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Abstract

In this paper we present an overview of mathematical models for handling
partial entailments and their extensions in a probabilistic frame.

1 Introduction

Many criticisms concerning the adoption of the probability paradigm for represent-
ing the partial and uncertain knowledge in Artificial Intelligence are related to the
following “putative obligations”: giving, a priori, both complete description of the
domain, containing all possible envisaged situations and moreover provided of a
precise algebraic structure, and the overall assessment of probability.

However the probability model that gave rise to the above criticism has the
merit of being the most known. Actually, it deals with a very particular case,
hence it has the advantage of giving the possibility to elaborate a very elegant
mathematical theory, but, when the probability must model actual uncertain sit-
uations, there is the need for a more general theory, which permits a gradual and
coherent probability assignment, starting from a set of events containing only those
apt to represent the initial cognitive domain. The goal of this general approach to
probability theory is based on some very simple ideas: regard the events as propo-
sitions or pairs of propositions; consider probability as a linear operator rather
than as a measure; regard the boolean algebra (or product of boolean algebras)
spanned by the given events only as a provisional tool (possibly changing, when
new events and new information are considered) apt to test the consistence of the
partial assessment; forgo the myth of the unicity and accept that several probabil-
ity distributions (infinitely many, in general) on the atoms are compatible with the
given assessment.
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The aim of this paper is to present an overview of mathematical models, based
on the above principles, in order to rule partial (quantitative and qualitative) prob-
abilistic entailments and their extensions. Particular attention is paid to focus on
the strict connections between these pragmatic models and de Finetti’s theory,
more known for his semantic valence (discussed in [28]). In fact, what is put here
in evidence is usually taken in second place (often relegated to the proofs of theo-
rems), also because such conditions appear not as elegant and concise as the other
ones. Nevertheless this approach supplies us with actual tools which are suitable
to manage partial probabilistic information and to be used in automatic inferen-
tial processes. The problems related to the elaboration of optimal algorithms for
a profitable use of some of these models in knowledge based systems have been
recently studied by many authors (see, for instance, [6], [7], [11], [16], [17] and
119)).

2 Coherent probability assessments on uncondi-
tional events

In the following, for simplicity of exposition, we consider only the case of finite
sets of events. We first illustrate in detail the concept of coherence for a numerical
probability assessment.

As it is well known, given a non-empty set 2 and a Boolean algebra E of
subsets of 2, a (finitely additive) probability on (€2, E) is a real-valued set function
P satisfying

(A1) P(Q) = 1;
(A2) P(AU B) = P(A) 4+ P(B) for any disjoint A, B € &;
(A3) P(FE) is non-negative for any E € .

But, if £ is just any collection of subsets of 2, representing events (that can be
interpreted, for example, as propositions), then (A1-A3) are insufficient to charac-
terize P as a probability on (2, E): for example, if £ contains no union of disjoint
sets, (A2) is vacuously satisfied and hence a “natural” property as the monotonic-
ity of P is not ensured. More generally it may not exist an extension of P to any
algebra containing £ and satisfying (A1-A3), and then P can not be considered
a partial definition of a function characterizable as a probability. Consider for
instance the following example:

Example 1. Let {E1, Es, E5} be a partition of 2: consider the family £ = {EUEs,
E, UE3, E> U E3, Q} and the assignment

P(E; UE,) =4/9, P(E, U E3) =5/9, P(E, U E3) =2/3, P(Q) = 1.
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This assessment satisfies (A1-A3) on &, but, since P(E; U E3) + P(E, U E3) +
P(Ey U E3) = 2[P(E1) + P(E2) + P(E3)] = 15/9, (A2) is not satisfied on the set
EU{E\, E2, E3}, which is the minimal algebra containing €.

Therefore it is necessary to find a rule able to define when an assessment is
a probability, without using the facilities supplied by the algebraic structure of
the set of events in a determining way; in other words, to focus on the specific
properties of the probability function. Such a rule, which we will call “coherence”
is based on the concepts of decomposability and linearity.

More precisely, if we consider an assessment P = (pi,...,,p,) on an arbitrary
finite family F = {E,,...,E,} (ie. P(E;) = p; , i = 1,2,..n), and denote by
Ay, As, ..., A, the atoms generated by these events, then, referring to the unknowns
x, = P(A,), coherence of P amounts to the compatibility of the following system

Yo Tr =D, i=1,...,n,
A,.CE;

. (S1)
S, =1Lz.>0, r=1,...,m.
r=1

So coherence is equivalent to the existence of an extension of P from the given
events E; (i =1,2,...,n) to the atoms generated by them.

The connection between the above definition of coherence and that - well know
- given by de Finetti in terms of coherent bets or equivalently of minimum penalty
is based on classic alternative theorem. In fact, by denoting with e; the indicator
function of Ej;, a real-valued function P defined on £ is coherent (following the
betting scheme of de Finetti) if, for any Ei,..., B, € F and for any real numbers
A1, .-y A, the possible values of the random gain

G= Z Xiles — P(E;)],

are neither all positive nor all negative (in other words, if the values of P(E) are
interpreted as betting rates in the usual way, it must be impossible to bet at these
rates in such a way as to be a sure loser or winner) and since de Finetti’s coherent
condition is equivalent to require that

supG >0

A
for every choice of A\q, ..., A\s.

But, if I, indicates the m-vector (ci, ..., ¢,) with ¢ = 1, if the atom Ay C E;

and ¢ = 0 otherwise, the above condition can be expressed by requiring that the
following system, with unknowns \;

> (Nilg, —pila) >0,
1



has no solution. For a classical alternative theorem such a condition is necessary
and sufficient for the solvability of (Si).

Moreover, given a further event E, 1 and the corresponding extended family
K = FU{Ept+1}, consider the case in which E, 1, is union of some atoms, i.e.
E, 1 is logically dependent on the events of F: then, putting P(Ep4+1) = pnt1, One

has
Pn+1 = g , L.
ArCFEn1

Letting the vector (z,x2, ..., T,,) assume each value in the set X of solutions of
system (S7), i.e. of all possible extensions of P to the atoms, the probability p,t1
describes an interval [p',p”] C [0, 1], with p' = i?(f Dnt1, P’ = SUDPPnti-

X

If E,,+1 is not logically dependent on the events of F, there will exist two events
E. and E* (possibly E, = § and E* = Q) that are, respectively, the “maximum”
and the “minimum” union of atoms such that

E* g En+1 g E*.

So, given the probabilities z, of the atoms, coherent assessments of P(E,11) are
all those of the closed interval [P(E,), P(E*)], i.e.

Zr Tr < Pp+1 < Zr L.

A.CE, A.CE*

Letting again the vector (z1,zs,...,z,,) assume each value in the set X, the
probability p,4+1 describes an interval [p’,p”] C [0, 1], with

p'=inf P(E.) , p” =supP(E").
X X

This result is dubbed as the fundamental theorem of probabilities of de Finetti
([14], p.78; [15], p.112: both pages refer to the English translations). The values
p',p” can be determined, for instance, by the simplex method of linear program-
ming, as done in [3] ; see also [26]. Similar ideas appeared already in the classical
work of Boole [2], that attracted little attention until it was revived in [19]. The
same technique has been used, with a different aim, in [1]. An extensive discussion
of the fundamental theorem, with several computational and geometrical exam-
ples, is in [23], [24]. More recently many authors are interested of computability
problems related to the extension of probability (see for instance [16] and [21]).

It seems interesting to note that the extension theorem can be profitable used to
put right a not coherent probability assessment. In fact, if for instance n-1 (but not
n) evaluations are coherent, it is possible to choose which of evaluations changing,
and in which way, to make coherent the total assessment. For example one can
choose that implying the minimum alteration.

The above theory is extendible to different, less strict tools for the measurement
of the degree of belief, however related with the probability frame. In fact it is
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possible that, at some stage of knowledge process, the probability assessment does
not consist on a set of numbers, but on a set of intervals (imprecise probability),
or on a set of ordinal relations (comparative or qualitative probability), or, finally
on a mixage of numbers, intervals and relations. This is, for instance, the case
that the field expert is not capable to summarize with numbers his degree of belief
about the considered events or when different information must be assembled to
act an inferential process.

We define coherent an imprecise probability assessment Q = {q(E;) = [p}, "],
E; € F} defined on an arbitrary set of events F, if there exists a coherent numerical
probability assessment P = (p,...,pn) on F, agreeing with Q, in the sense that
p;i € [pip”i]; on the other words if there exists a solution of the following system,
with unknowns z, = P(A,) (where Ay, ..., A, are the atoms generated by events
of F)

p;é Er »TTSPQ', i:]-a"'ana
A, CE;

. (S2)
e,=1,2,>0, i=1,...,m.
r=1

By using the same considerations made for numerical (precise) probabilities,
we can give also in this case a condition equivalent to the solvability of the system
(S2), which may be read in terms of coherent bets as follows: function ¢ defined
on &, with values in the set of the closed intervals contained on [0, 1] is coherent if,
by indicate Q(E;) = [p},p”;], for any E, ..., E,, € F and for any Ay, ..., A\, > 0 and

Y1,---,Yn < 0, the possible values of the random gain

G=Y Xlei—pil+ > _vile:i — p}
=1 i=1

are all negative. In other words, if the values of p' and p” are interpreted as
betting rates of the gambler and of the bookie, respectively, to play on E;, it must
be impossible to bet in such a way as to be a sure loser.

For imprecise probability we can generalize in a natural way the results relating
to the extendibility of a coherent assessment to a new event, and can essentially use
the same techniques to determine the interval of coherent values with the previous
ones.

Let us suppose now that we have an arbitrary set of events F, and on F a
comparative probability assessment, that is a (not necessarily complete) binary
relation <* expressing the idea of “no more probable than”. Also in this case
we define the (ordinal) assessment <* to be coherent if there exists a coherent
numerical probability assessment P = (p1,...,pn) on F, agreeing with <*, in the
sense that, if <* indicates the strict relation obtained when E <* F but not
F <* E, then

pi < pj if B; <* E]’ and p; < Pj if B; <* E]’.
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That is <* is coherent if there exists a solution of the following system, with
unknowns . = P(A,) (where Ay, ..., A, are the atoms generated by events of F)

'
( ZT T, <F Er . FE; <M E;
A,.CE; A.CE;

Yo T <" Y Ej <" E|

A.CE; A CE; (Ss)

m

ax.=1,2, >0, r=1,...,m.
e

Also in this case it is possible (see [5]) to give an equivalent condition which
can be significantly interpreted on the betting scheme. A comparative probability
<* defined on &, is coherent if, by for any n € N, Ey,...,E,, Ei,...,El, € F, with
E; <* EI, and for any A1, ..., A, > 0, the possible values of the random gain

G=> Xlei —e]]
i=1

can be all negative or null only in the case that E; =* E’, for every s = 1,..,n. The
interpretation in terms of betting scheme is immediate, if one consider bets where
even money is betted on E; versus E.. About the extension of coherent comparative
probabilities there are results analogous those related to the numerical ones (see
[5]). In fact, given a further event F,i; and the corresponding extended family
K = FU{E,11}, coherence condition permits to detect the elements of F which
must be less probable, those equivalent and finally those more probable than E,, 11,
to have a coherent extension. For the other events, any choice of relation with E,,;
give a coherent proper extension of <* to /.

The techniques to identify the above classes of events of F are the same used
in the numerical case.

In the case that the probabilistic assessment contains both numerical and com-
parative evaluations, to test coherence consists on the proof of solvability of a
system with equations and inequalities of the same kind of systems (Sy), (S2), (S3).

Remark 1. We note that when for representing the uncertainty we use a less rigid
tool, such as a comparative probability, the incoherent assessments are obviously
less frequent; on the contrary, the proof of coherence is computationally more
complicate. This fact is true also when we consider not probabilistic tool, such as
belief function or lower probability. Also for this functions there is the problem to
test coherence if the assessment is given on a arbitrary set of events and also in this
case the conditions of coherence are essentially related to solvability of some linear
systems (for coherence condition see [27], for examples of incoherent assessments
see [4]). But these system are certainly more complicate than those related to
probability.
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3 Coherent probability assessments on conditio-
nal events

Many interesting and unexpected features come to the fore when one tries to extend
the above theory to conditional events and to the ensuing relevant concept of
conditional probability, once a suitable extension of the concepts of coherence are
introduced.

In this approach conditional probability is directly introduced as a function
whose domain is a set of conditional events (regarded as three-valued logical enti-
ties). For more details see the paper [28], in this same issue.

In the usual approach instead the conditional probability P(E|H) is introduced
by definition as the ratio between the probabilities P(E N H) and P(H), assuming
positive probability for the conditioning event, or, if this strong restriction is not
required, conditional probability is defined in an axiomatic way, by considering the
conditional events E;|H; as pairs of unconditional events E;, H;, belonging to a
cartesian product £ x H, £ is Boolean algebra, H an additive class, with () &€ H,
and P a function from £ x H to R, satisfying the following properties:

(B1) given any H € #H and Ai,...,A, € & such that A;4; C H® (i # j), the
function P(:|H) defined on & satisfies

P ((O Ak> |H> = Xn:P(AHH), P(QH) = 1;
k=1 k=1

(B2) P(H|H) =1 for any H € £ N'H,;
(B3) given E, H, A such that E, H € £, with A, EA € H, then

P(EH|A) = P(E|A)P(H|EA).

Notice that (B3) reduces, when A = , to the classical product rule for proba-
bility.

Obviously, as discussed for unconditional events, if C is just any collection of
conditional events, then (B1-B3) are insufficient to characterize P as a conditional
probability. Therefore also in this case is interesting to find a rule (which will be
called “coherence” ) to define when an assessment on an arbitrary set of events is
a probability. Then coherence of P on C entails that P is the restriction on C of a
conditional probability defined on any £ x ‘H D C, where £ is Boolean algebra and
‘H an additive class, with () & H.

For a set C = {E\|Hy,...,Ey|H,}, let us consider the set A of atoms gener-
ated by {E, ..., E,, Hy,...,H,}. It should be clear that, while testing coherence of
a given assessment {P(E,H,),...,P(E,H,), P(H,),...,P(H,)} for the (uncondi-
tional) events Ey1H,, ..., E,H,, Hy,...,H, is equivalent (as discussed in Sect.2) to
test the solvability of the linear system (S7). If we consider instead an assessment
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p; = P(E;|H;) (for i = 1,...,n) on the set F of conditional events E;|H;, then the
existence of an extension of the probability distribution P on the set A, satisfying
the system with unknowns P(A4,) >0, r =1,...,m,

S P(A) = P(BIH) S, 4 cp P(A), i=1,....n
A,.gEiHi -

> P(Ar) =1,
A,.CH,

(S4)

with Hy = Hy U ...U H,, is necessary, but not sufficient, to ensure coherence of
P. In fact it does not even assure axioms B1-B3 for the considered events, as the
following example shows.

Example 2. Consider the events E|H, E°|H, E|H¢ and the assessment P(E|H) =
P(E°|H) =1/3, P(E|H*) = 1, which does not satisfy B1. Nevertheless the prob-
ability distribution P(A;) = P(4y) = P(43) = 0, P(44) = 1 on the atoms
Ay = FEH, A, = E°H, A3 = E°H¢, Ay = EH®, satisfies (S4), which therefore is
not sufficient to ensure coherence.

Notice that the first equation of (Ss) corresponds to the product rule

P(EH) = P(E|H)P(H)

for conditional probability, which is trivially satisfied by any value of P(E|H) when
P(H) =0.
Condition (Sy) becomes sufficient, if also the following (not necessary) condition

holds:

ZT P(A,) > 0 for every conditioning event H;. (%)

A, CH;
So testing coherence of P(E;|H;) would be equivalent to test the solvability of the
linear system (S4), with unknowns P(A,.), under the condition (*). But, even if
the latter may seem an “almost natural” condition on a finite set of events, it
introduces some computational complications, due to the further strict inequalities
involving the unknowns. But above all, ignoring the possible existence of null events
drastically restricts the class of admissible probability assessments (see Example
3) and moreover, the possibility of extending in any case a coherent conditional
probability is lost (see Example 4).

Example 3. Given three conditional events E;|H;, Es|Hs, E5|Hs such that A =
{Al, ...,A5}, with H1 = A1UA2UA3UA4, H2 = A1UA2, H3 = A3UA4, E1H1 = Al,
E>H, = Ay, E3H3 = Az, consider the assessment

p1 = P(E\|Hy) =3/4, p2 = P(Es|Hy) =1/4, p3= P(E3|H3) =1/2.

If we require positivity of the probability of conditioning events, we must adjoin to
the system (Sy) also the conditions P(A;) + P(Az) > 0, P(A3) + P(A4) > 0, and
this enlarged system has no solutions.
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On the contrary the assessment is coherent. In fact, if we consider £ x £,
where £ is the algebra spanned by A and £* = (£\{0}), then the above assessment
results a restriction of conditional probability P defined on £ x £*, by extending
for additivity the following values:

P(A1] A1 U As) = P(A1|Ar U As U Ag) = P(A; Ay U As U Ag U Ay) = 3/4
P(As] Ay U As) = P(As|A1 U Ay U Ag) = P(As| Ay U As U Ay U Ay) = 1/4
ID(AJ|AZ UAJ') = ID(AJ|AZ U Az UA4) =0, P(AJ|A3 UA4) = 1/2
1=1,2,7 =3,4.

The following theorem, which may be proved by using a relevant result given
in [22] and the concept of coherence for probability assessments on unconditional
events, focuses the meaning of coherence for a probabilistic assessment on conditio-
nal events. In fact coherence does not coincide with the existence of a probability
distribution but with the existence of a class of probability distributions defined on
suitable subsets of the set A of atoms generated by the given conditional events,
which permits to write a probability of a conditional event as a ratio of two (un-
conditional) probability.

Theorem 1. Let C be an arbitrary finite family of conditional events and let Agy be
the relevant set of atoms. For a real function P on C the following two statements
are equivalent:

(i) P is a restriction of a conditional probability on & x (E\{0}), where & is the
algebra spanned by Ao;

(ii) there exists (at least) a class of probabilities { Py, P, ...}, each probability Pj,
being defined on a suitable subset Ay, C Ao, such that for any E;|H; € C there
is a unique Py with

Er Py (Ar)

A.CE;H;
S Pu(4,) > 0 and P(E;|H;) = 28
r > Pr(Ar)
ArCH; A@;Ii

moreover Ay C Agn for k' > k7 and Py (A,) =0 if A, € Apr C Aprr.

In the literature (see, [21], [25]) the following condition of coherence, related to
de Finetti’s betting scheme, is present.

A real function P : C — R is de Finetti-coherent if, for every finite subfamily
F C C, and for every choice of A1,..., A\, E R, the possible values of the restriction

of the corresponding random gain G = E Xihi(e; — p;), to Hy = Hy, ..., Hy, are
neither all positive nor all negative, that is 1f
sup G > 0.

A.CH,
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The meaning in terms of coherent bets is similar to that of coherence for un-
conditional events, with the additional condition that the bet is annulled if no
hypothesis H; is true.

In [6] and in [12] equivalence between de Finetti coherence and condition (ii) of
Theorem 1 is proved in a direct way. This proof sketches an algorithm to test co-
herence of P, based on the equivalence between condition (ii) and the compatibility
of all the systems (S), with unknowns Py (4,) >0, A, € Ay

>, Pu(Ay) = P(Ei|H) Y4, cp, Pe(Ar), [if Py (Hi) = 0]
A.CE;H;

> Pu(Ar) =1,

A.CHE

(Sk)

where P_;(H;) = 0 for all H;’s, and HY denotes, for k > 0, the union of the H;’s
such that P,_1(H;) = 0; so, in particular, H) = Hy = Hy U ...U H,.

The above result permits (see [12]) to show (similarly to the case of uncondi-
tional events) that, given a “new” conditional event E|H, the two bounds p' and
p” of the de Finetti’s fundamental theorem are related, respectively, to the prob-
abilities of the “greatest” union of atoms contained in E|H and of the “smallest”
union containing E|H, where the inclusion between conditional events is defined
as in [18], that is

A|H CoB|K < AH C BK and B°K C A"H. (%)

For connections between this inclusion and the numerical inequality related to the
3-valued entities A|H and B|K restricted to H U K and moreover between the
inclusion and coherent probability, see [10].

More precisely, consider a finite family F of conditional events and a coherent
probability P on F. Given a further event E|H, and denote by E.|H.[E*|H*]
the “maximum” [“minimum”] event logically dependent on F contained in E|H
[containing E|H] in the sense of (*) and by P(H) the set of all classes {Fp, P, ...}
(defined in Theorem 1). Then a coherent assessment of the conditional probability
P(E|H) is any value in the closed interval p. < P(E|H) < p*, where p. = 0
[p* = 1] if on P(H.) [on P(H*)] there is some class whose probabilities P, satisfy
P,(H,) =0 [P,(H*) = 0] for all k (such that H, C Ay [H* C Ag]). On the other
cases

s Pl(rg*) P(E.|H.), p PS(l;IIz)P(E |H™)

In [12] is sketched an algorithm to find, for any new event, the interval [p., p*].
It is based on solving some problems of linear programming.

The following two examples show that ignoring the possible existence of null
events reduces the possibility of extending in any case a coherent conditional prob-
ability and that even when this extension exists, the corresponding interval may
be smaller than whose values correspond to coherent assignments.
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Example 4. Consider the first two conditional events and the corresponding
assignments P of Example 3. Introduce as new conditional event E|H the third
one, i.e. E|H: since P,(H) = 0 (this class has only one element, corresponding to
k = 0), any value between 0 and 1 is a coherent assessment for P(E|H). But if null
events are not allowed as conditioning ones, we need the assumption z3 + x4 > 0,
while coherence of the two given assignments implies 3 + x4 = 0. So P cannot be
extended to E|H.

Example 5. Given two conditional events FEj|H;, FE2|H2, such that
./40 = {Al,...,A4,A5}, with H1 = A1 U A2 U A3, HQ = Al U A3 UA4, E1H1 = Al,
EyH, = Ay, consider the assessment P(E;|H;) = P(E>|H2) = 1/9 and introduce
the new conditional event E|H = A4|(A2UA4UA5). Now, putting 2, = Py(4,) > 0,
the system

Iy = %(l‘l +l‘2 +Z‘3)

Ty = 5(21 + 23 + 24 + 75)

1+ xy+x3+xs+zs =1

has among its solution also zo = x4 = x5 =0, 1 = gwg, so that any value between
0 and 1 is a coherent extension of P to E|H. Instead, if we require x5+ x4+ 5 > 0,
since the above system implies anyway that o = x4 + x5, the only admissible value
for P(E|H) is 1/2.

The above results can be extended in a natural way to imprecise probabilities,
such as in the case of unconditional events. For instance the condition to check
coherence may be obtained by the above one changing the first equation on two
inequalities related to the extremes of the interval P'(E;|H;), P” (E;|H;). The same
results instead can not translated in a natural way from the numerical framework
in the comparative one, also if they can be used to introduce and to menage a
concept of coherence for comparative probability defined on conditional events.
Like for the case of unconditional events, we define a comparative probability,
defined on an arbitrary set of conditional events C, to be coherent if there exists a
coherent numerical probability assessment P = (py, ..., p,) on C, agreeing with <*,
in the sense that

Di Spj if E1|Hz S* E]'|Hj and Pi <pj if EZ|H] <* E]|H]

In this case we can not repeat the process made for unconditional events by
passing from system (S7) to system (S3). For conditional events the process is in
fact theoretically more complicate, nevertheless it is possible (as proved in [13])
to express the coherence condition essentially in terms of solvability of parametric
linear systems. For the particular case of a comparative probability containing all
the relations () <* H;|Q, coherence conditions are studied in [8], [9] and [10].

Remark 2. All the above results are extendible to the infinite case (see the same
bibliography quoted above). In the particular case of comparative probability the
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condition of coherence must be reenforced on the infinite case with an archimedean
condition.

Remark 3. We note that when coherence is checked or when, for a new event, the
coherence interval needs to be found, any numerical or qualitative conditions (such
as independence) can be taken into account. Such conditions will be translated on
equations which will be added to the other ones on the relevant systems.

Remark 4. Notice that in this general context nothing can be used in a “super-
ficial” way: for instance if we want to update a (coherent) probability asssessment
on some hypotheses using Bayes theorem, we first need to prove that the proba-
bilities of the likelihoods are coherent and moreover that probability assessments
of hypoteses and of likelihoods are coherent together. In the usual Bayesian model
in fact the particular choice of logical structure of the hypotheses (exhaustive and
incompatible) grants the coherence. In the case that we have coherence, then Bayes
theorem can be applied, but the result is in general an interval, not a number (see

11)).
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