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Abstract

Vague information can be represented as comparison of previsions or com-
parison of probabilities, and a robust analysis can be done, in order to make
inference about some quantity of interest and to measure the imprecision
of the answers. In particular, in some decision problems the answer can be
unique.

1 Introduction.

In front of problems of description, diagnosis, prevision, forecasting, or decision
under uncertainty, the probability theory is the most ancient tool proposed, but
for the divination. When the information on the structure of the problem is vague,
the use of probability theory -in particular the Bayesian probability theory- is often
criticized, because it request an initial precise numerical evaluation. On the other
hand nobody refuse the equations of classical mechanics in describing the bullet
trajectory, only because it is difficult to calculate exactly the initial position or
speed.

The natural answer is: keep the theory, use your imprecise knowledge to give
an answer and look for a tool to measure its imprecision: when various probability
distributions are compatible with the information, the analysis can be satisfactory
even if the value of the quantity of interest is not unique, but ”approximatively
unique”. Of course the degree of approximation has to be chosen by the decision
maker, depending on the problem.

So, once abandoned the ”"dogma of precision”, the robust Bayesian analysis
(that is the study of the sensitivity of a Bayesian answer to uncertain inputs) has
been developed (Berger, 1994 for a review) and theoretical models, such as belief
functions and lower probability envelops, have been used in a rigorous probabilistic
frame (Wasserman, 1990, Wasserman and Kadane, 1990, Walley, 1991). Those
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model still need some numerical evaluation, therefore they understand some expe-
rience in probability or statistics.

In the real life, if the problem of interest is new, or if the expert of the field is
unaware of probability and statistics, any numerical judgement can be misleading.
Comparative judgements, while vague, are more reliable, since they are closer to
common language and mental categories: a person living in the mountains can
be able to compare the quantity of snow of the next two days; a Tour de France
organizer can compare how long two stages last, but almost nobody can be able to
compute the full probability distributions of the involved random quantities. Those
examples suggest that the comparative prevision is a widely used natural concept,
therefore it is a good starting point for probability elicitation.

The idea of joining a robust analysis with the comparative probability theory
has already been proposed (e.g. Good, 1950, Giron and Rios, 1980), but still it is
few exploited, while recently the interest on comparative probability as an effective
tool of elicitation is growing up (see also either Coletti, or Garbolino in this same
issue).

Here we take up this idea. Note that in order to develop it, we assume as prim-
itive the concept of random variables and their prevision (that is the expectation)
rather than events and their probability (e.g. de Finetti 1937).

1.1 Preview.

In next section the concept of comparative prevision is introduced and comparative
probability is defined as a particular case of it; the class of all probability distribu-
tions compatible with them is described. Particular kinds of elicitation are studied
in the following section. Section 4 is devoted to the cases in which the coherence
allows to deduce certain comparison from the initial comparative elicitation, while
Section 5 considers the problem of making inference about some numerical quantity
of interest and the problem of its approximation.

The technical results are deduced from those in Regoli (1994 b), Regoli (1995)
and related references.

2 Comparative Probability and Comparative Pre-
vision.

Let F be a family of random variables (r.v.’s) and let F the spanned o-algebra of
events. If indicators of events are in F, let A, B,(C, ... denote either the events or
their indicators.

A comparative prevision on F is a finite or infinite list, C, of comparisons among
r.v.’s, equivalently it is a partial binary relation on F. For every (Y, X) € C we
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denote by Y < X the assertion that “Y is not bigger than X on average’, or “I
expect Y not bigger than X”. The restriction of C to the set of the events is called
comparative probability and, for every (B, A) € C we denote by B < A the assertion
that “B is not more probable than A”. Possibly a subset C'1C of strict comparisons
is given; in such a case, for every (Y, X) € C' we denote by Y < X the assertion
that “Y is smaller than X on average”.

A comparative prevision, C , is said to be coherent on F if there exists a prob-
ability measure P on F such that

Y < X = EP(Y) < EP(X).

being E¥(X) the expected value of X with respect to P; in particular, when only
events are considered

B < A= P(B) < P(A).

In such a case we say that P represents (or is compatible with) C. Moreover if for
some P

Y <X = EP(Y) < EP(X),

we say that C is strongly coherent on F. and that P strictly represents (or is strictly
compatible with) C.

2.1 Coherence.

Starting from de Finetti (1931) and Savage (1954), the traditional literature on this
field gives different conditions for a comparative probability to be representable by
a finitely additive probability. Villegas’ continuity condition makes the probability
o-additive (for reviews see Fishburn, 1986, and more recently Regoli, 1994 b, for
a partial updating, oriented to the present context). Coherence conditions for
comparative prevision, such as Buehler’s (1974), can be handled by means of linear
programming and they only need an arbitrary binary relation on an arbitrary set
of r.v.’s. If C is not coherent, conditions, similar to those quoted above, can check
if it is compatible by means of some kind of capacities such as convex capacities or
belief functions (Regoli, 1994 a).

Let say that C = {Y; < X;,j € J} is finite if J and the algebra Ac¢ generated
by Y;, X (j € J) are finite.

Let C be finite and coherent and let P be a probability on A¢ representing C;
then all g-additive extensions of P to any o-algebra containing A¢ are given by
following the mixture procedure used in the next paragraphs. Of course the exten-
sion is not unique if A¢ # F and in general even the probability on A¢ is not unique.
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2.2 The comparative class.

The family, T, of probability measures representing C, called comparative class, is
given by
I = {P € Pr(¥), EF(Y;) <EF(X;), je J}.

Family I' can be described as the close convex hull of its extreme point as
follows.
Let {C1,C5,...Cy,}, be the partition generated by {X;,Y},j € J}. Pose

X; = ZaZCi and Y; = Zﬂf@

Let S C R™ be the set of non negative normalized solutions to the system

{ > adpi =) Blpi>0,je (1)
Then T' = {P € Pr(F), P(C;) =p;, (pi, i =1,2,...,n) € S}.
If A = {Q', Q% ...Q™} denotes the finite set of the extreme points of S, and
T =[]}, Ci, then P € T if and only if there exists a probability measure y and

b; >0, with > b; =1, such that for every A € F
j=1

PA) =300 [ S aldn(pdutd) @)

where Q7 = (¢/,..¢J) € A, (j = 1,2,..m), t; € C; and where §; denotes the
probability measure degenerate at t.

n .
Summarizing: T is the close convex hull of the probabilities Y ¢ d¢, (A).
i=1
Obviously, system (?7?) does not have any solution if and only if C is not repre-
sentable by any probability measure.

3 Special comparative judgements.

In many problems it is possible to recognize some natural structure useful for de-
scribing the given situation. In such a case to guide the probability elicitation
trough this structure can be convenient and it can simplify the computation of T,
as we see in the following.
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3.1 Defining a scale.

A particular way of evaluating probabilities is that of looking for a subset of events
whose probabilities can be easily or naturally evaluated and use it as a scale (that
is compare all other events with them and with their unions). This is the case
when the natural comparisons among a subset of events, S, uniquely define a prob-
ability measure; for all other events compared with those events, lower and upper
bounds of probability are determined. Suppes (1974) proposed this way in order
to give a rational foundation to imprecise measurement of beliefs. Depending on
the structure of S, the probability imprecision for the events completely compared
with those of S, can go from an infimum of 1/2""! to a supremum 1/n, being n
the number of minimal events in S.

The scale proposed by de Finetti (1931) is the simplest: an uniform partition,
that is a set of exaustive incompatible events judged equally probable. Usually the
reality do not offer an uniform scale, so, one can build an ideal scale ( e.g. Good,
1950, and Savage, 1954), for example by imagining an urn containing n balls with
different labels and by comparing the events concerning the real problem with
those involved in the urn problem. But such comparison is usually not natural
and could force the expert judgements and distort his/her evaluation. Moreover
even the more general Suppes’ scale need some judgement of ”perfect equivalence
in probability”, which is again an idealization: as example when we assert that a
coin is fair, we mean that it is roughly well-balanced, that is not exactly physically
well-balanced.

3.2 Almost uniform partitions.

In order to avoid the new dogma of ” comparative precision”, the concept of almost
uniform partition can be convenient. It has been defined by Savage (1954), as
a technical tool to deduce an ”unambiguous assignment of a numerical probabil-
ity” from a comparative probability, avoiding the de Finetti’s postulate of uniform
partitions.

Following Savage, a partition, {C;,i = 1,...n}, is said an n-almost uniform
partition (n-a.u. partition, for short) if

r r+1
UG, =2 Cuyr ¥r < Vij, by € {1,..n}. (3)
j=1 j=1

Example 1. Let resume the example of the almost fair coin: even if I am not
convinced that the coin in my wallet is totally fair, I can claim that, for a quite
great particular n, all sequences of heads and tails of length n form a 2™-almost
uniform partition.
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Example 2. Let § € © be an unknown parameter. Suppose that in my opinion
its density is m,, and suppose that I am a little bit uncertain about that. Then I
can choose a partition, {C;,i = 1,...n}, which is uniform for 7,, assume it as an
almost uniform partition and replace 7, by the family of probability distributions
representing such an assumption.

This technique can also be used in order to match different opinions of several
experts, even if some of them prefer a discrete model.

One can prove (see Regoli, 1995) that a partition is always consistent, provided
that it is proper, where we say that a partition, {C;,i = 1,...n}, is proper in C, if
C does not contain any comparison of the following type:

O erJ Cy;, with r <.

Therefore given a partition, {Ci,Cs,...Cp}, if we only assess that it is an
a.u.partition, then it is proper and representable. Moreover the description of
the set of all compatible probabilities is very simple: in fact it is determined by the
set A of all the extreme points of S, given by the 2n following points:

1 1 1 1 1 1
2, L) (e ) ().
n+1 n+1 n+1 n+1 n+1 n+1

On the contrary if an a.u. partition is not proper, its consistency has to be
directly checked. Of course, if C is non-contradictory, a proper n-a.u. partition is
representable at least by every probability measure for which P(C;) = 1/n, for all i.

4 Comparative Inference.

For certain problems the goal is a comparison among random variables or events:
this is the case either if the goal is to make a decision and choose the best action
among some available actions or if it is simply to indicate the most probable event.
In such cases, natural whishes arise: is it possible to make some inference from
the initial set of comparative previsions? is it sufficient for a conclusion? If the
question is about either the most probable event, or about the action giving the
best expected value the problem is completely resolved at a theoretical level: it
is possible to characterize the pairs of random variables (or pair of events) such
that their probabilistic comparison can be deduced from the initial comparative
judgements, by the coherence.
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Theoretical characterizations (for both weak coherence and strong coherence)
can be done (see Regoli, 1994 b, for a review); they implie the following rules for
making inference. Note that those rules can be easily implemented in a mechanical
support system which only need linear programming.

4.1 Inference rules.

Given a coherent finite set, C, of comparisons among random variables, C = {¥; <
Xj,j € J}, given a pair of random variables, X and Y, which are not already
compared, first run the steps i):

i) Check if there exist in C a finite set of comparisons, {Y; < X;,j € F}, F C J,
and y € R, y > 0, such that

Y oui(X; -V <X -, (4)
jer
if 1)
a) if C is strongly coherent and if in (??) there is some j such that ¥; < X,
then put ¥ < X.

b) if in (??) the inequality is a strict inequality, then put ¥ < X.
c) if i) and none of a) and b), then put ¥ < X.

ii) Check if there exist in C a finite set of comparisons, {Y] < X},j € F'}, F C J,
and y' € R¥, y' > 0, such that

S oYX -Y) <Y - X, (5)
JjeEF

And follow the analogous rules than in case i).

If both i) and ii) fail, all comparisons between Y and X are allowed by the
coherence, then no comparative inference can be done.

Note that, i) and ii) implies that ”Y ~ X” has to be assumed. Moreover if C
is a strongly coherent prevision, i) and ii) cannot occur together for the pair X,V
and, if C is a coherent prevision, i) and ii) cannot occur together if one is a strict
inequality. Then if is the case, ii) can be skipped.

Note also that if such rules run for all the pair (A4, B), for A, B € A¢, relation is
always a strongly coherent comparative probability: it extends both the two parts
of the relation (strong and weak), if the initial comparative prevision/probability
is strongly coherent; on the contrary, it forget the initial strong specification and
extend the only weak initial comparative prevision, if it is weakly coherent only.

Finally, a set of short rules can be also implemented such as monotonicity, tran-
sitivity and additivity.
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5 Robust Numerical Inference from Comparative
Prevision.

The previous section concerns the case when the goal is some comparison among
r.v.’s and characterizes all the comparative inferences which can be done from an
initial set of weak and strong comparisons among r.v.’s. Now suppose that our
goal is the valuation of a statistical quantity, such as the probability of an event,
the (posterior) expected utility of some actions, the moment of a r.v. and so on.
This quantity can be of direct interest or can be a way of comparison among r.v.’s,
when no sure comparative inference of the previous kind can be done.

Let ¢ be the quantity of interest; of course it depends on the probability dis-
tribution P, that is ¢ = ¢(P). If it is not unique, its range, computed by means
of its extreme values gives a measure of the outputs precision.

5.1 Precision of ¢(P).

In all cases quoted above the quantity (P) is a linear or ratio-linear functional.
More exactly ¢(P) = £, where ¢(P) = [ h(6)dP(6) and £(P) = [o k(8)dP(6).
In particular let f be the likelihood function which we assume bounded for given
data. If ¢ is the posterior expectation of a bounded function, h, then

Jo h(6)f(6)dP(6)
Jo F(0)dP(®)

If P(A) = [, P,(A)du(t) VA€ F, for some probability measure p, then (P)
is a mixture of 1 (F;), that is

(P) = (6)

b(P) = /T B(P)dv(t), (7)

where v is a probability on T.
Then if T is a close convex hull of a set Ail’ then the range of ¢ is determined
by
sup ([') =supy(A), and inf ¢ (T) = inf (A).

Therefore the following theorem holds.

Theorem 1 IfT is a comparative class, the supremum of 1»(P), as P ranges over
T, is given by

; aih(t) £ (t:)
qgf(ti)

sup{¢(P)} =  sup

Per QIieA, t;eC;

s

=1
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In particular for a a.u.partition

n

> h(ti) f(ti) = h(t;) f(t;)
sup{t)(P)} = sup { sup = 1.
Pel’ t;,€C; j=1,..n Z f(tz) :*:f(tj)

An analogous formula holds for the infimum.

Remark 1. Since the comparative class is a particular moment class (namely a
mixture of quantile classes) it can be also treated by all the facilities tuned up for
this (Berger, 1994 and Liseo, Moreno and Salinetti, 1995).

Remark 2. It should be noticed that, if a posterior best action has to be chosen,

since the denominator in (??) and the probability v in (??) do not depend on the
n .

actions, then it is sufficient to compare only the values Y~ ¢! h(t;)f(t;) (t; € C;),

i=1
for different actions h.

6 Conclusions.

Vague information under uncertainty can be technically treated in a rigorous prob-
abilistic framework, in order to make either inference or decisions, even if it is
representable just as comparative prevision or comparative probability. Uncertain
inputs give uncertain answers, but the degree of imprecision can be computed.
Such a process can be summarized in the following steps:

- collect any comparative judgement among uncertain events or quantities.
- represent those judgements by means of a binary relation.

check the coherence with the probability theory.

- run the comparative rules, if the goal is either a decision or a comparison.

- via robust analysis, evaluate the quantity of interest and the degree of its
approximation, if the goal is either a quantity or a comparison, but it is
not, determined by the previous rules.

- if the comparisons are not coherent, or if the accuracy of the analysis is not
sufficient, pay more attention to the initial step, correct it or integrate it
with additional information and iterate the procedure.

This procedure can be handled by means of an automatic support system,
except for the first step.
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