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Abstract

We introduce a structure to represent “

observations” on entities in or-

der to obtain “knowledge” about some of their characteristic properties or

“attributes”.

This structure is based on the Pawlak’s definition of “information sys-
tems” (also “knowledge representation systems’) and lead us to obtain al-
gebraic structures of lattice depending from the choice of an observational

“context”.

The semantical algebraic structure so obtained is of local Boolean mani-
fold whose global structure is an orthoposet which shows a nontransitivity of
the implication; this behaviour could be useful for a formal algebraic approach

to “non-monotonic” features of reasoning.

1 Knowledge Representation Systems

Before introducing the notion of knowledge representation system, we quote from
Vakarelov [Va, 91]: “The main theoretical concept in this [...] approach is the
notion of knowledge representation system (KR-system) introduced by Pawlak in
[Pa, 81] under the name of information systems. A KR-system is a formalism for
representing knowledge about some objects in terms of attributes (e.g., colour) and

values of attributes (e.g., green).”
Let us start now with the formal definition.

Definition 1.1 A knowledge representation system is a structure

KR = (X, Att(X),val(X), F)

where X is a non empty set of objects (situations, entities, states); Att(X) is a
non empty set of attributes valuable on objects of the set X; val(X) is the set of
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possible values which can be assumed in any observation on objects from X; F is
a mapping
F: X x Att(X) — val(X)

called the information mapping and associating to any pair consisting of an object
and an attribute, the value assumed by the attribute on this object.

The knowledge representation system just introduced can also be considered a
state—input—output system, whose state set is X, the input set is Att(X), the output
set is val(X) and F' is the transition mapping.

1.1 Sentential language of Knowledge Representation Sys-
tems

In order to obtain a sentential language from the system KR, we define, for any
a € Att(X), the following set:

val(a) :={A €wval(X):Jx € X : F(z,a) = A}

For any A € P(val(a)) [the power set of val(a)], the pair (o, A) describes the
elementary sentence (question): “a test (observation, measure) of the attribute «
yields a value belonging to A”; in particular for any singleton {\} € P(val(a))
the pair («, {\}) describes the atomic question: “an observation of the attribute «
yields the value \”.

Now we give the following

Definition 1.2 Let KR = (X, Att(X),val(X), F) be a knowledge representation
system. For any fized attribute o € Att(X), the a—sentential language of questions
from KR, denoted by Qn, is the set of all well formed formulas (wffs) obtained
according to the following formation rules:

(i) Symbols T and L are constant questions.

(i) If A € P(val(a)), then (a,A) is an elementary question [in particular, if
A = {A}, with X € val(a), then (o, {\}) is an atomic question].

(11i) By induction, we define the composed questions: if Q is an a—question, then
4@ (“not” Q) is an a—question; if Q1 and Q2 are a—questions, then Q1,Q2
(Q1 “and” Q2), Q1aQ2 (Q1 “or” Q2), and Q1 —o Q2 (“if Q1 then Q2 7) are

questions.
Only strings generated by rules (i)—(iii) above are wffs of Q.

The union of the a—sentential languages:

Q:= U Qa

acAtt(X)
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can be considered as the “global” sentential language of K'R—questions, whose
“local” sentential components are the (pairwise disjoint) a—languages Q4. (In the
sequel, if there is no possibility of confusion, we omit the subscript « in the logical
connectives).

1.2 Propositional semantics of local languages from Knowl-
edge Representation Systems

In a KR system, the mapping F furnishes informations on objects from X depend-
ing from the attribute tested on them: precisely, for a chosen attribute o € Att(X),
an “observation” on object © € X produces the value F(x, ) € val(a). Thus, we
can introduce a family of functions, each of which depends from the observed at-
tribute o € Att(X):

fo: X =2 val(X), fo(z) := F(z,q)

We make every f, surjective restricting its range to val(a). For any z € X,
fa(x) € val(a) represents the value assumed by the “observable” attribute a in
this state (when the attribute « is mathematically realized by the function f, :
X — wal(a)). We emphasize an analogy with the observable quantities on the
phase (or state) space X of Statistical Mechanics: in fact, any f, can be considered
as a random variable, once associated to X and val(X) the o—algebras of their
power sets. Elements E € P(X) describe events of the phase—space X, elements
A € P(val(a)) subsets of possible values for the random variable f, associated to
the attribute «. In this context, the subset of X

fHA) ={z e X: fo(z) € A}

consists of all states in which a test of « (i.e., f,) yields a value in A. So we can
introduce the mapping

E, : P(val(a)) = P(X), A Ey(A) == f1(A)

which is a boolean algebra morphism and is called the “observable” related to
the attribute «. Given the attribute a, to any subset of possible a-values A €
P(val(a)), the corresponding observable E,, associates the event E,(A) € P(X).

For all fixed attribute o € A#t(X) in the KR-system, we define the following
set:

(1.1) Bo(X) == {f71(A) : A € P(val(a))}

and so the set

(1.2) Lx):= |J BaX).
a€Att(X)

We have the following result:
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Proposition 1.1 Let KR be a knowledge representation system; let a € Att(X)
be any fived attribute. Then B (X) is a non empty set (since it contains (), X ),
closed with respect to set theoretic operations N,U and ().

Moreover, the structure Bo(X) := (Bo(X),N,U,(:)'0, X) is a boolean algebra of
subsets of X.

From the (1.2) we have that £(X), as union of the family of boolean algebras
{Bo(X) : a € Att(X)}, is a boolean manifold (atlas); each boolean algebra B, (X)
being a local chart of the manifold [DPS, 95].

For any attribute a, we can associate to the “local” a—sentential language Q,
the semantical model (B, (X),v4) based on the local chart B, (X), where the valua-
tion mapping v, : Qo — Bo(X) associates to any elementary question (a, A) € Q,
the proposition [i.e., subset of states (objects)] vq({a, AY) := E,(A). Intuitively,
the a—valuation of the a—elementary question {a, A) consists of all states © € X
in which this question is “verified” (or “true”) [i.e., a test of the attribute o on
the state x yields a value f,(z) € A]. Moreover, the following must be satisfied
for arbitrary Q,Q1,Q2 € Qa: va(=Q) = va(Q), Va(Q1Q2) = va(Q1) Nva(Q2),
00 (Q1Q2) = va(Q1) Uva(Q2), and va(Q1 = Q2) = v4(Q1) v (Q2). Moreover,
va(L) =0 and v (T) = X.

Two a—questions Q1,Q2 € Q, are a—semantically equivalent, written @)1 =,
Q2, iff v4(Q1) = v (Q2); as expected we have that

- (Oé, A) = <Oé, A), (O[, A1> <O[, AQ) = <Oé, Al n AQ), (O[, A1> <Oé, A2) = (Oé, Al U AQ),
and (o, A1) = (o, As) =, {a, (A1) As).

In particular, from the trivial property

(1.3) E.(A) = | Ea({A})

AEA

we get that (a, A) =, rea (@, A) .
An a—wff Q € 9, is an a—tautology, written k, @, iff v,(Q) = X; in particular
we have that for any pair of a—questions F, ((a, A1) = (@, A2)) iff Ay C As.

1.3 Partitions, indiscernibility relation and rough approxi-
mation in a Knowledge Representation System

Given any attribute a, we introduce the following subset of the boolean algebra
Ba(X):

(1.1a) mo(X) = {f;l({)\}) : A €wal(a)} C Ba(X)
and so the set:

(1.2a) L(X):= | ma(X)CL(X).



Proposition 1.2 Let KR be a knowledge representation system; let o € Att(X).
Then 7o (X) is a partition of X called the a—partition.

Thus, starting from a KR—system, we can choose an attribute o and then
induce the a—partition m,(X) of X making use of the “observable” related to a:
E, = f, . To be precise, the a—partition is obtained by the valuation of f,! on
the singletons {A}, with A € val(a). The a-equivalence class E,({\}) is then the
collection of all states in which a test of attribute a produces the fixed value .

Definition 1.3 Let KR be a knowledge representation system and let o € Att(X).
Then we define the indiscernibility (equivalence) relation induced by o (denoted by
~q) in the following way. Let x1,x2 € X and let 7, (X) be the partition of X from
a; then we have that x1, 2 are indistinguishable

T ~oq T2 & HEGWQ(X)CIJ,IQGE

< foz(-rl) :foz(-r2)

The discernibility relation induced from « (denoted by +#,) is obviously the
following (irreflexive and symmetric) binary relation on X :

1 '/Ja o < dE|,Es € Wa(X), with E; N By = 0:
z1 € By and w5 € E»

< fa('rl) # foz('r2)

At this point, we recall the indiscernibility concept introduced by Pawlak; he
says: “The basic idea underlying classification consists in the fact that objects being
in the same equivalence class of equivalence relation cannot be discerned, therefore
we will call these the indiscernibility classes.” ([Pa, 92]). In Pawlak’s terminology,
equivalence classes E,({A}) € 1,(X) are called elementary sets; moreover, any a—
event as set theoretic union of elementary sets [see the (1.3)], is a definable set. For
any subset A € P(X) one can introduce the lower (also inner) a—approzimation
of A:

I,(A) :=U{E; € Bo(X): E; C A}

and the upper (also outer) a—approximation of A:
Ca(A) = N{E; € Ba(X) : A C E}}
Following Pawlak, the a—rough approximation of A is the pair:
ra(A) := (In(4), Co (4)).

An attribute a realizes a “contert” in which we execute observations; such
context is formally characterized by the corresponding a—partition.
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Definition 1.4 Let KR be a knowledge representation system; let ay,as € Att(X).
Then «y is contextually equivalent to ao (denoted by an = as) if and only if
Tay (X) = Ta, (X).

The equivalence classes of attributes induced by = are the contexts of KR—system.
Any context (equivalence class) [a]= is represented by the (unique) partition asso-
ciated to any of its attributes.

2 An interesting example
Let us consider the following KR-system (X, Att(X),val(X), F), where
X =1{1,2,3,4} Att(X) ={ao,a1,a2} wal(X)={Y,R,G,M,L,S,A,T}.

The random variables describing these attributes are given by the following table:

|elelele]]

x€X — fao(x) T fal(x) T fa2(w) T
11— A—G—S—
—2—A—R—5—
—3—T—Y —M—
—4—T—Y —L—

We have three a—partitions, one for each attribute:
Tag (X) = {{17 Q}v {37 4}} Moy (X) = {{1}7 {2}7 {37 4}}
Tas (X) = {{17 2}7 {3}7 {4}}

Thus the contexts of this system are three, each with a single attribute: j = 0,1, 2,

[aj]= = {a;}. The boolean algebras generated by these attributes are the following:
Boo (X) = {0,{3,4},{1,2},{1,2,3,4}}
Bal(X) = {wa{1}7{2}5{172}7{374}a{15354}7{27374}5{1527374}}
Bo,(X) = {0,{4},{3},{3,4},{1,2},{1,2,4},{1,2,3},{1,2,3,4}}

We depict these boolean algebras by using Hasse diagrams:

118



Figure la.
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Figure 1b.

Thus the boolean manifold generated by the above boolean charts
{Bay(X), Bay (X), Bay(X)} is the following:

L£(X) ={0,{1},{2}, {3}, {4}, {3,4},{1,2},{1,3,4},
{2737 4}7 {]‘7 273}7 {]‘7274}7 {]‘7 2737 4}}

La(X) = {{1},{2}, {3}, {4}, {3,4}, {1, 2}}

whose associated Hasse diagram with respect to set theoretic inclusion is the fol-
lowing:

Figure 2.
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Note that the resulting global structure is of poset which is not a lattice (e.g.,
the pair {1,2,3} and {2,3,4} does not possess the g.l.b., similarly the pair {2}
and {3} does not possess the l.u.b.), with standard set theoretic complementation.
This poset is obtained just by the “pasting” of the boolean algebras B, (X).

The subsets of £,(X) are atoms of the single boolean charts (e.g., {1}, {2}, and
{3,4} are atoms of chart B,, (X)), but in general they are not necessarily atoms of
the global boolean manifold £(X) (e.g., {3,4} is not an atom).

In general X represents some objects with their own characteristics proper-
ties, specified by the attributes, and the information mapping F' connects these
attributes to objects. In the present example, the meaning of attributes can be, for
example, the following: «ag is the shape of the object (A as arched and T as thin),
a is the colour (Y as yellow, G as green, and R as red), as is the dimension (S as
small, M as medium, L as large).

With respect to the attribute “colour” «;, we have that the atomic question
(a1, G)="“the colour is Green” is semantically valuated by the proposition {1}, the
atomic question (a4, R) =“the colour is Red” is semantically valuated by the propo-
sition {2}, and the atomic question (ay,Y)=%the colour is Yellow” is semantically
valuated by the proposition {3,4}; hence, for instance, {1, 3,4} is the semantical
valuation of the question (a1,{G,Y}) =,, (a1, G) (a1,Y)= “the colour is Green
or Yellow”, and so on.

Let us notice that the proposition {3,4} is the semantical valuation of both
the atomic questions (ai,Y)="*“the colour is Yellow” and (ag,T)=%the shape is
Thin”, and of the complex question (as, {M, L})="“the size is Medium or Large”,
all pertaining to different attributes.

Notwithstanding the transitivity of the set theoretic inclusion (e.g., from {1} C
{1,2} and {1,2} C {1,2,3} it follows {1} C {1,2,3}), this property of transitivity
cannot be applied to the KR sentential language Q; roughly speaking, and without
entering in technical details, we can say that in the context of colour “to be green”
implies “to be green or red” (Fo, (G — GR) since semantically {1} C,, {1,2});
similarly, in the context of size “to be small” implies “to be small or medium”
[Fas (S — SM) since semantically {1,2} C,, {1,2,3}]. But, there is no context a
which allows to say that F, (G — SM) (i.e., Aa: {1} C, {1,2,3}), also if from
the set theoretical point of view {1} C {1,2,3}.

2.1 Non-transitive reasoning: an example with knowledge
representation systems

In this paragraph we give an example of non—transitive reasoning in the context of
a knowledge representation system obtained by an empirical ordered structure of
implication. To be precise, we are concerned with the problem of extracting knowl-
edge from experimental results; in particular we discuss the well known example of
getting information about the physical events “it is noon” (n), “there is sun” (s),
and “there is an eclipse”’ (e).

121



If we choose a bottom—up methodology, we start from experiments and detect
the partial informations we have during the experimentation. With respect to the
above experimental knowledges, we consider the two possible contexts:

ay = (s,¢e) “sun light” and “eclipse” context:

In this case, let us suppose that the first observation leads us to the conclusion
that during an eclipse the sun cannot lights earth (obviously each experiment is
not executed during the night). Thus we have the partial information: “e — —s”
and, clearly, its contraposition “s — —e”.

as = (n, s)“sun light” and “noon” context:

Then let us suppose to perform some new experiments which confirm that each
time we perform the test at noon, then the sun lights the earth (eclipses are not
frequent, so it is very unlikely that in the first step of experiments we can get the
event of an eclipse at noon). Thus we obtain another implication: “n — s”, and
obviously its contraposition “-s — —n”.

We depicts these implication relations by the diagrams of Figure 3 which de-
scribe the empirical conclusions from these two different contexts.

Figure 3:

We can argue that, with respect to our knowledge, the only “situations” (states)
of the triple (n,s,e) to be taken into account are the ones in which there are no
contradictions with respect to the above experimental situations. In the following
table we denote by n, s,e = 1 the fact that “it is noon”, “there is soon”, and “there
is an eclipse” respectively (otherwise we pose 0); moreover, we denote by a = 1
the noncontradictory situation with respect to our partial experimental knowledge
(otherwise we pose a = 0):

b2 b2

—Cc—Cc—Cc—C—_—n" S8 e—a—
S —07070—1—
70770771717
— 071701
70771771707
71770770707
—17071—0—
—17170—1—
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— ¢ — ¢ — _ — state — condition —
_—1—-nA-sA-e—
—2—-nA-sNhNe—
— 31 mMAshoe —
— 4 —nAsAN-e—

The situations involved by contexts a; and as are described by the following
table [where we label different situations of the (s,e) context by the conventional
arbitrary symbols (G, R,Y), and different situations of the (n,s) context by the
arbitrary symbols (S, M, L)]:

|c|c|e|-|state]

By the comparison of this (labelled) table with the table of the knowledge
representation system exemplified in section 2, we immediately realize that they
show the same features; thus we are able to translate the involved diagrams in
the present ones. In particular, the two boolean diagrams of Figure 3 are the
“translations” of the two latter boolean diagrams of Figure 1; moreover, the global
orthoposet diagram of Figure 2 is translated in the one pictured in Figure 4.

Figure 4.

We can give now the following interpretation of the structure: supposing that
(as shown in Figure 3) one scientist gets the conclusion that in the XR—system it
is true that “e — —s”, and a second one reach the conclusion that it is true that
“n — s”, then the diagram of Figure 4 shows the deductions we can obtain from
joining the contexts in a unique “environment” (“pasting”).

In this case we observe that we cannot infer “e — —n”, since the implication
relation is not transitive; from F,, (e — —s) and k4, (-s — —n), we cannot find
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an “actual” context of experimental knowledge a such that , (e — —n). Also
if we have improved our knowledge from the context A; := {a;} to the context
A1z := {a1,as}, single “contextual” inferences cannot be extended by transitivity
to obtain new implications.
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