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Abstract

Fuzzy controllers are able to incorporate knowledge expressed in if-then
rules. These rules are given by experts or skilful operators. Problems arise
when there are not experts or/and rules are not easy to find. Authors’ pro-
posal consists in an analog fuzzy controller which accepts structured language
as well as input/output data pairs, thus rules can be extracted or tuned from
human or software controller operation. Learning from data pairs has to be
carried out under hardware restrictions in linearity, range and resolution. In
this paper, modelling of building blocks arranged in a neuro-fuzzy architec-
ture is made and issues related to on-chip learning are discussed. Computer
simulations show that learning is possible for resolutions up to 6 bits, afford-
able with the cheapest VLSI technologies.

Introduction

functions of predefined shapes and locations. Consequently:

e Fuzzy products based on these conventional approaches are unable to adapt
their operation to changing environments. Due to this, they are commonly
designed to cope with average environmental conditions, meaning that their
performance will not be optimum for the majority of practical situations [1].

e Even if the lack of adaptability is tolerable, the formulation of a proper set
of fuzzy rules able to cope with these average conditions remains a difficult

task that requires a priori full knowledge about the system operation [2].
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Neuro-fuzzy systems are intended to overcome these problems through the in-
corporation of learning to the conventional fuzzy inference procedure. Thus, a
priori knowledge (i.e., fuzzy rules) is not required, but evolve as a result of the
system operation in the field. Also, since neuro-fuzzy systems are intrinsically
adaptive they are able to track to changing environments.

Although different authors have considered the realization of neuro-fuzzy sys-
tems in the form of software, these realizations cannot cope with the speed/power
requirements of many practical applications, which motivates searching for ded-
icated hardware implementations [3]. One methodology to develop this kind of
hardware implementations have been presented by the authors in [4]. To guaran-
tee hardware simplicity and, hence, maximum operation speed, this methodology
does not encompass detailed compensation of the spurious nonlinearities in their
constitutive building blocks. Since these nonlinearities are corrected through the
learning process, this does not pose a major limitation for practical use, similar
to what is reported for neural network implementations in [5], [6]. However, to
guarantee maximum yield in production of neuro-fuzzy silicon chips, this feature
must be guaranteed before the chips are sent to production, what can only be done
through the use of proper models, able to capture the non-linear behaviors, during
the chip design phase. On the other hand, our effort focuses in hardware oriented
algorithms, to allow future implementation of on-chip learning. Development of
hardware models, proposal of hardware-oriented algorithms, and demonstration of
learning based on both is our major concern in this communication.

2 Architecture and Building Blocks

Fig.1(a) shows the architecture of a neuro-fuzzy controller based on ANFIS [7],
where building blocks are arranged in layers related to fuzzy algorithm steps. First
layer performs fuzzification and each block s;; implements a membership func-
tion. Second layer realizes t-norm through the minimum operator and the three
remaining layers make a weighted average which involves singleton weighting and
defuzzification. Electrical aspects in Fig.1(a) are discussed in [4]. Building blocks
which belong to an only rule are enclosed by a dash line in Fig.1(a), thus we
can note that membership functions are not shared by different rules. From the
hardware point of view, sharing of membership functions among rules reports ad-
vantages in terms of area and power consumption, but only allows grid partitions
of the universe of discourse, that is, the partition in each separate dimension or
input determines the partition in the overall multidimensional input space, thus
flexibility is reduced. On the contrary, we can define partitions directly on the
multidimensional input space, thus generating scatter or tree partitions [7], by im-
plementing one membership function for each label in each rule of the knowledge
base.

This kind of redundancy in membership function generation improves locality,
because rule antecedent output depends only on parameters related to a specific
rule. Since rule antecedent output can be seen as a multidimensional membership
function, or as a basis function in the interpolation context, this means that we



Learning under Hardware Restrictions in CMOS Fuzzy Controllers... 437

generate basis functions which can be tuned independently, thus changes in a pa-
rameter through learning only affect the local piece of input space associated to
the rule. Locality improves convergence and speed of learning, but is not an es-
sential requisite. However, the less locality we have the more difficult convergence
is, thus we need complex learning algorithms to reach the aim. Since we are inter-
ested in simple learning algorithms suitable for hardware implementation, sharing
of membership functions is rejected in favor of redundancy.

Figure 1: Architecture and building blocks of a singleton fuzzy chip: architecture
(a); membership function circuit (inset: generated bell-like membership function)
(b); minimum circuit (c); normalization circuit (d) and singleton weighting circuit
(

e).

3 Modelling of Building Blocks

To demonstrate viability of architectures and learning algorithms in the hardware
context, modelling of building blocks has to be made to carry out computer sim-
ulations. This section shows models for all building blocks in Fig.1. Modelling is
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realized here by finding mathematical expressions of input-output transfer functions
of building blocks in Fig.1 with regard to first order equations of MOS transistors.
Note that control transfer function is determined by the shapes and locations of
membership functions in the first layer of Fig.1(a) and by singleton values in the
fourth layer, while remaining layers contain blocks that do not have associated pa-
rameters the transfer function depends on. The former adaptive blocks are marked
with an arrow in Fig.1(a) to differ from the latter fixed blocks.

Layer I: membership function circuitry

Membership functions are implemented in [4] using two differential pairs, as
Fig.1(b) shows. This configuration enables independent tuning of width and lo-
cation, which are linearly related to voltages Fi;; and FEs;;. On the other hand,
independent tuning of the slope is achieved by using the compound transistors of
Fig.2. The tuning parameter B is a voltage for compound transistors of Fig.2(b)
and Fig.2(c), while it represents the decimal number coded in the digital word at
gates of current switches in the compound transistor of Fig.2(a). The bell shape
in the inset of Fig.1(b) is obtained by adding the two outputs of the differential
pairs, thus analytical modelling reduces to make this operation with the differential
pair output expression based on a square law model of MOS transistor [8]. This
expression for a differential pair with simple transistor is the following:

; { V28Iqra\/1 - a3/ (21q) |xa| < /Ig/B 1)
VA Iosgnag jwal > V/To/B

where x4 is the differential voltage input, Ig is the differential pair bias current
and [ is the large signal transconductance factor of transistors. The resulting
model is a piecewise one, where each piece is obtained by summing different parts
of differential pair input-output characteristic. Special care is necessary to model
shape evolution when voltages Ey;; and Ey;; get closer and closer.

Figure 2: Compound transistors to control membership function slope and sin-
gleton values: digital transistor (a); parallel transistor (b) and series transistor

(c).
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Equation (1) is also valid for the digital transistor in Fig.2(a). More complex
expressions are obtained for the series and parallel configurations. In particular,
the differential pair obtained with parallel transistor in Fig.2(b) obeys the following
equations:
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The bell-shaped membership function is obtained again by adding outputs of both
differential pairs in the circuit.

Solving differential pair equations for series transistors is even harder, because
bottom transistor in Fig.2(c) works in ohmic region. However, a convenient model
can be obtained based on proper understanding of the modus operandi of a series
transistor. HSPICE simulations show that membership function shape with series
transistors is quite similar to that obtained with simple transistors. If we make
equal the expression of the slope for zero differential input of a simple differential
pair and the expression of the slope for the differential pair with series transistor
(which coincides with g.,s in Fig.2(c)), we obtain the large signal gain (s of tran-
sistors which would produce the “same” series transistor output in the membership
function circuit, ,

Bers = 3 (3)
Thus, equation (1) would remain valid for series transistor with 3., as large signal
gain factor of MOS transistors. HSPICE measurements show errors below 1.5%
when we use this approximation for B = 0V

Layer II: minimum circuit

Proposed multiple input minimum circuit in [4] is depicted in Fig.1(c). Mod-
elling of circuit operation is straight by implementing minimum function in soft-
ware.
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Layer III: normalization circuit
Square-law calculations give the following expression for normalization circuit
in [4]:

2
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where fB; and (B are the large signal transconductance factor of transistors My;
and My; (¢ = 1,...N) in Fig.1(d). This circuit can provide an offset at output —
needed for demanding speed requirements. However, simulations show that this
offset has two non desired effects from learning point of view. First, since its
elimination requires negative singletons, the singleton weighting circuitry becomes
more complex. Second, since each singleton contributes to the whole universe of
discourse, locality is lost. For simulations in the section V, the offset was eliminated
at the core of each fuzzy set by different sizing of input and output transistors of
the circuit, that is by making 8; > £ in (4). Other methods eliminate this offset
at circuit level while preserving dynamic response.

Layer IV: singleton weighting

Singleton weighting at layer IV in Fig.1(a) is made by asymmetrical current
mirrors. Fig.3 shows equations obtained with a square-law model of MOS tran-
sistors for current mirrors with compound transistors in Fig.2. Again, expression
for series transistor is approximated, we have supposed gate voltage of bottom
transistor much larger than drain voltage.

Figure 3: Adaptive current mirrors: (a) with series transistor; (b) with parallel
transistor; (c) with digital transistor.
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Layer V: aggregation

Aggregation of the rule consequents at output is realized in [4] by Kirchhoff
current law, taking advantage from current output of rules. Obviously, modelling
is direct in software by simple addition.

4 Learning Issues

Once hardware building blocks models have been developed, it is necessary to pro-
pose learning algorithms as well as a training strategy. Since our interest focuses on
hardware implementations, we first propose hardware-oriented learning algorithms,
suitable for hardware implementation, then we will see some guidelines to choose
learning parameters involved in them.

Learning algorithms
Parameters updated through learning are those in the adaptive blocks of Fig.1(a),
that is,

e parameters related to the rule antecedent, which are the set of voltages
{E1ij, E2j}, with ¢ = 1,..N and j = 1,..M, and the set of membership
functions slopes at crossover points (Ei;; = Ea;;) Sij, whose expressions
coincide with transconductances given in Fig.2.

e parameters related to the rule consequent, which are the set of voltages (or
digital words in Fig.3(c)) B;, with i = 1,...N, that determine gains of adaptive
current mirrors in Fig.3 and thus singleton values.

Our proposal is based on an hybrid algorithm by Jang which updates parame-
ters in the rule antecedent by mean of backpropagation rule and uses least mean
squares for rule consequents training. Since backpropagation is costly to imple-
ment and requires derivability of every node in the system, weight perturbation
[9] is proposed instead of backpropagation while singleton values are found with
the outstar rule [10]. This translation provides a very simple hybrid algorithm
that does not require derivability of transfer function nodes, thus performing the
training with low resolution requirements.

Weight perturbation substitutes derivatives for finite differences and calculates
the influence of each parameter on the global error, thus avoiding feedback paths.
If w is the learning parameter and ((e) the global error at output, updating of w
is given by

Ay = —MCw) = ¢(w + pert)]
pert

= G(pert) ({(w) — ((w + pert)] (5)

where pert is a small perturbation, n is the learning rate, and both are constants.
Note that weight update hardware involves evaluation of the error with perturbed
and unperturbed weight and then multiplication by a constant G(pert) = —n/pert.

We use this strategy for the membership functions, thus w in (5) is any pa-
rameter in the set {ElijaEQijasij} with ¢ = 1, ..N andj = 1, ..M. With regard
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to the singletons, it exploits the similarities of singleton fuzzy inference with the
counterpropagation network. This becomes evident when one uses crisp rather
than fuzzy sets, for the input labels. Based on this, our learning algorithm uses
the outstar rule,

Yinew = Yigyq + 1T —y(@)] (6)

where T is the target output and p is the learning rate; y; is the singleton whose
rule antecedent is maximum, that is w}(z) = max{w} (), w}(z), .. wi (z)}. Since
singletons are given by parameters B; in our case, we use (6) to update these
parameters. Actually, singleton values perform a linear weighting of the normalized
rule antecedent output in Fig.1(a), but they are determined by current mirrors gains
in Fig.3(a) and Fig.3(b), which are not linearly related to parameters B;. Thus
updating B; through (6) in these cases is only an approximation to the outstar
rule.

Learning Parameters choice criteria

Like all gradient descendent algorithms, weight perturbation is quite sensitive to
learning parameters. Large perturbation and learning rate values increase learning
speed, but difficult convergence. On the other hand, small values make system
to converge slowly [11]. Outstar shows a similar behavior, because can be un-
derstood like a gradient descendent algorithm. Apart from these considerations,
some more specific criteria are desired to choose learning parameters. In hardware
implementations, this choice is conditioned by resolution [11]. Criteria in section V
have been first the choice of a quite small value of perturbation, whose minimum is
the minimum step size applicable to learning parameter. On the other hand, since
weight perturbation implements an approximate derivative, stability at minimum
error point is intrinsically avoided by perturbation method, which forces little os-
cillations around this minimum when convergence succeeds, except when a limited
resolution paralyzes the error evolution. Once a small perturbation and a desired
maximum output error variation have been chosen, the learning rate is determined
attending to the fact that the minimum parameter change is limited by resolution
of learning parameters updated in (5), that is:

pert X Awmin

| (€@) = ¢w+ pert)] |

n> (7)

The learning rate in outstar is also determined by the same procedure,
AYirnin

e (8)
T - y(@)

where the desired maximum error at output is other parameter needed to determine
IR
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5 Results

In this section some results are presented, for a neuro-fuzzy system with the archi-
tecture of Fig.1(a). The target function from which training data were obtained
is 2.5 + sin(7z) sin(7wy). Fig.4(a) shows this function in the interval [0,2] x [0, 2],
while Fig.4(b) shows the resulting surface of a 36-rules neuro-fuzzy system with
ideal trapezoidal membership functions after being trained with 111 data pairs.
The system was initialized with membership functions uniformly distributed along
the universe of discourse while singletons were made all equal to the mean function
value. Final RMSE error was bellow 2.5%. Further simulations were made in the
interval [0, 1] x [0, 1], for a nine-rules controller and 36 data pairs, which speed up
simulations without loose of generality, thanks to the surface symmetry.

Figure 4: Results of learning process: original surface (a) and learned surface (b)
with first order models of a cotnroller and the hybrid algorithm; RMSE curves for
weight perturbation (c) and hybrid algorithm (d) with software models of involved
hardware.

Models of section III can be inserted in the architecture of Fig.1(a). The three
options presented for membership functions and singletons result in many alterna-
tive combinations, of which only five are considered here. One uses digital tran-
sistors for membership functions and singleton. The rest cover the four possible
combinations between the remaining composite transistors: parallel transistors in
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membership function and series in singleton (parser); series transistor in mem-
bership function and parallel in singleton (serpar); and parallel or series in both
membership function and singletons (parpar and serser, respectively).

Several simulations were made for the five possibilities of previous paragraph,
for different resolution and learning step sizes, as well as for hybrid (weight pertur-
bation for rule antecedent and outstar for rule consequent) and weight perturbation
(for both rule antecedent and rule consequent) algorithms. Building Blocks were
designed to cover the same range, which was one to four for singleton values, one
to two for membership function slopes, and -0.5 to 1.5 for parameters Ej;; (see
Fig.1(b)). Fig.4(c) and Fig.4(d) show RMSE curves from these simulations, where
learning parameters were chosen under criteria in section IV. For the weight per-
turbation algorithm (Fig.4(c)), these parameters were pert = 0.03, n/pert= 0.26
(see equation (5)) for a resolution of 7 bits, for all combinations except for digital
one, where parameters were scaled to pert= 0.12 and n/pert= 0.5 for the same
resolution. With regard to the hybrid algorithm (Fig.4(d)), parameter u, besides
previous parameters for weight perturbation, was fixed to 0.01 for “analog” combi-
nations, except for the combination with series transistors in both adaptive layers,
where its value was 0.03. In the digital case, it was fixed to 0.1.

RMSE curves of Fig.4 shows a better behavior of hybrid algorithm as comparing
to weight perturbation, which can also be observed in Table 1, where two perfor-
mance parameters are given for both algorithms. The performance parameters are
[11]:

o the asymptotic RMSE error Eo = lim,, 00 Eqyt(n), where n is the number
of epochs, thus this parameter is the value of the output RMSE error after a
sufficiently long training and

e the convergence time T, expressed in number of epochs from the beginning
of learning up to the moment when E,;t has been reduced below a given
threshold. An epoch is defined as the application of the full training set to
the network.

asymptotic RMSE error | convergence time T
parpar_h 0.099 17
parpar-wp - -
parser_h 0.097 3
parser_wp 0.085 3
serpar_h 0.084 9
serpar_wp 0.090 77
serser_h 0.096 17
serser_-wp 0.063 68
digital_h 0.087 7
digital_wp 0.096 30

Table 1: Learning Performance Parameters.
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Apart from specific data, which can be improved by tuning of learning parame-
ters, we can say in general that hybrid algorithm improves convergence time. The
reason could be that this algorithm reinforces locality [12], by reinforcing rules with
maximum influence in each training datum. Besides of this advantage, locality is
an important issue in fuzzy systems, because it allows us to establish a correspon-
dence between the singleton value of a rule and the function values in the area
of the universe of discourse that is “occupied” by the rule. This “transparency”
allows us to introduce knowledge in fuzzy systems, what is their major feature.
Thus, a neuro-fuzzy system trained with hybrid algorithm will be initialized much
better, and danger to fall in local minima minimized.

Finally, we can highlight the low resolution required for learning purposes, 7
bits in our simulations, what is affordable with even the cheapest VLSI technologies
[13]. Learning is possible even for lower resolutions, as Fig.5(a) illustrates for 6
bits. On the other hand, learning rate p for the outstar rule has been fixed to
0.01 in Fig.5(b), while resolution varies in a parpar simulation, showing influence
of resolution in learning parameters.

Figure 5: Relationship between resolution and learning parameters.
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