,, sub-
directly. Each A/m; is linearly ordered, so B(A) C B(A/m; X ... x A/m,) =
B(A/mq) x ... x B(A/m,) = {0,1}". O

Let At(B(A)) be the set of all atoms of B(A). Then the following result, already
known in lattice theory (cfr., e.g., ([19], Cor. 5.13)), holds:

Proposition 28. Let a € B(A). Then V(a) is connected in Spec A iff a €
At(B(A)).

Remark 29. 1If a € At(B(A)), V(a) is connected component because V (a) is clopen
connected.

Proposition 30. Let A be semilocal. For any M € Max A, Ty = V (a) for some
a € At(B(A)). Further, if C is a connected component of Spec A, then C = Ty
for some M € Max A.

Proof. By Theorem 3, any T is clopen and hence Ty = V(a) for some a € B(A).
But a € At(B(A)) by Proposition 28 since T is connected by ([7], Cor. 4). Now
let C' be a connected component of Spec A and P € C. Since P € T for some
M € Max A, then Th; C C but Ty is clopen and hence C' = Ty necessarily. O

The next theorem is well known for commutative rings with unit (cfr., e.g.,
([15], Thm. 2.5)).

Theorem 31. Min A is finite iff P € U{Q : Q € Min A—{P}} for any P € Min A.

Proof. Let Min A = {P,, Py, ..., P,} and, without loss of generality, assume P; C
PU...UP,. Clearly P; € P; for any i = 2,... ,n, hence there exists a z; € P, — P;
for any i = 2,...,n, sothat = 22 + ... + 2, € P;. But z € P, for some
he{2,...,n} and z}, < z, thus z;, € P, which is a contradiction.

Conversely, assume Min A infinite and define the set FF = {a € A : {P €
MinA : a ¢ P} is cofinite}. Evidently 1 € F and let a € F, a < b. Since
{PeMind : a¢ P} C{P€MinA : b¢ P}, we have that b € F.

Suppose now a, b € F and clearly {P € MinA : aAb¢ P} ={P € MinA :
ag PyN{P eMinA : b ¢ P}. This implies that a A b € F, hence F' is a proper
lattice filter of A. Certainly there exists (cfr., e.g., ([14], Thm. 7)) a prime ideal
Q € Spec A such that QN F = . Let N € Min A be such that N C @ and since
N gU{P : P € MinA — {N}}, there exists z € N such that z ¢ P for any
P e Mind - {Q}. Now {P € MinA : z ¢ P} =MinA — {Q}, thus x € F, so
x € FNQ =0, a contradiction. O
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We saw that in any MV -algebra A with Min A finite (and hence compact), any
orthogonal subset of A is finite by Theorem 24. However, we have a more general
result:

Theorem 32. Let X be a compact subspace of Spec A such that "{P : P € X} =
{0}. If S is an orthogonal set of A such that id(S) € P for any P € X, then S is
finite.

Proof. Let X(a) = X NV(a) for any a € S. If P € X, there exists a € S such
that a ¢ P, which implies P € V(a) N X = X(a). So X = UsesX(a) and since
X is compact, we have X = X(a;) U...U X(a,) for some ay,as,...,a,. Let
a€S,a¢{a,as,...,a,}. By hypothesis, there exists P € X such that a € P,
ie. Pe XNV(a) = X(a) #0. Since aAa; =0 for any i = 1,2,... ,n, we have
X(a) = X(a)NX = U, X (a)NX (a;) = 0, a contradiction. Then S = {a1,... ,a,},
i.e. S is finite. o

Since Max A is a compact subspace of Spec A, the following Corollary is imme-
diate:

Corollary 33. Let A be semisimple and S be an orthogonal set. If S € M for any
M € Max A, then S is finite.

Corollary 34. Let Min A be compact and S be an orthogonal set. If S € P for
any P € Min A, then S is finite.

5 The semisimple case

We shall show that if A is semisimple and has a basis, then A has a basis of
idempotent elements. A consequence of this will be that A has a basis iff A has a
strong basis. In Examples (1) and (2), which are not semisimple M V-algebras, we
see that each algebra has both a basis and a strong basis. This may suggest that
in all algebras the existence of a basis implies the existence of a strong basis. The
following example shows this is not the case.

Let A = *[0,1] x *[0,1], where *[0,1] is a proper non-standard model of
the unit interval [0,1] [5]. S = {e1,e2}, er = (1,0), e3(0,1) is a basis for A as
{r € A : x < e;} is linearly ordered for each ¢ = 1,2 and S is a maximal
orthogonal set. But A contains no minimal ideals. For let I be an ideal of A and
let (z,y) € I, (z,y) # (0,0). We can assume z # 0, thus there’s an infinitesimal 7,
7 < x. Hence (7,0) € I and consider the arithmetical square 72 of 7. So 72 < 7,
let J =id(7?) x {0}, where id(7?) is the ideal generated by 72 in *[0,1]. Then J is
an ideal of A and J C I. Claim (7,0) ¢ J. For (7,0) € J implies 7 € id(7?), so for
some natural number k, 7 < k72.

As *[0,1] lies in a field, we can divide by 7 to obtain 1 < k7 which is ab-
surd. Thus J # I, hence I is not minimal. Hence A has no minimal ideals, thus
(Soc A): = 0+ = A. Hence A has no strong basis by Theorem 16.

Proposition 35. An MV -algebra A is semisimple iff for allz € A, x = \/, (-
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Proof. Assume x = \/, _\(z-nx) for all z € A. Suppose for some =, y € A that
nx <y foralln € N. Then z-nz <z -y. Hence \/, (2 -nz) < 2 -y and we have
z < x-y; that is ¢ = 2 -y and so A is semisimple by ([1], Thm. 31). Conversely,
suppose A is semisimple. For z € A, n € N, we clearly have z - nz < z. Assume
z-nzx <yforalln €N Let M € Max A, so z/M -nx/M < y/M for all n € N,
so x/M -n(z|M) <y/M,n € N. Since A/M is locally finite ([9], Thm. 4.6), there
is an n such that n(z/M) =1,if c ¢ M. Thus /M < y/M,z ¢ M. If x € M,
then 0 = 2/M < y/M. Hence zj € M, but M is arbitrary in Max A, thus zy = 0
because A is semisimple. Then we get z < y, ergo the thesis. O

Following [3], we say an ideal I C A is a-closed if V;x; € I whenever the
supremum exists and each z; € I, where j runs through an index set of cardinality
less than or equal to a, a an infinite cardinal. We say I is closed if @ = card A
and, as usually, we set Ny = card N.

The following three theorems are well known in lattice-ordered groups the-
ory (cfr., e.g., ([8],11.1.9), ([13], Thm.53.7); ([8], 6.1.9), ([13], Prop.21.11); ([13],
Prop.19.14); respectively):

Proposition 36. Let A be semisimple and I be an No-closed ideal. Then A/I is
semisimple.

Proof. Suppose for some z, y € A that we have n(z/I) < y/I for all n € N. Then
/I -n(z/I) < x/I-y/I =x-y/I. Hence (z-nz)-(Ty) € I for all n € N. Now
T = Vpen (2 - nz) by Proposition 35, thus z - (Fg) = Vpen ((z - nz) - TY) by ([2],
Thm. 5). As I is Ny-closed, we infer x - (Tg) € I. Then z/I < xy/I and so
x/I =x/I-y/I, hence A/I is semisimple. O

Proposition 37. Annihilator ideals are always closed.

Proof. Let I = H' for some subset H C A. Suppose z; €1,j€ Aandx =
Vjen xj exists. Let h € H, then h Az = Vjea(h Azj) = 0 by ([2], Thm. 5) as
z; €. Hencex € H- = 1. a

Proposition 38. Let P € Spec A be such that P+ # {0}. Then P € Min A and
for some 0 #a € A, P=a't and {x € A : z < a} is linearly ordered. Moreover,
if P € Max A, then na € At(B(A)) for some n € N.

Proof. Let 0 # a € P+. Then P C P* C a', now a € P, hence a* C P, thus
P=a'. Let z, y < a and 27 # 0, By # 0. Since 2j A Fy = 0 by ([9], Thm. 3.3),
either 2y € P or Ty € P. If x§j € P, then 0 # 2§ = x5 A a = 0, a contradiction.
Similarly if Zy € P. Hence zjy = 0 or Zy = 0, i.e. ¢ < y or y < z by ([9],
Thm. 1.13) and this means {z € A : x < a} is a linearly ordered set. Now let
M € Spec A be such that M C P =a’. Then 0 # a € a** C M+ and as above,
M =at, ie. M = P which implies P € Min A.

Now, if P € Max A, since a ¢ P, na = a" € P for some n € N by ([9], Thm.
4.7). But na € P+, hence we have na Ana € PN P+ = {0}, i.e. na € B(4) by
([9], Thm. 1.16). Let e = na. By Theorem 1, P = a+ = el = id(é). Now let
b€ B(A) with 0 < b < e. Since &€ < b, P C id(b) which implies id(e) = P = id(b)
since P € Max A. This means b = €, i.e. b = e, hence e € At(B(A)). O
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Suppose now that A is semisimple with a basis S. Let a € S. Since {z €
A : x < a} is linearly ordered, we know that (id(a))* = a' is a prime ideal by
([1], Thm. 26). By Propositions 36 and 37, A/a’ is semisimple. Since A/a’ is
also linearly ordered, it must be locally finite by ([1], Thm. 32), thus a* € Max A
by ([9], Thm. 4.7). Since a € a*t, Prop. 38 tells us that at = et for some
e € At(B(A)), where e = na for some n € N. Similarly, for 0 #£ b € S, b # a,
we have b = d* for some d € At(B(A)), where d = mb for some m € N. Of
course, e # d otherwise a € bt = d+ = el = a', a contradiction. Thus the set
S' ={e € At(B(A)) : e =na for some n € N,a € S} is clearly an orthogonal set.
Since S'+ C S = {0}, we have that S’ is a maximal orthogonal set, hence it is a
basis. As S C At(B(A)), we must have S’ = At(B(A)) and therefore

Proposition 39. If A is semisimple and has a basis, then At(B(A)) is also a
basis.

From this, we observe that the MV -algebra of Example (4) has no basis.

Remark 40. Following [2], if e € B(A), A, =< id(e),+,+,~,0,e > can be made
into an MV-algebra, where & = x A e = e for all z € id(e). Moreover, A/et is
isomorphic to A.. Thus, if A is semisimple with a basis S = At(B(A)), we have
for each e € S, that et = id(¢) € Max A and e*' = id(e) examining the previous
discussion on Proposition 39. By ([9], Thm. 4.7), we get that A, is a locally finite
MV -algebra.

Proposition 41. If A is semisimple and has a basis, then B(A) is an atomic
Boolean algebra.

Proof. By Proposition 39, At(B(A)) is a basis of A, hence At(B(A)) is a maximal
orthogonal set of A. Thus if e’ € B(A), e’ # 0, there is an e € At(B(A)) with
e'ANe#0. Then 0 < e' Ae= (e Ae) Ae and therefore e’ Ae = e, i.e. ¢ < e’ and so
B(A) is atomic. O

If A is complete, the converse of Proposition 41, holds, that is

Proposition 42. Let A be complete, i.e. the underlying lattice is complete. Then
A has a basis iff B(A) is atomic.

Proof. Since a complete M V-algebra is semisimple by ([2], Cor. 1), one direction
is clear by Proposition 41. Conversely, let B(A) be atomic. Then V{e : e €
At(B(A))} = 1, thus, if * € S+ where S = At(B(A)), we have z = 2 A1 =
z A (Veese) = Vees(z Ae) =0 by ([2], Thm. 5). This means that S is a maximal
orthogonal set. By ([16], Lemma 3.3), id(e) is linearly ordered for each e € S, thus
S is a basis. O

Proposition 43. Let A be semisimple with basis S = At(B(A)). Then A is sub-
direct subalgebra of the direct product Il.cgA..

Proof. By Proposition 41, B(A) is atomic and then V.ese = 1. Thus the map
A = TeecsAe, ¥ = {we}ecs, is an homomorphism. If ze = ye for all e € S, then
x =2 A1 =2xA(Vecs)e = Vecsre = Veecsye = y. Thus A is isomorphic to a
subalgebra of Il,cg A, subdirectly since A, C A for each e € S. O
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Remark 44. If A is complete, the above homomorphism is an isomorphism (cfr.
([16], Thm. 3.1), ([11], Lemma 4.2.8)).

Recalling [2] that an MV -algebra is hyperarchimedean if for each = € A, there is
n € N such that nz € B(A), we now prove that

Proposition 45. A is semisimple with a finite basis iff A is hyperarchimedean and
semilocal.

Proof. If A has a finite basis, At(B(A)) = {e1,ea,... ,e,} is a basis by Proposition
41. By Proposition 43, A = A; x ... x A,, where A; = id(e;) is locally-finite by
Remark 40. Let x = (z1,%2,... ,2,) € A, then k;x; = e; for some k; € N. If
k = max{ky,... ,k,}, then kx = (e1,... ,e,) € B(A) and A is hyperarchimedean.
By Theorem 24, Min A is finite and A is semilocal.

Conversely, A is semisimple by ([2], Thm. 3) and Max A = Min A by ([2], Thm.
4). Thus has a finite basis by Theorem 24. (]

Again, suppose S = At(B(A)) is a basis for a semisimple MV-algebra A.
Consider the corresponding orthogonal decomposition Spec A = U.csV(e) U X,
where X = V(S). Recalling the proof of Proposition 39, for ¢ € S, we have
M = et € MaxA and e ¢ M. Hence M € V(e) and if P € V(e), then e ¢ P,
so et = M C P. Thus V(e) = {e*} and clearly V (e) is an atom in the lattice of
compact open subsets of Spec A. By Proposition 15, id(e) is a minimal ideal and
then S is a strong basis. It is clear that Soc A = id(S) and V(e) is a connected
component of Spec A for each e € S by Proposition 28 and Remark 29.

Summarizing and recalling Theorems 11, 16 and Proposition 39, we have that

Theorem 46. For a semisimple MV -algebra A, the following are equivalent:
(i) A has a basis,

)
(ii) A has a strong basis,
(iii) Spec A has an unrefinable orthogonal decomposition,
(iv)

Following [2], we recall that an MV-algebra is divisible if for each a € P and
for each n € N, there exists a unique 0 # b € A such that nb = a and b =
a+(n—1)b. Moreover, A is said No-complete if its underlying lattice is Rg-complete.

We conclude this paper showing the following theorem already known in lattice-
ordered groups (cfr., e.g., ([8], 14.4.5)):

Spec A has an atomic orthogonal decomposition in connected components.

Theorem 47. Let A be an Xg-complete and divisible MV -algebra. Then the fol-
lowing are equivalent:

(i) all prime ideals are Ng-closed,
(ii) A is hyperarchimedean,

(iii) A has a finite basis.
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Proof. Assume (i). By ([3], Prop. 6), all prime ideals are maximal, so A is hyper-
archimedean by ([2], Thm. 4).

Assume (ii). Let {ap : h € N} be an orthogonal sequence of elements of A. By
divisibility of A, there are z, € A such that z, # 0, hxy, = ap, and ap + (h— 1)z, =
Ty, for each h € N. Let © =/ 2 and since A is hyperarchimedean, then nx =
(n+1)x for some n € N. As z, Azj < apAaj, we have z, Ax; = 0 for h # j. Thus,
by Theorem 1, 2, A(n+1)zp41 < (n+1)(xpATpt1) = 0for b # n+1. By ([2], Thm.
5, s A(n+ 1)z = Vien{ze A+ 1D)znp} = T AR+ 1)2p41 = pyr as well.
Then, using again Theorem 1, nx,11 <nzAn+ Dzprr <nf{zA(n+ 1)z}t =
nTny1. Therefore nrpi1 = nzxA(n+Dzpr = (n+D)zA(n+ Dz = (n+ 1)z,
but 41 = Gnt1+nTpt1 = Gpp1+(N+1)Tpg1 = Gpp1 +ant1 = 1, hence 2,49 = 0,
a contradiction. Thus all orthogonal sets are finite and A has a finite basis by
Theorem 24.

Assume (iii). By ([2], Cor. 1), A is semisimple. Thus At(B(A4)) = {e1,... ,en} is
a finite basis by Proposition 39 and thus Max A = {e{,... ,e;}, i.e. all maximal
ideals are closed by Proposition 37, hence Ny-closed. A is quasi locally-finite by
Proposition 45 and hence all prime ideals are Rp-closed since Spec A = Max A. O
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