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1 Introduction

Early research in artificial neural networks (ANN’s) was significantly influenced
by the goal of providing simplified models of neural cells in the brain and their
mutual interactions. The related goal of investigating whether perceptual or more
properly cognitive behaviours could be simulated by suitably organized ANN’s was
initially motivated by the heuristic idea that similarity of structure between arti-
ficial and real neural nets could provide clues for isolating similarities of function.
The programmatic goals of Artificial Intelligence, whose inception as an indepen-
dent discipline dates back to the mid 1950’s, mark a rather sharp departure from
this heuristic strategy: computational implementation of human-level cognitive
functions can be pursued independently of the study of brain structure. Expert
system research is a special area of AT which inherits this methodological assump-
tion, and is further constrained by the goal of arriving at computational systems
matching the performance of human specialists in their domain of expertise. Since
no additional hypotheses are made on the methods to be used to achieve this goal,
neural methodologies are, from this perspective, on a par with any other compu-
tational method: their usefulness in expert systems is to be assessed on the basis
of appropriate performance criteria. In this respect, the mere advertisement of
learning and parallel processing capacities of ANN’s is too generic, and sometimes
even misleading: consideration of the known (theoretical or contingent) limita-
tions of these capacities —vis--vis the real demands for expert system design and
implementation— is also needed to decide when purely neural, purely symbolic,
or hybrid methodologies are to be adopted. Initial efforts in this direction are
Gutchnecht and Pfeifer (1990), Steels (1989). The present paper is meant as a
contribution towards this sort of assessment in the more specific area of rule-based
expert systems. It presents, in a more systematic fashion, the broad methodologi-
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cal options underlying technical work in this area by the present authors and other
members of the same research group (see, for example, Burattini et al. (1992,
1995), Aiello et al. (1995a, 1995b), De Gregorio (1994, 1996)), in addition to a
selective comparison with other approaches.

2 Neural learning for knowledge and data acqui-
sition

A crucial problem encountered when designing an expert system is that of identify-
ing and appropriately codifying domain knowledge and problem solving strategies
of human specialists. How is this task to be achieved? Puppe (1993) distinguishes
between three different modes of knowledge acquisition: indirect, direct, and au-
tomatic. Indirect knowledge acquisition requires the work of a special character,
a “knowledge engineer” extracting knowledge by communication with human ex-
perts. This is the earliest and, notwithstanding its shortcomings, the still prevailing
approach to knowledge acquisition. It is time-consuming, since long interactions of
two groups of specialists are needed. It is not immune from errors, especially be-
cause the two groups do not share the same background. If human experts possess
the ability to render fully explicit and formalize their knowledge, then direct knowl-
edge acquisition becomes possible, thus reducing the impact of errors from failure
of inter-group communication: the experts are responsible for the construction,
testing, and updating of the expert system. But the confluence of these abilities in
the same individual is rather uncommon. The third mode, automatic knowledge
acquisition by means of learning methods, whether involving traditional symbolic
programming or neural network training, is presently only a remote possibility:

Unfortunately, automatic knowledge acquisition turned out to be ex-
tremely difficult, which is not surprising in the face of the following
considerations: learning requires knowledge; the more one knows, the
easier is to learn, and human experts need about ten years of intensive
occupation with their field before they become experts, whereby, unlike
programs, they can build on general knowledge. Even learning pro-
grams therefore require complex knowledge acquisition. Perhaps even
more serious is the fact that the already difficult validation problem is
becoming even more acute. When a human being constructs or alters a
knowledge base himself, he can estimate the performance of the expert
system much better than when a learning program makes changes of
its own accord. To put it another way, who would take the responsibil-
ity for automatically generated knowledge for expert systems used in
practice? [see Puppe (1993), 9-10]

Even though the prospects of fully automatizing knowledge acquisition seem to
recede in a rather distant future, learning algorithms may still be used as a sup-
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porting tool for knowledge engineers. In order to highlight current limitations of
neural network learning in this area, let us consider the scaling up for a toy problem
discussed in Gallant (1993), p. 267f. The problem is that of constructing a neural
expert system capable of deciding which one of two possible diseases affects pa-
tients presenting pathological patterns from six possible symptoms. Furthermore,
the system has to prescribe appropriate therapies. A neural network is trained
to execute this task. The network, a multilayer perceptron, is formed by three
layers of neurons. Each neuron in the first (input) layer represents a symptom.
The second layer is formed by two neurons representing the diseases the system
has to discriminate between. Each neuron in the third layer represents a possible
therapy. This network is trained by means of a set of pathological patterns. Each
pattern is associated to a disease and a therapy, and the connections between the
elements of the network are modified so as obtain the right associations between
initial pathological patterns on the one hand, and disease and therapy on the other
hand. If the learning procedure does not converge to a correct classification, then
more neurons are added to the network until the correct classification is obtained.
Is the training on this miniature knowledge base generalizable to interesting situ-
ations? A prospective physician is trained over hundreds of medical cases, in the
light of previously acquired theoretical knowledge. Approximating this learning
process, even in the limited sense of collecting, organizing, and presenting a net-
work with a comparable number of significantly different cases, is a tremendously
time-consuming task. Moreover, medical domains in which a few hundreds of dis-
eases and pathological patterns are to be taken into account are rather common.
The computational complexity of learning for problems of these dimensions is a se-
rious issue (Judd (1990)), and casts doubts on this approach to constructing large
knowledge bases.

In view of these considerations, it is reasonable to suggest that expert system re-
search can take advantage of learning algorithms for constructing knowledge bases
mainly where human expertise consists of a classification of patterns into a small
number of different classes. But even within these boundaries, some qualifications
are appropriate. Classification by human experts may involve elaborate, stepwise
reasoning, and providing a justification for the conclusions that have been reached
in this way, under the form of a report of inferential steps from input data, is a
crucial demand for expert systems. However, the NN’s trained by learning pro-
cedures to provide certain i/o associations do not usually lend themselves to this
sort of intermediate state analysis: the hidden layers of neurons are semantically
“opaque”. And what about the even more restricted type of problems concerning
one-step classifications of patterns into a small number of classes? The work of
M. De Gregorio described in this issue of Mathware illustrates some of the diffi-
culties which may be encountered there. He addressed the problem of classifying
the shape of house portals starting from images which are part of the total input
to an expert system for the overall classification of architectural styles in ancient
Italian buildings. The markedly different spatial spreading of the relevant classes of
portal shapes proved a formidable obstacle for the training of a multidiscriminator
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weightless NN, and suggested the opportunity of using a hybrid classifier, where the
weightless NN recognizes geometrical features from portal contours. This informa-
tion plays the twofold role of providing clues to an hypothesis formation reasoning
module (specified as a production system), as well as data for corroborating the
correctness of hypotheses on overall shape identification. Further, De Gregorio
(1994) examined another visual classification problem (levels of traffic congestion
from actual photographs of road junctions) into a small number of classes, and
showed that multidiscriminator weightless NN’s do not work substantively better
than purely numerical algorithms. To strike a more optimistic note at the end
of this section, let us mention a successful example of one-step classification into
a small number of classes: the ECG signal classifier implemented by means of a
weightless NN, which makes use of a clever segmentation of ECG traces (see Badr
(1993)).

3 Parallelism in qualitative reasoning

Let us now turn to consider the heart of rule-based expert system, which is typically
formed by a knowledge base codified as a system of production rules and a rule
interpreter which works iteratively in recognize-and-act cycles. The latter may be
used to implement various kinds of searches (e.g. forward or backward chaining, or
mixed strategies). As is well-known, propositional production rules naturally lend
themselves to parallel processing. In previous papers (see Burattini et al. (1992),
Aiello et al. (1995a, b)), we have described a localist neural model which makes
the parallel processing of such production systems possible: this neural model
performs forward chaining, is capable of querying external sources about missing
information needed to establish its goals, and can provide a detailed justification for
the conclusions it has reached, by exhibiting a trace of the inferential steps leading
from known data to conclusions. The localist semantics adopted (each literal is
represented by a distinguished neuron) and the temporal dimension of activation
spreading are exploited in making this trace available.
The production rules we have considered take the form

PMAN...Apr —cC

where pi,...,pr and ¢ are propositional literals. We used nets of the weighted-
sum, thresholded neurons, introduced by Caianiello, for representing such rules.
The state equation for a neuron h of this type is given by

up(t+1) =1 > ajn - u;(i) - u(t — i) — s (1)

j=11i=0

where uy (i) is the state (1 or 0) of the neuron h at time i; a; 4 is the weight, or
coupling coefficient between neurons j and h; (i) is a monotone non-increasing
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function of the discrete time 4 for neuron h representing a time-variable memory
of the excitation received by h; sy, is the threshold of h; finally,

1] s { 1 ifxz>0

0 ifz<0
A rule r
| AAY h
can be represented as a net having k neurons p1, ..., pg connected to a neuron h

(see fig.1) with the following settings:

aje = 1 (1<j<k)
sp, = k—e (0<e<1)
0p(i) = 6°(i) where 6° is 0 ifi£0 (i.e. there is no memory). (2)

Fig. 1: Neural rule model

By (1) and the settings in (2), one has that
up(t+1) =1 iff Yju,, (t) =1

Using this representation of rules as basic building block, one can design a
purely neural model of forward chaining on systems of propositional production
rules. Such systems, unlike, e.g., the systems treated in Towell and Shavlik (1994),
may contain cycles: a literal appearing in the right-hand side of a rule can appear
in the left-hand side of another rule. Moreover, several rules may share the same
right-hand side literal. This latter possibility requires the introduction of a slight
complication, with respect to the scheme in fig. 1, for the neural implementation of
forward chaining: if a literal p occurs in the right-hand side of m distinct production
rules, then m distinct neurons —each one representing an occurrence of p in these
rules— is to be introduced. This condition is needed to avoid an incorrect activation
of a neuron representing p, which may obtain from a combination of premises
belonging to different rules. (See Burattini et al. (1995, pp. 11-12) for a specific
example of such situation.)
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Various interpretations appropriate for expert system inferencing can be given
of the formalism of production rules. In addition to the immediate logical interpre-
tation in terms of propositional Horn clauses (where only positive literals occur),
the arrow can be taken to stand for causal relationships involved in forms of un-
certain qualitative inference, such as the abductive and predictive causal inferences
used in diagnostic reasoning for hypothesis formation and testing (see, e.g., Burat-
tini and De Gregorio (1994)). Roughly, abductive causal inferences enable one to
select possible explanatory hypotheses for (causes of) observed facts, and predictive
causal inferences enable one to isolate possible observable manifestations of the ex-
planatory hypotheses selected by abductive inferences. For example, interpreting
‘@) — U’ for ‘P, is possibly caused by ¥’, and knowing that ®; is the case, one
can hypothesize (abduce) ¥ as an explanation for occurrence of ®;. Similarly, if
‘U — &5’ is taken to mean ‘U may give rise to manifestation ®»’, then, from ¥
one may predict that @ is likely to be observed.

On the basis of this model of forward chaining on propositional Horn clauses and
(two-level) causal nets, purely neural, rule-based diagnostic systems for paediatric
gastroenterology and the static analysis of buildings have been designed (see Aiello
et al. (1995b) and references therein). The attribute ‘purely neural’ indicates
that in addition to knowledge base and rule interpreter, the control of inferential
processes is modeled by suitably organized NN’s. And domain-specific heuristics
(for, e.g., choosing between competing diagnoses) have been neurally modeled. The
parallel processing of rules made possible by these models may make a difference in
diagnostic domains where reaction times are crucial parameters for evaluating the
performance of expert systems (e.g., in diagnoses of malfunctioning in chemical or
nuclear power plants).

4 Towards (hybrid) extensions

Is it possible to devise purely neural models of other forms of qualitative reason-
ing? Fragments of first-order logic are natural candidates for an extension, even
though the benefits of parallel processing are no longer as evident as in the case
of propositional Horn clauses. More importantly, one has to deal with the variable
binding problem, and a balanced assessment of whether the various approaches
that are now being pursued can pave the way to useful applications in expert sys-
tems seems premature, and surely goes beyond the scope of this paper. In this
connection, we wish just to recall that the simple weighted-sum, thresholded neu-
ron model described in the previous section is unlikely to provide an adequate
technical tool for variable binding: the encoding and passing on of specific variable
values by sequences of unitary neuron firings is very inefficient. An alternative,
recent approach reported in Ajjanagadde and Shastri (1993) exploits the tempo-
ral synchrony of neural activation patterns to represent bindings in limited forms
of backward reasoning. Sun and Walz (1991) present a localist neural model for
forward chaining on systems of first-order Horn clauses which are constrained by
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restrictions on the form of their right-hand side. However, the operations that the
processing units in this model are to perform are so elaborate that one may well
wonder whether the attribute ‘neural’ is still meaningful: a case in point are the
processing units representing a given n-place predicate, which are supposed to test
whether input real values codify legitimate and mutually consistent bindings for
their n variables.

Leaving aside the problem of extensions towards first-order logic, one may still
address the problem of neural models of propositional reasoning from incomplete
or uncertain information. A naive extension of this sort, starting from the rules
described in the previous section, is obtained by modifying the threshold value for
a neuron h representing the literal on the right-hand side of a rule r with & literals
on its left-hand side, each of them capable of firing a unitary impulse on h:

Sh:k—(€+77) (0<6<1;7721), (21)

Rules implemented in this way fire with data only partially matching their left-
hand side. One may also exploit this partial match mechanism in, e.g., qualitative
causal reasoning, in order to determine a partial ordering of plausibility between
competing explanatory hypotheses, if the amount of excitation received by neurons
representing the competing hypotheses in the right-hand side of rules is in various
degrees higher than their threshold. To achieve this effect, the neuron h of fig. 1is
to be replaced by a “dropper” neuron d (fig. 2), which transforms a certain value
E of excitation into a number m of consecutive impulses, where m is proportional
to E (say, m-c = E). iy,...,i, are input neurons generating the excitation of d,
and the dashed line is a negative feedback with value —c. Moreover, d is endowed
with permanent memory, that is, 5 = 1 is the constant decay function §; , and its
threshold n < ¢ allows d to drop all the excitation collected from its inputs under
the form of consecutive unitary output impulses.

Fig. 2: Dropper neuron

The input neurons iy,...,i, may be interpreted as representing supporting
evidence for the hypothesis represented by d. Whenever d emits an impulse, the
negative feedback connection determines a constant value ¢ to be subtracted from
the residual excitation value. Thus, d keeps on firing until all the excitation
E stored in it is dropped away in the form of m = E/c consecutive impulses.
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This number m might be used to characterize the degree of plausibility of an
hypothesis represented by d, to be compared with the degree of plausibility of other
competing hypotheses represented by dropper neurons. Clearly, the permanent
memory function plays a crucial role in this mechanism.

The firing of rules under a partial match achieved by means of setting (2’) may
be a desirable property when rules are used for simulating similarity-based, com-
monsense reasoning, where loose contextual associations play a central role (see,
e.g., Sun (1994)). But these considerations can only very cautiously be general-
ized to the inherently brittle modes of reasoning used in expert systems: principled
restrictions on rule firing are required when the correctness of diagnoses or classi-
fications is at stake. The best one can do, in our view, to fulfil this desideratum is
to have rule firing reflect rigorous models of reasoning under incomplete or uncer-
tain knowledge, so that the uncertainty attached to the conclusions reached by an
expert system can be evaluated within a relatively robust conceptual framework.

If one takes seriously this constraint, extensions of the production system neu-
ral model of section 4 towards forms of quantitative uncertain reasoning, such as
probability or certainty factor propagation, are bound to go hybrid. The main rea-
son is that heavy numerical calculations are required to determine the uncertainty
value of the conclusions reached by these modes of inference. In principle, that is,
disregarding efficiency constraints, these calculations can be carried out even by
suitably organized nets of weighted-sum, thresholded neurons. In practice, the job
of subnets devoted to performing these calculations is more efficiently performed
by conventional processing units (see Aiello et al. (1995b)).

5 Concluding remarks

Our approach to the design of neural modules for rule-based expert systems is char-
acterized by the following choices. First, a localist semantic interpretation is to be
prevalently adopted. This is broadly motivated by the requirement of semantic
transparency for expert system knowledge representation and inferencing. Second,
automatic learning of rules is more suitable, in view of both complexity consid-
erations and the need for adequate justification protocols, for tasks consisting of
one-step classification into a small number of classes. Third, rule firing must reflect
rigorous models of reasoning under incomplete or uncertain knowledge, so that the
uncertainty attached to their conclusions can be properly evaluated. Providing an
informative, stepwise justification for the conclusions reached by a neural expert
system is jointly facilitated by these constraints. Systems that are designed fulfill-
ing these constraints remain, with the exceptions mentioned above, brittle on the
whole, much in the way that traditional symbolic systems are. Brittleness, how-
ever, seems to be an almost unavoidable drawback of reliable, practically usable
expert systems. Thus, in our view, the chief present interest of ANN’s in expert
systems is the possibility of exploiting the parallel processing potential of neural
networks.
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