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Abstract

While the coupling of artificial of neural networks (ANN) and symbolic
AT (SAI) is a strategy adopted in many hybrid systems, a real integration of
the two methodologies has not been thoroughly investigated yet: so far, most
hybrid systems have been viewed as just an engineering shortcut to solve
complex problems in which one methodology alone seems too weak.

In this paper, an approach to integrating ANN and SAI is presented. The
basic idea explored here is that there is much more to hybrid models than a
coupling of methodologies for the sake of avoiding engineering problems.

1 Introduction

The problem of integrating ANN and SAT methodologies is appealing because of
the complementary characteristics of these methodologies. On one hand, symbolic
processing are suitable for deductive reasoning, knowledge representation, recursive
structure, sequential control and has good justification capabilities. However, it can
hardly deal with associative retrieval, noise resistance, generalisation and learning.
The latter are easily handled by ANN processing [1]. When dealing with different
levels of knowledge representation, the potential for cross-fertilisation between ANN
and SAI is obvious [2].

Many hybrid systems can be replaced by a sufficiently powerful representational
system in which one of the modules emulates the other’s behaviour [3, 4, 5], but a
real integration of the two paradigms can lead to hybrid systems with behavioural
properties different from and better than a unified system based on one paradigm
[6]. According to the hybrid system classification given by Hilario [7], “the best of
both worlds” [6] is obtained by those systems in which the ANN and SAI modules
are equal partners in problem-solving processes (coprocessing functional hybrid sys-
tems). The hybrid system presented here belongs to this class. This claim is better
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specified and supported by the following description of the hybrid system, the two
modules (ANN and SAI), their co-operative behaviour, and some experimental
results.

2 A recognition task

Work on designing expert systems for ancient building analysis [8][9][10] (in partic-
ular, one capable of dating parts of a building from information on, e.g., shape and
building materials of portals, windows, balconies, and other architectural compo-
nents [10]), suggested the possibility of designing a system capable of automatically
extracting, from photographs, the relevant information about the building archi-
tectural components.

Portal shapes are the most important architectural component for the dating
of a building. Fig. 1 shows the different classes the system has to deal with.

Figure 1

A first attempt at resolving this recognition task was made by adopting a multi-
discriminator system [11][12]. The multi-discriminator system was formed by six
discriminators, each trained on a set of drawings representing one of the classes
a — f. Each training set contained a certain number of drawings, varying from a
standard representative of the class only in the way of their position and size.

The results obtained in recognising a set of 85 actual photographs of portals
were not encouraging [13]. In fact, the multi-discriminator system could not ade-
quately discriminate between these shapes: it did recognise pictures representing a
or b-shaped portals, but failed on items belonging to the other classes. The follow-
ing interpretation of this experiment naturally suggests itself: multi-discriminator
systems seem unable to discriminate between (classes of) images that are very sim-
ilar with respect to the position of the area occupied by the object in the image, no
matter how different their geometrical features are. It seems that reasoning about
geometrical features plays a crucial role for recognising portal shapes.

In order to introduce this reasoning capability, a hybrid system composed of a
neural module and a symbolic module has been adopted. If a portal shape can be
classified by a two-step process - that is, firstly by looking at its geometric features
(fig. 2a) and secondly by putting together these features (fig. 2b) - a reasonable
strategy is to combine a neural network for recognising the geometric features and
a set of production rules specialised in assembling these features.

The discriminating geometric features of the portal shapes are the top, the
horizontal, and the vertical parts (as shown in fig. 2). It can be seen that the
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horizontal parts are not essential for non-linear portal arches (a, e, and f in fig.
1).

Figure 2

In this hybrid system, as we shall see, there is a sustained interaction between
the two modules (neural and symbolic) in terms of both information passed and
behaviour modification. For instance: the neural network receives information from
the symbolic module modifying its behaviour, and on the basis of its processing
feeds back new information that affect the other’s behaviour.

3 System components

The system is composed of a neural network capable of discriminating geometric
features of the portal shapes, and a symbolic module in which the reasoning for
recognising the portal shape takes place.

In the following subsections a brief overview of the two modules is given.

3.1 The artificial neural network adopted

A multi-discriminator system has been adopted as neural module of the system.
Six discriminators were trained with simple drawings representing the six different
geometric features shown in figure 3. Three of them discriminate the top geometric
features of the portal (1, 2, 3), while the other three discriminate both the horizontal
and the vertical features of the portal (4, 5, 6).

Figure 3

For each pixel of the picture that has to be recognised, the system stores the co-
ordinates, the responses and the respective confidence values of each discriminator
in an ordered list.
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The discriminators do not act at the same time and do not always run together:
they are activated by the symbolic module when necessary.

3.2 The symbolic module and the system behaviour

In the symbolic module one can distinguish between three different sets of produc-
tion rules.

The first one evaluates the geometric “coherence” of the discriminator responses
and confidences. For instance, suppose that “straight angle” and “obtuse angle”
are respectively the best and the second response for both left and right horizontal
parts; the set of rules verifies whether the left and right recognised features are:
almost at the same height; almost aligned with the top; symmetric with respect to
the top. If the “straight angle” responses do not satisfy these conditions while the
“obtuse angle” responses do, the system selects the “obtuse angle” ones as possible
responses because they are geometrically “coherent”.

The second set of rules implements an abduction-prediction-test cycle [14].
From the ordered list of responses of the top feature, the first response is selected
to start the cycle. The system abduces the possible portal shapes (hypotheses) by
looking at the shape of the top feature. Given these hypotheses on overall portal
shapes, the system predicts which shapes of horizontal features are to be detected
if those hypotheses are correct, and activates the appropriate discriminators. If one
of these horizontal features is detected (test), one of the abduced hypotheses will
be ranked higher than the other ones and subjected to further scrutiny: the system
activates the relevant discriminator to test again the soundness of that hypothesis
with respect to the vertical features.

Figure 4 shows the abduction-prediction-test cycle for linear portals. The letters
denote the class a linear portal belongs to, while the numbers are associated to the
possible geometric features. Once the cycle ends, the third set of rules enables one
to infer the portal shape from the recognised features. For instance, the rule for the
round arch (tuttosesto) has the following structure: ’the portal is a tuttosesto arch
if the top is part of a circle (as in 3 of fig. 3) and the vertical features are as in 5
of fig. 3. By tracing its reasoning, the system is capable of offering an explanation
for its choices: it justifies why a given portal shape was recognised and the other
possibilities were rejected.

Figure 4
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To sum up, the first set of rules in the symbolic module evaluates the discrimi-
nator responses, the second one selects and tests hypotheses on portal shapes, while
the third one arrives at a final classification, if any.

Figure 5

One of the most interesting properties of the system is “rapid learning” [15].
Suppose one wants to train the system in recognising a new class of portal shapes,
for instance the one shown in figure 5. Then a new discriminator is to be trained
to recognise the new element, and a new composition rule is to be added to the
third set of rules. The system now is ready to recognise the new portal shape.

3.3 Results

Some results obtained with the system are reported here. Three different examples
have been chosen in order to highlight significant aspects of the system behaviour.

In addition to the symbolic explanation that the system offers after having
recognised a portal shape, it also outputs a graphical reconstruction of that shape.
The colours of the graphical output indicate: black, maximum response and con-
fidence; blue, maximum response; red, maximum confidence; yellow, neither the
response nor the confidence is maximum; gray, negative confidence.

Figure 6
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As shown in figure 6, the system reconstructed the right portal shape (archi-
trave) using black features.

Figure 7
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Table 1 - Discriminator responses

Given the photograph in the left hand side of figure 7, the system recognised the
right portal shape (policentrico) after some iterations of the abduction-prediction-
test cycle. The system reasoned in the following way: it classified the top geometric
feature as linear (see table 1) and selected {b, ¢, d} (see figure 1) as the set of possible
portal shapes; this set is reduced to {c} after the system classified both horizontal
geometric features as round angles. Being {c} the only surviving hypothesis to
be tested, the system analysed the discriminator responses on vertical geometric
features. The highest discriminator response (black) is given on the left geometric
feature 4, but the corresponding right geometric feature is geometrically incoherent
(left and right features are not at the same height and not symmetric with respect
to the position of the top geometric feature - see figure 7). The second highest
response (blue) is given on the right geometric feature 6, however, as for feature
4, it is geometrically incoherent with respect to the left one. The only plausible
discriminator responses found by the system are those on feature 5. In fact, they are
geometrically coherent with one another and with the same horizontal geometric
features. At this point, the system confirmed the hypothesis {c}, and provided a
stepwise justification for its choice.
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Figure 8

Given a photograph taken from an unusual angle, the system graphically re-
constructed the right shape of the portal but was unable to classify it because of
the geometric incoherence of the geometric features.

This example shows that if it were possible to have in the image pre- processing
an algorithm capable of discovering the perspective, a set of geometric coherence
rules could be adopted in which the perspective direction is taken into account
without changing anything else.

4 Conclusion

The system presented here might seem complex, with high computational and de-
sign costs. The following figures specify the technical characteristics of the system:

- 10 second training time;
- ~30 production rules;

- 20.1 Kb of memory for the discriminators.

These figures summarise the system complexity and show that the approach is
practically interesting. With a small amount of memory and production rules very
good results are obtained, which seem to go beyond the current powers of purely
neural or purely symbolic systems.

Adopting hybrid systems for problems that might otherwise be hard to solve
seems to be a good approach. Furthermore, the right choice of system components
and merging of technologies leads to results which are of interest outside software
engineering alone.
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