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1 Introduction

In the most widely used approach to the theory of probability, based on a measure-
theoretic framework, the set of all possible envisaged situations (the so-called sam-
ple space) needs to be endowed with a given “algebraic” structure (such as a boolean
ring, a o-algebra, etc.), on which an overall probability assignment is defined. Not
to mention that this setting usually entails the further consequence of assuming
(without any sound reason, apart from mathematical convenience) countable ad-
ditivity of the probability. On the other hand, for many real world situations it is
suitable and very significant not assuming any specific structure for the set where
probability is assessed and not making such assessment on the whole set of possible
situations.

In this respect, the theory of probability as proposed by de Finetti (based on
the concept of coherence) is particularly suitable: it allows to assess your (coherent)
probability for as many or as few events as you feel initially able and interested,
possibly going on to further events, and this has many important theoretical and
applied consequences, making simpler and more effective the “operational” aspects.
In fact checking of coherence amounts to the study of the compatibility of some
linear systems, whose unknowns are the probabilities of the atoms generated by
the given events.

The link between probability measures and coherent functions is the following:
coherence (which can be defined in terms either of a penalty criterion or of a
betting scheme: for the former see de Finetti (1970) and Gilio (1990), the latter is
discussed in Sect.4) of a function P on an arbitrary family £ of events is equivalent
to the existence of a probability space (2,4, P'), with a finitely additive P’ and
the Boolean algebra A4 D &, such that the given function P is the restriction of P’
to €.

But the main aim of this paper is to emphasize the semantic aspects of this
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approach rather than a detailed discussion of the aforementioned syntactical aspects
(for these, we refer to the paper by G.Coletti in this same issue, which should be
read in conjunction with this one).

In fact, a clear-cut distinction between the meaning of probability and the
various multifacet methods of assessment is essential. With respect to the meaning,
probability can be regarded as a measure of the degree of belief hold by the subject
that is making the assessment (this is the essential reason why it is called subjective
probability).

2 Probability: meaning and assessment

The most “popular” and well known methods of assessment are based on the com-
binatorial approach and on the observed frequency. These two methods are dealt
with in any text book on probability (even if under the misleading attribute of
“definitions”: see de Finetti (1972, 1976) and Scozzafava (1990a) for a relevant
discussion), and so there is no need to spend much time on them.

Yet note that they essentially suggest to take into account only the most schema-
tic data or information, and in the most schematic manner, which is not necessarily
bad, but not necessarily good either. Nevertheless, these most “popular” and well
known approaches to probability must not be doomed, but may be taken as useful
methods of assessment: they are subjective as well, since it is up to the given sub-
ject to judge, for example, the “symmetry” in the combinatorial approach or the
existence of “similar” conditions for the different trials in the frequentist approach.

A more general conceptual framework can be based on inductive reasoning,
which is a fundamental tool also for the scientific knowledge: an instance is the
possibility of introducing a well founded process of measuring the expectation of
“future” events on the basis of observed “past” events (usually, statistical data).
In the various real-life situations in which uncertainty is present, gathering and in-
terpreting statistical data leads in general to a decrease of uncertainty with respect
to the initial situation: the measurement of this uncertainty can be quantitatively
carried out by the same tool used for the measurement of the uncertainty asso-
ciated with classical random phenomena such as coin tossing or dice throwing,
i.e. through the concept of probability. The outlined process may be called, in a
vague but expressive way, “learning from experience”, and its precise and rigorous
formulation can in fact be realized by conditional probability.

Statistics and probability proceed so at the same pace, the former providing
techniques for the formalization and the synthesis of data, the latter interpreting
them through “conclusions” which in general are not certain (as those of ordinary,
i.e. deductive, logic), but only more or less probable.

In order to fully grasp the richness of this merged approach, an overcoming of
barriers created by prevailing opinions (that rely upon a “combinatorial” assess-
ment, assuming equal probability of all possible cases, or upon the assessment of
the probability of an event through the frequency relative to other events that are
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considered, in a sense, “equal” to that of interest) is needed. In other words, it
is essential to give up any artful limitation of probability to particular events (not
even clearly definable), that often unnecessarily restricts its domain of applicability.
There is instead the need to ascribe to probability a more general meaning, which
after all should be a sensible way to cope with real situations: a concrete and not
stereotyped approach should in fact start from the subjective and intuitive “real
life” meaning of probability as degree of belief in the occurrence of an event.

This can be easily done through a natural condition of coherence, so leading to
the conclusion that subjective probability satisfies the usual and classical proper-
ties: it is a function whose range is between zero and one (these two extreme values
being taken, in particular, by the impossible and certain event respectively) and
which is additive for mutually exclusive events. These properties constitute the
starting point in the axiomatic approach: in conclusion, the subjective view can
only enlarge and never restrict the practical purport of probability theory. For a
deeper discussion, see also Scozzafava (1989, 1991).

3 Conditional events as uncertain statements in
Artificial Intelligence

How can the probabilistic approach to Artificial Intelligence be handled according
to the theory sketched above? In this paper we deal with and emphasize only some
aspects: other relevant papers are Gilio and Scozzafava (1988), Coletti, Gilio and
Scozzafava (1991, 1993), Gilio and Spezzaferri (1992), Coletti (1993, 1994), Coletti
and Scozzafava (1993).

First of all, a formulation of uncertain statements in terms of conditional events
is needed. We start by introducing the simpler concept of event, which can be
singled-out (in our general framework) by a (nonambiguous) proposition E, that
is a statement that can be either true or false (in particular, there is no need to
distinguish between hypotheses and evidence). In general it is not known whether
FE is true or not: we are uncertain on E.

Some examples follow:

(1) a proposition E describing the so-called “favorable” cases to a possible out-
come: so outcome and proposition can be mutually identified (typical situa-
tion is that of the combinatorial approach);

(2) given a sequence of trials performed “under similar conditions”, a proposition
E describing the possible result of each trial: so observed result and propo-
sition can be mutually identified (typical situation is that of the frequentist

approach);

(3) anything else (if sensible...).
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Two important particular cases (with no uncertainty) are: the certain event Q
(where certain means that it is known that the relevant proposition (2 is true) and
the impossible event ¢ (when it is known that the relevant proposition ¢ is false).

In all other cases, the actual “value” (true or false) of the event E is not known.
Notice that, depending on the relevant “information” (for instance, statistical data
or evidence), an uncertain event E may become true or false, so reducing to {2 or
0.

In general, it is not enough directing attention just toward the event E in order
to assess “convincingly” its probability: it is also essential taking into account other
events which may possibly contribute in determining the “information” on the event
E.

Then the fundamental tool will be conditional probability, since the true prob-
lem is not that of assessing P(FE), but rather that of assessing P(E|H), taking
into account all the relevant information carried by some other event H (possibly
corresponding to statistical data, acquired or assumed).

This requires the introduction of conditional events, which correspond to a 3-
valued logic (see Sect.4): so it is necessary to define appropriate logical relations
and operations, extending the usual ones between standard events. There are many
pros and contras concerning the “right” choice among different possible definitions:
usually they should depend on each specific context and application. For a deep-
ening of these aspects, see Gilio and Scozzafava (1994), Goodman, Nguyen and
Walker (1991). Anyway, real world situations make very significant assuming an
“open” framework and not a specific algebraic structure for the family of condi-
tional events on which probability is assessed.

The following example, due to Schay (1968), helps in throwing light on the
aforementioned need of an open framework and of a careful interpretation of the
concept of event as a proposition.

Given an election with only three candidates A, B, C, denote by the same sym-
bols also the events corresponding to either one of the candidates winning, so that
AUBUC = Q, the certain event. Now, suppose that C withdraws and that then
all his votes will go to B: according to Schay, this situation involves probabilities
for which the product rule

P(BN H) = P(B|H)P(H), 1)

where H = AU B, does not hold. We are going to discuss (and challenge) this
conclusion: it is based on the presumption that the new framework corresponding
to the withdrawing of C is A U B.

Actually a careful singling-out of the “correct” events is needed: in our “open”
framework this can be done also outside the initial “space” {4, B,C'}, considering
a suitable proposition (expressing the new information), which is not A U B, but
the event

E = C withdraws and all his votes go to B.
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Notice that E C AU B but not conversely: in other words, either A or B can win
even if C does not withdraw!
Schay argues as follows: since one has P(H) = 2/3 and

P(B|H) = ; (2)

from BN H = BN (AU B) = B it follows, for the left member of (1), the value
P(B) = 1/3, while the right member of the product rule is equal to (2/3)(2/3) =
4/9.

On the contrary, a careful singling-out of the conditioning event entails that we

must replace (2) by
P(BIE) =2,
3
with E =“C withdraws and all his votes go to B”. Moreover, as shown in Scozzafava
(1993), the only coherent assessment of P(B|H), given the values P(B|E) = 2/3,
P(H)=2/3 and P(B) =1/3,is P(B|H) = 1/2: then the product rule (1) holds.

Therefore, Schay’s conclusion that “it may along these lines be possible to incor-
porate the probabilities of quantum mechanics in our theory” must be challenged. It
has been discussed elsewhere (Scozzafava, 1992) how certain paradoxes, concerning
probabilities that do not satisfy the product rule and arising in the statistical de-
scription of quantum theory, depend on the fact that observed frequencies, relative
to different experiments, are arbitrarily identified with the values of a conditional
probability on the same given space.

Moreover, there are many multifacet controversial aspects, including the need
to avoid misunderstandings when the conditioning event is interpreted as a fit
representation of a given information. For example, a careful distinction between
assumed and acquired information is essential, i.e. an important issue concerns the
need of interpreting the conditional probability p = P(A|B) as

the probability of (A given B)

rather than as
(the probability of A) given B.

The latter interpretation is unsustainable, since it would literally mean “if B occurs,
then p is the probability of A”, which is actually a form of logical deduction leading
to absurd conclusions. Consider in fact a set of five balls {1,2,3,4,5} and the
probability (which equals 2/5) that a number drawn from it at random is even:
this probability could instead be assessed equal to 1/3, since this is the value of
the sought probability conditionally on the occurrence of each one of the events

E1 = {1,2,3} or E2 = {3,4,5},

and one (possibly both) of them will certainly occur.
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4 Interpretation of conditional events and condi-
tional probability in terms of a betting scheme

A conditional event E|H, with H # ¢, is looked upon as a 3-valued entity taking
one of the three values 1, 0, p (denoting by p any number between 0 and 1),
according to whether it is true, respectively, either the event EH, or E°H, or H".

If an amount p is paid to bet on E|H, we get, when H turns out to be true, an
amount 1 if also F is true (the bet is won) and an amount 0 if E is false (the bet
is lost), and we get back the amount p if H turns out to be false (the bet is called
off). In short, the (random) value taken by F|H is just the amount got back when
one bets on it by paying an amount p, which can be interpreted as the conditional
probability P(E|H): see Sect.5.

In particular, the (unconditional) event E, that can take only two values (1 or
0), can be looked on as E|Q.

5 Probability assessment and coherence

Let C be an arbitrary family of conditional events and P a real function defined on
C. Given any finite subfamily

.7‘ = {E1|H1, 7En|Hn} g C,

put P(E;|H;) = p; for i = 1,...,n. Then, denoting by b the indicator function of
an event B, we consider the random quantity

n

G =) Xhilei —pi)

i=1

(i.e, the gain corresponding to a combination of n bets of amounts py Ay, ..., pnA, on
E\|H,, ..., E,|H,, with arbitrary real stakes A, ..., \,). Denoting by H, the union
HyU...UH, and by G|y, the restriction of G to Hp , we have the following

Definition The real function P : C — R is coherent if, for each assessment P =
(p1,-.-yDn) on a finite family F C C, with p; = P(E;|H;), and for every choice of
A1y, An € R, the possible values of the corresponding gain Gy, are neither all
positive nor all negative.

Given the atoms A.(r = 1,2,...,m) generated by the 2n events Ei, ..., E,,
Hy, ..., Hy, the possible values of G|y, are those corresponding to the partition of
Q into the atoms.

Notice that this result is based on hypothetical bets: the force of the argument
does not depend on whether or not one actually has the possibility or intends to
bet. In fact a method of assessing probabilities making one a sure loser or winner
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if he had to gamble (whether or not he really will act so) would be suspicious and
unreliable for any purposes whatsoever. The point of defining probability in terms
of hypothetical bets is to give it an unmistakable, concrete or operational meaning,
but you may assess it however you like (obviously, you are not allowed to violate
the relevant syntactical rules!).

It has been essentially proved by B. de Finetti that if the assessment P is
coherent, then P can be looked on as the restriction on C of a (finitely additive)
conditional probability given on & X H, where £ is a field and H an additive class.

The latter result and the following extension theorem, also essentially due to
de Finetti (see de Finetti, 1949), constitute two milestones in the approach to
probability through coherence.

Theorem Given an assessment P on a class C of conditional events and an arbi-
trary class KK O C, then there exists a (possibly not unique) coherent extension of
P to K if and only if P is coherent on C. In particular, if K = CU{E|H} and
P(E|H) = p, coherent assessments of the conditional probability p are those of a
suitable closed interval [p',p”] C [0, 1], with p' < p”.

So it is possible to assess P only on an arbitrary set C of conditional events of
interest, with no underlying structure, and then to extend the assessment, preserv-
ing coherence, by a step-by-step assignment to further events. Moreover, since the
conditional probability P(E|H) is directly introduced as a function on the set of
conditional events, bound to satisfy only the requirement of coherence, it can be
assessed and makes sense for any pair of events E, H, with H # ¢, and there is
no need of assuming positive probability for the conditioning event, as in the usual
approach, where P(E|H) is instead introduced by definition as the ratio between
the two (unconditional) probabilities P(E N H) and P(H). In the “continuous”
case the usual approach is based on the classical Radon-Nikodym framework, which
requires the knowledge of the whole conditioning distribution (a situation which is
clearly unsound, especially from a Bayesian inferential point of view), while we
need refer just to the given conditional event: for a thorough critical comparison
between de Finetti’s and Kolmogorov’s approaches, see Scozzafava (1990b).

The possibility of dealing also with zero probabilities is a very crucial feature,
even in the case of a finite family of events: in fact, ignoring the possible existence
of null events (which amounts to a stronger form of coherence) drastically restricts
the class of admissible probability assessments and the possibility of unboundedly
extending a coherent conditional probability: cf. the paper by G.Coletti in this
same issue.
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6 A sketch of conditional subjective probability
looked on as membership function in fuzzy the-
ory

In general, in the literature on fuzzy sets it is challenged the possibility of inter-
preting a statement such as £ = “Mary is young” as an event and the values of
the corresponding membership function as probabilities. In fact E is a vague state-
ment, and vagueness is looked on as an uncertainty about intended meaning and
not about facts, i.e. a sort of “linguistic” uncertainty.

The arguments brought forward to distinguish grades of membership from prob-
abilities obviously refer to the usual restrictive interpretations of event and prob-
ability: we will deepen in a forthcoming paper how our probabilistic framework
allows to overcome this (putative) distinction in terms of conditional events and
conditional probability.

In this paper we give only a sketch of our views by referring to the above classical
example of fuzzy statement: where does it come from and what is its “operational”
meaning?

From a pragmatic point of view, it is natural to think to some available informa-
tion about possible values of Mary’s age, which allows to refer it to a (subjective)
membership function of the fuzzy set of “young” people. For example, for values
of the age less than 25 the membership function may be put equal to 1, while it is
put equal to 0 for values greater than 40; then it is taken as decreasing from 1 to
0 in the interval from 25 to 40.

One of the putative merits of the fuzzy approach is that, given the range of
values from 0 to 1, there is no restriction for the assignment of the membership
function, in contrast to probability that obeys certain rules such as, for example, the
axiom of additivity: it follows that, when an expert assigns a subjective probability
of (say) 0.2 to the statement that Mary’s age is between 35 and 36, he inescapably
assigns a degree of belief of 0.8 to the contrary, and he may not have for the
latter fact any justification apart from the consistency argument represented by
the additivity rule.

In our probabilistic framework the way-out is indeed very simple. Notice that
the above choice of the membership function implies that women whose age is less
than 25 are “young”, while those with an age greater than 40 are not. So the real
problem is that we are uncertain on being or not “young” those women having
an age between 25 and 40: then our interest is in fact directed toward conditional
events such as E|H, with

E = One claims that Mary is young

H,, = the age of Mary is between n and n + 1,

where n varies over the integers from 25 to 39. It follows that an expert may assign
a subjective probability P(E|H3s) equal to 0.2 without any need to assign a degree
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of belief of 0.8 to the event E under the assumption H§; (i.e., the age of Mary is
not between 35 and 36), since an additivity rule with respect to the conditioning
events does not hold. In other words, it seems sensible to identify the values of the
membership function with suitable conditional probabilities: in particular, putting

Hy = Mary’s age is greater than 40,

H, = Mary’s age is less than 25 ,
then EN Hy = ¢ and H; C E, so that P(E|Hp) =0 and P(E|H;) = 1.
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