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Abstract

In this paper a processing methodology is introduced for the segment or
intermediate level in the context of knowledge-based computer vision systems.
The proposed methodology demonstrates how using simple Fuzzy Logic con-
cepts it is possible to associate symbolic descriptions to the entities of this
level. It provides with the basic mechanisms for performing symbolic compu-
tation, evidence combination, uncertainty management and spatial reasoning
at the segment level.
Keywords: knowledge-based image segmentation, fuzzy logic, spatial rela-
tions.

1 Introduction

Computer Vision is aimed at studying and developing theories and algorithms
to be used in artificial visual systems. During the last years there have been
important changes in the design and development methodologies of such systems.
This has been due, mainly, to the incorporation of methods and technology from the
Knowledge Engineering field; and, also to a change in the conception of a Computer
Vision system not as a passive element that senses information and processes it in
some way, but as an element that is tightly coupled with its environment in a
looping cycle of perception and action [1] [2]. Whilst most areas of Science and
Technology deal with problems that can be solved on the frame of well-developed
models and theories, in Computer Vision there is a lack of formal models that
could be applied with confidence under general circumstances. The solution of such
problems usually requires using procedures with multiple heuristics that produce
results of partial validity with different degrees of uncertainty. The integration of
these uncertain results to produce a result can be achieved using methods from
Artificial Intelligence and Fuzzy Sets theory.
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Computer Vision Systems involve processes that act over elements of different
typology at various levels of abstraction. The nature of these elements defines the
grain of information to be processed, and can also be used to establish the three
levels that normally integrate such systems, that is the pixel or low level, the seg-
ment, or medium level, and the object or high level. At each of these levels it is
possible to define symbolic categories or classes with associated degrees of uncer-
tainty [3]. Specifically, the segmentation of images can be conceived as a process
aimed at building a symbolic description of an image or scene in terms of segments
or aggregates of pixels. The development of this conception produces a description
level that uses the segment as the unit of information. In this framework, a segment,
in a scene is first described numerically. The measures obtained in the numerical
domain are then used to derive the segment’s degree of membership to symbolic
classes [4]. These classes are normally fuzzy, so the symbolic descriptions must have
an associated uncertainty factor [5]. The achievement of a final segmentation of an
image is not a one-stop process, but it is better formulated as a refinement process
guided by the current state of the segmentation. A control strategy for this process
can be implemented using fuzzy control rules that are evaluated over a segment
and its neighbors. Along this paper, we will describe first the architecture of an
implemented segment processor that is capable of producing stable partitions, i.e.
segmentations, using mechanisms of Knowledge Engineering and Fuzzy Logic [6].
Then we will concentrate on the analysis of the elements used to implement the
control of this level and an application example will be described.

2 The segment level

A layered approach is an intellectual resource commonly used in the analysis and
synthesis of complex systems. From the analytic point of view, the level concept
helps in ordering as a hierarchy a reality made of facts. Whilst for the synthesis,
it constitutes a way of simplifying the process using layers of reduced complexity.
In a non-formal sense, a level can be defined as a set of symbols and a series of
operators that act over the symbol set. In essence, what defines a level is the
election of a symbol set that represents the entities of the domain, and an algebra
or set of formalisms or operators that transform the symbols in the set.

At the segment level, the objective is to produce the partition of the image
in a set of segments or pixel aggregations along with their respective degrees of
membership to defined segment classes like red — square or straight — line. The
definition of these classes is established using a set of transformations acting over
the partition of segments and their associated symbols. We shall consider a seg-
ment as a connected aggregate of pixels that is defined by some shape or property
uniformness criteria. To clarify the terminology, we will name partition the list of
segments that constitutes a complete tessellation of the image. The partition, as
a data structure, includes not only the spatial definition of each segment but also
the symbolic assignment of segments to classes and the spatial relations among
segments.

Applying procedures of different types it is possible to make explicit certain
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visual categories or classes related with pixels or aggregations of them. In general,
the definition of these classes is not crisp but fuzzy [7] [5]. The fuzziness of their
definition may arise from the geometric definition of the segment class, i.e. how
a ’triangle’ is defined, from the fuzzy nature of the property, e.g. to be ’light
green’; or even from the spatial relations among segments, e.g. to be ’above’ or
at the right’. Other symbolic diagnostics or classes can also be derived from logic
predicates of previously defined classes.

It should be noted that using the segment as the information grain at this
level poses two problems that do not exist at the pixel level. First, it is necessary
to obtain an initial partition of the image to define the spatial extension of the
segments. This operation is based on one or several maps of pixel diagnostics
provided by lower layers of the system. The second question arises from the fact
that it is normally not possible to obtain a ‘correct’ partition of an image in one
step. Instead, it is normally more robust to allow the definition of the partition
evolve as more information is discovered about the segments. This evolution or
refinement of the partition can be based on operations of fusion and division of
segments.

At this level, we consider the following elements as necessary to define a symbolic
processing methodology:

a) Features. A feature, f;(s), is a numeric property of a segment s, obtained by
means of Procedures, which are a type of Operator of numeric nature. A set
of features defines a numerical domain where each segment can be described
numerically using measures related to its morphology or tonal properties
(color, texture, ...) of the pixels that constitute it.

b) Operators. There are three types of operators. Procedures and Classifiers
operate in the numeric domain defined by the features with different objec-
tives. As stated above, Procedures are used to compute segment features,
whilst Classifiers allow to define symbolic classes from features. They project
the numeric domain of features into a symbolic domain where the classes of
segments are defined. The Rules constitute the third type of operator and
permit the definition of new classes imposing logical conditions in terms of
other defined classes.

c) Classes of segments. They represent a visual category in a symbolic do-
main. The degree of membership of each segment to a certain class as being
'Round’ or "Window’ is expressed by a value in the interval [0-100].

d) Transformations. This special type of operators acts in the spatial domain
to perform operations of fusion or divisions of segments. They accomplish for
the necessity of modifying the spatial definition of the segments when certain
conditions that control the state of the partition are verified. Functionally,
they are conceived as Control Rules and Control Actions. When the condi-
tions, stated in the fuzzy domain, of a Control Rule are verified an attached
Control Action of some type is performed with the objective of modifying in
some sense the spatial definition of the partition.
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The structure of segment classes and their evaluation are defined from pixel
maps of symbolic content. In a pixel map, the value assigned to each pixel is its
degree of membership to a typology or class of pixels [3]. A detailed description
of a processing architecture for the pixel level capable of producing maps of pixel
diagnostics has been described in [10][13]. This processing architecture for the
pixel level will be referred hereafter as pixel processor. Pixel maps are obtained by
symbolization processes that use feature maps according to a methodology that is
very similar to that utilized at the segment level. With these elements, it is possible
to do symbolic computation, both at the pixel level and the segment level, as the
representation is based on types and classes that can be considered as symbols. As
a consequence, it is possible to utilize operations relaying in hierarchies of classes
or conditions among them that can be formulated as rules or productions. The
utilization of membership degrees to classes allows the usage of fuzzy classifiers
and rules with certainty factors.

Segments’ features are obtained from pixel maps or other features by means of
procedures that operate in a numerical domain. Basically, the classifiers are dis-
criminant and decision functions that close the gap between the numerical domain
of features and the symbolic domain of classes. They use features as inputs to pro-
duce a symbolic output in the interval [0-100]. In essence this operator implements
a classification procedure followed by a fuzzy decision function, as it is detailed
below [8]. Let fi(s),i = 1,...,n, be a set of features evaluated for a segment s,
F(s) a functional computed using the feature set, and C(s) the result output by
the classifier. The computation done by the classifier can be summarized as:

C(s) = Dm(F(s))

Where D), is a decision function and the functional F(s) may be of any type
(unitary, lineal, quadratic,...). For example, a quadratic functional would take the
form:

n n

F(s) =Y ) [fi(s) — ailbi;[f;(s) — a;]

i=1 j=1
Where {a;} and {b;;} are set of numeric coefficients. It is possible to use different
types of decision functions that can take the form Dps(u;p1,...,Pm), where M
denotes the type of decision function and py, ..., p,, are the parameters required for
that function. Consider, for example, the sigmoid or S-decision function, S(u; «, §),
[9] that is often used in fuzzy systems. The decision function Dgg(u; a, 3) is defined

as:
Dss(u;a, 8) = 1005 (u; «, B)

Where the a and  parameters define the interval of fuzziness between the full
rejection (0) and total acceptance (100). Many other types of decision functions
can be used within this simple scheme [10].

The definition of a segment class can be obtained from numerical features by
means of classifiers, as the primary way for generating symbols that can be as-
sociated to the segments. However, it is also possible to built new symbols, i.e.
segment classes, using rules. As Operators, rules are used to build the definition



Contributions to the Symbolic Processing of Segments in Computer Vision 407

of classes using logic constructions similar to Horn’s clauses. A rule of this type
contributes to the definition of a segment class and comprises the evaluation of a
series of conditions that can accept linguistic qualifiers as 'very’ and 'moreless’ [9]
[11]. The uncertainty is transformed and assigned from the classes, classifiers and
rules that are involved in the definition of the new class. This process comprises
two main stages. First, a primary diagnostic or intrinsic value is computed from
the data sources, i.e. classifiers and rules. If the class being defined is an instance
of a more general class, the intrinsic value is normalized to obtain a final value.
This normalization is based on considering the instances as fuzzy subsets of the
more general class. The process followed to combine the evidences produced by the
classifiers, rules and instances involved in the definition of a class is summarized
below.

Step 1: Compute all the classifiers and instances. Compute also all the classes that
are used in the conditions of the rules.

Step 2: Compute all predicates included in the conditions of the rules.

Step 3: Compute the result of each rule by first evaluating the predicates of the rule
and using the certainty or confidence of the rule. If Cyrp(s),p = 1,...,h,
represent the evaluation of the predicate p of rule r and C'R,. is the certainty
of this rule in the interval [0-100], the result of the rule, C,(s) is given by:

Cr(s) = CR,

100 00, [Crp(s)]

Step 4: Combine the results achieved by classifiers and rules to compute the intrinsic
value. The intrinsic value, IC(s), is obtained from the evidences returned
by the set of m classifiers and rules, Cer(s),k = 1,...,m. This evaluation is
performed incrementally as follows:

IC(s) =0
for k=1 tom
IC(s) = COM(IC(s),Cer(s))

The COM () function represents in a generic way some method of evidence
combination. Our system incorporates actually two alternative methods,
termed ’Logic’ or 'Evidence’, that implement two simple and often used evi-
dence combination laws:

uv

u+v— 15 if ’Logic’

50[BV (& —1,% — 1) +1] if "Evidence’

COM (u,v) = {

where EV (a,b) is,

a+b—ab fa>0Ab>0
EV(a,b) = a+b+ab fa<0OADLO

Wm if (@>0Ab<0)V(a<OADb>D0)
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Figure 1: Architecture of the segment processor and domains at this level

The ’Evidence’ law uses the domain [-1,1] and is based in the Theory of
Evidence as is utilized by some knowledge-based systems [12].

Step 5: Normalize the intrinsic value using the values achieved by classes that are
instances of the class being computed. Let C(s) be the class value, and
Cit(s),k =1,...,n, the diagnostics of the n instances, then the normalization
is performed as:

C(s) = max(IC(s), max [Cit(s)])

PR ]

In next section, we will briefly introduce the concept of Segment Processor
[13] to provide with an overview of the software or processing architecture at the
segment level.

2.1 Architecture of the Segment Processor

From the point of view of functionality, the Segment Processor’s architecture (Fig-
ure 1) is organized in three blocks, each one addressing a specific objective. The
first of these blocks is charged with the obtainment of the initial partition. This is
the objective of the presegmenter module that is part of the so-called Bottom-Up
(BU) processor. Different methods can be used to achieve this goal so the preseg-
menter module has been conceived as an interchangeable part within the Segment
Processor. The second functional block has the goal of computing the segment di-
agnoses. This block is structured by the distinction between a numerical domain,
where the segments are described by features, and another symbolic domain based
on classes. The third functional block is located at the Top-Down (TD) processor
and manages the diagnostics requests and controls the Segment Processor. This
control includes evaluating the partition’s state from a set of rules that may trigger
actions to modify the spatial definition of the segments.
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The BU processor receives as input data pixel diagnostic maps, or pixel classes,
previously requested by the TD processor from the Pixel Processor; and produces
symbolic diagnostics for the Partition’s segments as output data. Its action has two
different phases: acquisition of the entities through the definition of the initial par-
tition, and the symbolic description of the segments obtained, in terms of segment,
classes. The TD processor receives diagnostic requests about segments, and trans-
forms these requests into sequences of commands for the BU processor to compute
the diagnoses, and in requests for pixel diagnoses directed to the Pixel Processor.
The TD processor can be programmed using control rules to execute actions that
modify the image partition. The premises of these rules are established in terms
of segment diagnoses computed by the BU processor and may include conditions
about spatial relations among neighbor segments as explained in the next section.

3 The Conditions

In the frame of the Segment Processor a ‘condition’ is a predicate composed of
several premises connected by logic ‘And’ conjunctions. Conditions are used in the
different types of rules, i.e. rules used in the definition of classes and the control
rules, used at the Segment Processor. A distinctive feature of the conditions is
their expressive capacity to include a large variety of spatial relations as allowed
by the premises’ syntax. A condition’s premise must follow the following syntax:

premise::= prem_atom_true | prem_list

prem_atom_true::= Is ( True, [qualifier_1] x )

prem_list::= Is ( property { and property }, [qualifier_1] x )

property::= [qualifier_2] [order] class.name

qualifier_1::= [neigh] [qualifier_2] [spatial]

neigh::= All | Any

qualifier_2::= [Not] [linguistic]

linguistic::= Very | MoreLess

spatial::= Above | Below | Left | Right | Beside | InBeside | Neib |
ExNeib | InNeib | Contains | User_defined_localizer

order::= Gt (number) | Eq (number) | Lt (number)

The qualifiers All and Any refer to the environment and operate together with
the spatial localizers that will be analyzed below. The syntax shows that it is also
possible to express order relations (Gt, Eq, Lt) that permit to establish comparisons
over the degree of the property used in the premise. According to the syntax, the
basic premise has the following elemental expression:

Is ( property , x )

where x denotes the segment considered as the focus of attention and property is
the diagnostic that conditions z. For example, the premise:

Is ( Green, x )
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will be the expression of condition: "The focus-of-attention segment is green’; and
its evaluation will return the degree in which the focus-of-attention segment satisfies
the diagnostic associated with the 'Green’ class. The sense of the premise can be
modified using the modifiers Not, Very and MoreLess.

At the segment level it is very interesting to allow for premises that are con-
ditioned over the spatial vicinity of the focus-of-attention segment. This can be
accomplished incorporating spatial relations to the premise’s syntax according to
the basic form:

Is ( property, spatial x)

where spatial represents a token associated with a basic spatial relation, e.g.
Above, Below, Left, or other user-defined spatial relations. Using this possibility,
the premise:

Is ( Green, Below x)

will express the condition: ’Any segment below the focus of attention is green’.
Some localizers have a limited ambit of application. For example, localizers as
Above, Below, Left, Right, Beside, ExNeib and Contains are only evaluated over
the external neighbors of a given focus-of-attention segment. On the other side, the
InBeside and InNeib localizers select exclusively the segments that are localized
inside the focus-of-attention segment, that is, its ’internal’ neighbors. Finally,
localizers as Neib does not distinguish between internal or external neighbors. By
default, the evaluation of a spatial condition implies testing the condition over all
the neighbors and returning the best result, i.e. an or-operation. However, there
may be situations in which a condition must be established over all the neighbors.
This can be done using the All modifier as in the following examples:

Is ( Not Red, All InNeib x )

Is ( Very Round, All Not Below x )

that express, respectively, the conditions: ’All the segments contained by the focus-
of-attention are not red’ and ’All the segments that are not below the focus-of-
attention are very round’. The evaluation of the predicate A Below B returns a
value in the interval [0,100] that quantifies the relative vertical position of A below
B, being A and B two neighboring segments. The expression used to compute the
spatial relative positions of two segments can be found in [13]. These measures are
obtained consistently so that, for example, A Below B = B Above A.

The utilization of predicates that include spatial relations between segments
makes possible also to establish order relations or comparisons between neighboring
segments for a given diagnostic. The defined order relations are: Gt or ’greater
than’, Eq or ’equal to’, and Lt or ’less than’. These relations can be evaluated in a
fuzzy way as follows. Let us consider two segments, A and B, and let SC' represent,
a diagnostic on which we want to base the comparison SC'4 Gt SCpg, where SC4
and SCp are the values of the diagnostic obtained from A and B respectively. Let
u be a variable defined as the difference SC4 — SCpg and let § be a parameter that
measures the half-width of the interval in u that separates the two extreme results:
SC 4 is ’absolutely’ greater than SCp, so that condition evaluates to 100, or just
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the opposite so that the evaluation should return 0. Between these two extreme
situations, a fuzzy region may exist in which a value somewhere between 100 and
0 should be returned. The extent of that interval can be adjusted tuning the &
parameter to control the fuzziness of the comparison. In our implementation, the
Gt relation is evaluated using a sigmoid function as follows:

SCA Gt(5) SCp = 1008 (u; —5,0)

In this way, a condition that asserts: ‘Some neighbor of the focus-of-attention seg-
ment is larger (than the focus-of-attention) with uncertainty 10’, can be expressed
as:

Is ( Gt(10) Large, Neib x )

The order relations Eq and Lt are defined in a similar way. The evaluation of
the premises follows the algorithm proposed in [13], while the evaluation of the
condition uses a min-operator to return the minimum of the results obtained by
the premises included in the condition.

4 Applications

Following these ideas, we have implemented a two-level system capable of perform-
ing image segmentations [10] [13]. The pixel and segment processors of the system
can be programmed using a special purpose declarative language. The application
included in this paper has been taken from a real sedimentology problem which is
illustrated by Figure 2. Given a back-lighted sample of sand grains (see upper left
image in Figure 2) the objective is to detect the particles that are approximately
round. To solve this task a two stage process is followed. The first stage is very
simple and outputs a first segmentation where the background and the set of parti-
cles are differentiated (upper right image in Figure 2). Once the particles have been
isolated, the morphologic gradient of the particles area is used by the presegmenter
to resolve the particle area into individual particles. In this way, a final partition is
obtained (lower left image in Figure 2). In order to qualify each particle as round,
the class of 'Round’ particles is computed from different features, related to the
shape of the particles, for every segment in the final partition. The particles whose
degree of membership to the class ’Round’ is above certain threshold, i.e. 70, are
depicted in the lower left image in Figure 2.

5 Conclusions

The fuzzy nature of many of the tasks that a computer vision system must develop
(recognition, evaluation of spatial relations, information fusion, ...) suggests the
utilization of fuzzy logic techniques in this field. The objective of this paper has not
been to demonstrate the superiority of the proposed scheme over other techniques
or algorithms that are used also at the segment level. But to illustrate how a new
scheme can be used to solve segmentation problems in different contexts by means
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Figure 2: Top) Original image and initial partition. Bottom) Final partition and
selected round particles.

of simple mechanisms based on fuzzy logic concepts that fit naturally within the
context of knowledge-based vision systems.
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