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Abstract

This paper deals with the possible contributions that logical researches
carried on in the field of artificial intelligence (AI) could give to formal theories
of meaning developed by logically oriented philosophers of language within
the tradition of analytic philosophy. In particular, I will take into account a
topic which is problematic in many respects for traditional logical accounts
of meaning, i.e., the problem of lexical semantics. My thesis is that Al logics
could give useful instruments to face some aspects of the problem, whilst
other aspects fall outside the scope of a logical treatment, and require other
kinds of computational instruments.

1 Lexical semantics and formal theories of mean-
ing

The dominant formal paradigm in the philosophical study of meaning is so-called
model theoretic semantics. Based on formal tools of a set theoretic nature, model
theoretic semantics originated from the researches on the meaning of expressions
of formal languages. The simplest and historically prior form of model theoretic
approach is extensional Tarskian semantics for first order predicate logic. According
to Tarskian semantics, an interpretation I for a first order theory is a ordered pair
I = (¢,D). D is the domain of the interpretation, that is to say, a set of objects
on which the constructs of the language are interpreted. ¢ is an interpretation
function, associating a reference in D to the various constructs of the language (e.g.,
to every individual constant is associated an element of D, to one place predicative
letters are associated subsets of D, and so on). Recursive compositional rules allow
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to establish the reference of syntactically complex expressions, given the reference
of their components. In particular, the truth value of a closed formula can be
established starting from the reference of the atomic symbols occurring in it. An
interpretation I that makes true a certain formula « is said to be a model of «
(in symbols, I = a). A model of a set I' of formulas is a model of all formulas in
I'. Model theoretic semantics allows to formally characterise such notions as the
validity of a formula, or the relation of logical consequence between formulas. For
example, a formula « is valid (= «) if and only if it is true in all the interpretations.
A formula 3 is logical consequence of a formula « (o = 8) if and only if § is true in all
the models of a.. Historically, after the development of Tarskian extensional theory,
model theoretic semantics has been extended to deal with intensional aspects of
meaning with the development of possible world semantics, due mainly to the
researches of Rudolph Carnap and Saul Kripke. Originally developed to account
for the meaning of formal languages, possible world semantics showed to be a very
flexible and powerful tool, which allowed one to face many aspects of the meaning
of natural languages. The application of formal intensional semantics to natural
languages reached its full development with the work of Richard Montague [?].
Montague’s intensional framework is, at the present time, the most outstanding
approach to formal semantics of natural languages, and is adopted not only by
philosophers of language, but also by many linguists (see e.g. [?]). This approach
is based on the idea that the meaning of a sentence can be identified with its truth
conditions: knowing what a given sentence means amounts to know how must the
world be to make it true.

In spite of its successes, the model theoretic approach leaves some unsolved
problems. One example is the study of lexical semantics. Model theoretic tech-
niques are in different respects insufficient to satisfactorily treat word meaning. In
the model theoretic tradition, a partial treatment of lexical semantics is obtained
via the introduction of meaning postulates [?]. Meaning postulates are formulas
that are assumed to hold in all the interpretations of a language, with the ef-
fect of constraining the set of the possible interpretations of extra-logical primitive
symbols of the language itself. Simple examples of formulas that can be used as
meaning postulates are the following:

(1) Vz(poodle(x) — dog(z))

(2) Vz(dog(x) — —cat(z)).

If we assume that these formulas are true in all interpretations, the number of
admissible models is reduced. For example, (1) imposes that the interpretation of
poodle is a subset of the interpretation of dog; (2) imposes that the interpretation
of dog is disjoined from the interpretation of cat.

However, traditional meaning postulates are unsatisfactory in at least two differ-
ent respects. First of all, traditional meaning postulates can express only necessary
and/or sufficient conditions for the application of a concept. The problem is that,
for concepts corresponding to natural language words, necessary and/or sufficient
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conditions are rather the exception than the norm. Usually, it is possible to iden-
tify only sets of features, that characterise concepts in “typical” cases, but that
admit an undefined number of exceptions. For example, everybody that knows the
meaning of the world “lemon”, almost surely must know that usually lemons are
yellow. But this information cannot be captured by means of a traditional mean-
ing postulate. Indeed, a formula like Vz(lemon(z) — yellow(z)) is immediately
falsified by the existence of lemons that are not yellow (in that, for example, they
are not ripe, or rotten). Similarly, the fact that birds usually fly has intuitively
something to do with the meaning of the word “bird” (somebody that fails to know
that birds usually fly, surely does not know what the word “bird” means). But
the possible examples of birds that cannot fly are numberless. Analogous problems
arise with verbal expressions. The meaning of “running” seems to involve that
what runs usually moves, but in atypical cases this may not happen (e.g., consider
people running on a tapis roulant). In general, for almost all common sense con-
cepts (including lexical concepts) it is not possible to individuate sets of necessary
and/or sufficient conditions, that are rich enough to characterise them. This kind
of problems has been independently put in evidence by researchers from different
fields. Consider, for example, in the field of cognitive psychology, the notion of
prototype proposed by Eleanor Rosch [?], or, in AI, Marvin Minsky’s concept of
frame [?]. In philosophy, partly similar conclusions have been achieved, in very dif-
ferent philosophical contexts, by Ludwig Wittgenstein [?] with the notion of family
resemblance, and by Hilary Putnam [?] with the notion of stereotype.

There is a second aspect, largely independent from the above considerations,
with respect to which model theoretic semantics is inadequate to face the problem
of lexical meaning. It concerns the relations between words and extra linguistic
reality. The point is that model theoretic semantics cannot capture the “intended
interpretation” of lexical items. The aim of model theoretic semantics is that of
determining the meaning of syntactically complex expressions, starting form the
meaning of their components. However, as far as the atomic extra-logical elements
of a language are concerned (that is, in a linguistic perspective, the elements of
the lexicon), their meaning is simply assumed as given. At the extensional level,
this is evident in the case of Tarskian semantics for first order logic. Extensional
Tarskian semantics allows to establish the reference (i.e., the truth value) of the
closed formulas of a first order language, assuming as known the behaviour of the in-
terpretation function for primitive extra logical symbols (i.e., individual constants,
predicative and functional letters). This aspect of Tarski’s theory has been clearly
put in evidence by Field [?], who stressed how Tarskian semantics does not give a
reduction of semantic notions (e.g., the notion of truth) to non semantic notions.
Tarski simply reduces the semantic notion of truth to other semantic notions, as,
for example, the notion of denotation of a singular term or of a predicate, which
are assumed as primitive. Mutatis mutandis, the situation is unchanged in possible
world intentional semantics. The intension of a lexical item is modelled as a func-
tion from possible worlds to extensions of the suitable semantic type. However,
model theoretic semantics has nothing to say on which extension must be associ-
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ated to a lexical item in the different possible worlds. In other words, the theory
does not tell anything about the difference between the extensions of two lexical
items of the same syntactical type. In this sense, we can say that model theoretic
semantic does not help in individuating the truth conditions of the sentences of a
language; rather, it allows to calculate the truth conditions of sentences given the
intensions of the primitive symbols occurring in them.

A different way to formulate the problem is the following. As seen before, the
introduction of meaning postulates has the effect of limiting the number of admis-
sible models. However, this is not sufficient to fix the interpretation of primitive
extra logical symbols. For example, once that (1) and (2) are introduced as mean-
ing postulates, nothing tells us that the interpretation of poodle is the set of poodles
and the interpretation of dog is the set of dogs. (1) and (2) are compatible with
an interpretation in which, for example, poodle is interpreted on the set of maples,
dog is interpreted on the set of trees, and cat is interpreted on the set of cars. In
general, no set of meaning postulates can assure that the interpretation of prim-
itive symbols is the “intended” one. Given any set of meaning postulates, there
exists always an infinite number of not intended, non isomorphic interpretations
satisfying them (see, for example, [?]). Also in this case, analogous considerations
hold both for extensional Tarskian semantics and for intensional possible world
semantics.

Following Diego Marconi (see e.g. [?]), I distinguish an inferential component
and a referential component of lexical semantics (note that Marconi formulates this
distinction with respect to lexical competence). The inferential component concerns
the complex whole of connections linking together the elements of the lexicon, and
expressing the non logical relations existing among the words of a language. Ex-
amples of relations of this kind are that dogs are mammals; that birds usually
fly; that a father is a human male who has sons; that if somebody runs, then he
(usually) moves, and so on. Usually, such information is used by speakers to draw
inferences. The referential component concerns the mapping of words on the one
hand, and objects, events and situations in the world on the other. For example,
referential competence has to do with the ability of classifying a given animal as a
dog, or of distinguishing it from a cat, of describing somebody as running, and so
on. It could be described as the ability to determine the values of the interpreta-
tion function for primitive, extra logical symbols of a language. So, the referential
component of lexical semantics has to do with the identification of the real truth
conditions of sentences. In view of this distinction, the above considerations could
be stated by saying that both inferential and referential aspects of lexicon are, in
different respects, problematic for model theoretic semantics. The former because
traditional meaning postulates are insufficient to capture all the inferentially rel-
evant connections between lexical items (as in the case of prototypical features).
The latter because model theoretic tools do not allow to capture the “intended”
interpretation of primitive extra logical symbols of a language.
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2 Non monotonicity, lexical meaning, and formal
semantics

The logical formalisms developed in AI have been seldom adopted or proposed
to face aspects of lexical semantics that fall outside the possibilities of traditional
techniques. For example, fuzzy logic has been proposed to formalise the fuzziness
of many lexical concepts, and to try to capture some prototypical aspects of word
meaning ([?, ?]). Richmond Thomason indicated non monotonic logics as suitable
candidates to face many aspects of lexicon [?]. Also knowledge representation
systems as frames and semantic network can be considered in this perspective.
They have often been used to represent lexical meaning in Al natural language
processing systems, and in this perspective have sometimes raised the interest of
some philosophers of language. Here I assume that frames and semantic nets can
be considered in good approximation as notational variants of logical formalisms,
seldom endowed with non classical features, such as, for example, non monotonicity
to treat defaults and exceptions. In our perspective, all these formalisms can be
considered ways to work out more flexible systems of meaning postulates, allowing
to capture inferential aspects of lexicon, that fall outside the expressive possibilities
of traditional meaning postulates.

In the following I shall consider in particular the contribution of non monotonic
logics to the problem of lexical meaning representation. I shall adopt as a starting
point for my argument the formalism of circumscription. Circumscription is an
approach to non monotonic reasoning originally proposed by John McCarthy [?, ?,
?]. Tt is based on the following intuition. Some predicates apply only to exceptional
cases, and do not hold in typical situations. In common sense reasoning, people
usually implicitly assume that such predicates do not hold, unless it is explicitly
known that it is not so. An example could be the “albino” predicate. Albino people
are a very small subset of human beings. Usually, nobody, in reasoning about a
person he does not know, takes into account the possibility that he is albino,
unless some explicit information on the matter is available. The intuitive idea at
the basis of circumscription is that, in a logical theory, the predicates like albino
must be “circumscribed”. Circumscribing a predicate P in a theory T' amounts to
assume that P has the smallest extension compatible with the information in T
For example, consider the following theory (written in the language of first order
calculus with identity):

T = {albino(Gigi), Piero # Gigi, Pippo # Gigi, Pippo # Piero}.

Circumscribing the predicate albino in T' amounts to assume that Gigi is the only
albino individual in the theory domain. That is to say, from the circumscription of
albino in T, it must follow that:

Ve (albino(z) — © = Gigi).

With circumscription we can formalise rules expressing defeasible regularities, such
as, for example, that birds usually fly. To represent non monotonic rules of this
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kind with circumscription, a predicate ab is introduced, whose intuitive meaning
is abnormal [?]. For example, that birds usually fly is represented by the following
formula:

(HVx(bird(z) A —ab(z) — flies(z)).

That is to say, if something is a bird, and it is not an abnormal bird, it flies.
To obtain the desired consequences, the ab predicate must be circumscribed. In
other words, circumscribing ab amounts to assume that are abnormal all and only
the individuals that are explicitly known to be abnormal. Le., it is assumed that
abnormal birds are as few as possible. Consider for example the theory:

T = {Vz(bird(z) A ~ab(z) — flies(x)), bird(Tweety)}.

Given the information in 7', no individual can be deduced to be abnormal. There-
fore, circumscribing ab in T' amounts to assume that Yz—ab(z). As a consequence,
we have that Va(bird(z) — flies(z)) and flies(T'weety). Let us suppose now that
T is extended to the following theory T*

T' =T U {bird(Fred),~flies(Fred), Fred # Tweety}.

From T”it can be derived that ab(Fred). So, circumscribing abin 77, we will obtain
Vx(ab(x) — x = Fred), and, as a consequence, Yz (bird(z) Az # Fred — flies(z)).
The situation is analogous, even if more complex, when, in a theory there are more
abnormality predicates to be circumscribed, as in the following example:

(i) Vz(bird(z) A ~aby(z) — flies(z))

(ii) Vx(ostrich(z) A —abi(z) — = flies(x))

Adopting circumscription, formulas like (1) or (i-ii) can be used as meaning pos-
tulates, to express defeasible regularities in the characterisation of the inferential
component of lexical meaning.
The relevance of non monotonic formalisms in the logical treatment of lexical

meaning is stressed in the following passage by Richmond Thomason:

Logicist work in AI has generally recognized the need for augmenting the Fregean

logical framework in order to deal with problems of common sense reasoning. The

most generally accepted line of development is the incorporation of non monotonic-

ity into the logic. And this feature, it turns out, is precisely what is needed to

accomodate many of the problems the emerged in Montague-style lexical semantics.

[...] Tt is no surprise that lexical semantics is full of defeasible generalizations, and

a general technique for expressing such generalizations would greatly extend the

coverage of logicist theories of world meaning. ([?], p. 4)

Formally, circumscribing some predicate in a first order theory 7" amounts to
adding to T suitable second order axioms. Different kinds of axioms give rise to
different kinds of circumscriptive theories, apt to formalise different types of non
monotonic reasoning. I do not focus on these aspects here. From our point of
view, it is worth noting that circumscription admits a semantic treatment of a
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model theoretic nature. Model theoretic semantics for circumscriptive logics was
proposed by McCarthy himself, and it is based on the concept of minimal model of
a theory with respect to a certain set of predicates. The minimal model semantics
captures the intuition that the models of the circumscription of P in a theory T are
those models of T in which the predicate P has the smallest extension compatible
with available information.

As an example, I describe the minimal model treatment of the simplest form of
circumscription, i.e. predicate circumscription ([?]). In terms of minimal model se-
mantics, predicate circumscription is characterised as follows (for sake of simplicity,
I consider here the case in which only one predicate is circumscribed).

Let T be a first order theory, and P a predicate of the language of T', and let
M = (p,D) and M' = (¢',D') be two models of T. We shall say that M’ is a
P-submodel of M for the theory T if and only if:

1. D' = D;

2. ¢'[P] C ¢[P];
3. ¢'[K] = ¢[K] for every constant K of the language of T different from P.

We shall say that M is a P-minimal model of T if and only if every model of T’
which is a P-submodel of M is identical to M.

For every theory T', and for every predicative constant P of the language of
T, the models of the predicate circumscription of P in T are all and only the
P-minimal models of T'. In other words, a formula « follows from the predicate
circumscription of P in T if and only if « is true in all P-minimal models of T'.
P-minimal models of T" are those models of T in which the predicate P has the
smallest extension compatible with T itself.

Predicate circumscription can be used to formalise cases like the example of the
albino predicate above. However, it cannot account for non monotonic rules of the
kind of (). In such cases also the predicate flies must be allowed to change its
extension during the process of minimisation (intuitively, the less are the abnormal
birds, the more are the flying ones). This can be obtained by means of another,
more powerful, kind of circumscription, namely formula circumscription [?]. Even
more complex is the case of set of rules like (i-ii), where more then one abnormality
predicate is minimised. These cases require other forms of circumscription, such
as prioritized circumscription [?, 7]. However, the central idea of minimal model
approach to circumscription is already evident in the simplest case of predicate
circumscription.

The possibility of a model theoretic account of circumscription witnesses for
the possibility of its integration in the framework of intensional semantics. The
homogeneity of circumscription with Montague paradigm is stressed by Thomason:

Among the available theories of defeasible reasoning that could be applied in lexical
semantics, circumscription is the one that perhaps can most easily and naturally

blended in the existing work in Montague’s framework, because it provides an in-
tegrated logical package that is based on higher-order logic. [...] The project of
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developing a broadly successful logic-based account of semantic interrelationships
among the lexical items of a natural language is roughly comparable in scope with
the project of developing a high-level theory of common-sense knowledge. ([?], p.
457)

Besides circumscription, other logical formalisations of non monotonic reason-
ing have been proposed. Among them, Reiter’s default logic and non monotonic
modal logics (e.g., autoepistemic logic). Various relations exist between these dif-
ferent types of non monotonic formalisms, and various equivalence results have
been proved. I do not address these issues here. For our purposes, it is interest-
ing to shortly consider the general semantic approach proposed by Yohav Shoham
([?, ?]), in order to offer a unitary framework for non monotonic reasoning, that
could encompass and generalise the existing non monotonic systems. Shoham’s
proposal is based on the concept of preferred model. The basic, intuitive, idea is
that, in non monotonic reasoning, only a subset of the models of a theory is taken
into consideration. These models enjoy some special characteristic, they are “pre-
ferred” from some point of view. This is evident in the case of circumscription,
where models are preferred, in which the circumscribed predicates have a smaller
extension. Shoham’s theory originates exactly as a generalisation of McCarthy’s
minimal model semantics for circumscription. Different preference criteria give
rise to different non monotonic logics. Shoham called his approach preferential
semantics.

Shoham formulation of preferential semantics is very comprehensive. Let L be
a standard logic. Shoham calls “standard logic” a classical monotonic logic, for
example propositional logic or first order predicate logic, or a modal, propositional
or predicative, logic. A non monotonic logic can be obtained from L introducing a
preferential ordering on the interpretations of L. According to Shoham, an inter-
pretation is everything can stay on the left of |=, where |= is the usual (monotonic)
relation of semantic consequence of L. Hence, in this context, an interpretation can
be an interpretation in the strict sense (e.g., a Tarskian interpretation for first order
logic), or, in the case of a modal logic, a pair (I, w), where I is a Kripke structure,
and w is a possible world. This allows, for example, to encompass in the frame-
work of preferential semantics also autoepistemic logics, whose semantics is given
in terms of possible worlds. Let be < a strict partial ordering on the interpretations
of L, and M, and M> interpretations of L. M; < M, means that M, is preferred
to M;. L and < define a new preferential logic L. Let o and 8 be formulas of the
language of L. The concepts of satisfaction and of logical consequence for L. are
defined as follows.

Definition: an interpretation M preferentially satisfies a (in symbols, M =< «) if
M = «, and if no other interpretation M' exists, such that M < M' and M' |= «.
In this case, M is called a preferred model of .

Definition: § is a preferential consequence of a (in symbols, a =< B) if, for every
interpretation M, if M =< «, then M |= B (in other words, 8 is a preferential
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consequence of « iff 8 is true in all the preferred models of o).

The ordering relations between models of the minimal model approach can be
seen as particular cases of preference relations in preferential semantics. Besides
circumscription, preferential semantics has been applied to other non monotonic
systems, including autoepistemic logic and default logic.

In conclusion, the present section can be summarised as follows. Non mono-
tonic logics could be useful to face many inferential aspects of lexical semantics.
Moreover, they are homogeneous with formal tools traditionally adopted in the
logico-philosophical tradition, and, in this respect, they could be integrated within
an intensional semantic framework. However, as we shall see in the next section,
these techniques leave referential aspects of lexicon completely unaffected.

3 Are Al logics enough?

The fact itself that non monotonic logics admit a model theoretic semantic treat-
ment suggests that the above considerations concerning the impossibility of deter-
mining intended interpretations (see § 1) apply also in this case. The situation
with non monotonic meaning postulates is even worst then in the traditional case.
In facts, non monotonic meaning postulates are “looser” then classical ones in con-
straining the models of a theory. This point can be efficaciously illustrated with a
joke by Ettore Petrolini:

Two friends are telling each other riddles.

“Can you tell me what’s green, sits on the top of the piano, and goes ’chirp-chirp-

chirp’?”?

The other thinks and thinks, and finally responds:

“I don’t know, you tell me.”

“A herring”

“But herrings aren’t green!”

“So just paint it.”

“There’s no way it’s on the piano!”

“So just put it there.”

“And on the top of all that, herrings don’t go chirp.”

“Right! But if I didn’t say that, it would have been too easy to guess!” ([?], p. 172)

That is to say, typical herrings are greyish, dumb, and stay in the depths of the
sea. However, if these are prototypical features, that can be violated by atypical
specimens, then also a green object on the top of a piano could belong to the inter-
pretation of the predicate herring. As an extreme case, if any feature represented in
a set of meaning postulates is defeasible, then any interpretation would be a model
of that theory. We saw that two meaning postulates as Vz(poodle(z) — dog(z))
and Vz(dog(xz) — —cat(x)) would admit as their models interpretations in which
the predicate poodle is interpreted on the set of maples, dog is interpreted on the
set of trees, and cat is interpreted on the set of cars. In the case of circumscriptive
theories, it can happen that a theory including the following meaning postulates:

Vx(fledged(x) A —abi (z) — flies(z))
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Va(bird(z) A —abs(x) — fledged(x))

cannot exclude from its models interpretations in which, for example, fledged is
interpreted on the set of dogs, flies is interpreted on the set of baboons, and bird is
interpreted on the set of bicycles. According to preferential semantic terminology,
the problem is that non monotonic meaning postulates do not constrain all the
models of a theory, but only their preferred models. For example, the second of the
above circumscriptive meaning postulates imposes that those models are preferred,
in which the members of the interpretation of bird that are also members of the
interpretation of fledged are as many as possible. But this does not exclude that,
in certain models, it could happen that no birds are fledged.

Approaching the referential aspects of lexicon amounts, in a computational per-
spective, to face the problem of symbol grounding in the sense introduced by Steven
Harnad [?]. Primitive extra-logical symbols at the linguistic level must be grounded
on perception, on motor activities, and, in general, on non linguistic capabilities
of an autonomous computational agent. In a model theoretic perspective, symbol
grounding can be considered as akin, in a certain sense, to the problem of devising
how the interpretation function (and its inverse) can be calculated for (some of) the
primitive symbols of a language. I maintain that, in order to calculate the values of
such functions, the primitive elements on which computations are defined must be
chosen at a “lower” level of analysis with respect to lexical concepts. They cannot
be semantically homogeneous to natural language words, and must ultimately be
connected to measurements and data coming from sensors. It is improbable that
logic could offer the most suitable paradigm to face this kind of problems, and com-
putational devices such as “subsymbolic” neural networks could prove to be more
adequate. Much work has been done in the perspective of integrating symbolic
systems and neural networks (see for example Massimo De Gregorio’s contribution
to this same volume [?]). However, a general formal framework putting together in
a principled way logic and “subsymbolic” forms of computation is still needed (for
a promising proposal in this direction, see Peter Gardenfors’ theory of conceptual
spaces, presented in his contribution to this volume [?]).
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