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Very often in science concepts and notions which for a long period of time have
been considered safe and clear must be more or less radically reformulated in order
to answer to pressures and exigencies arising either in the same field they originated
or in related disciplines. Being science a conservative enterprise, whenever possible
some of the constraints proper of the old notion are simply relaxed and a more
liberal notion arises.This is exactly what happened in formal logic for the notion
itself of logic. Indeed until a few years ago practically everyone would have agreed
that a logic is given by:

1. One language and its set of wifs.

2. A derivability relation between sets of wifs and wffs such that the following
properties hold:

3. AF A (reflexivity);
4. S+ A implies S,T A (monotonicity);
5. S,BF Aand S+ B imply S+ A (cut).

Point 2. has been abandoned in linear logic where a derivability relation be-
tween multisets of wffs and wffs has been introduced. Nonmonotonic logics, first
introduced in A.I. to cope with common sense reasoning,are now commonly stud-
ied by logicians and philosophers, thus violating point 4. Even point 1. has been
recently abandoned: following a suggestion of R. Weyrauch [?], multilanguage sys-
tems have been introduced in [?]. The idea is that different theories with different
languages can interact each other and export information by means of bridge rules.
A bridge rule is such that if a certain formula A can be deduced in a theory T}
then a certain other formula B can be derived in theory T5. Due to the presence of
such bridge rules the original theories 71 and 75 are tranformed in an effective way
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into two new enlarged theories 7] and T5. When the language of the second theory
contains an appropriate metalanguage for the first theory one obtains an OM pair.
The trasformation under which undergoes an OM pair when the bridge rules are
the well known reflection rules, [?] [?], or some of their more simple and immediate
generalizations, have been studied in [?]. The first paragraph of this work contains
the definition of OM pair while in the second some of the results proved in [?]
are illustrated. Such technical results will be used in the final paragraph to give a
simple characterization of negation as finite failure.

1 OM pairs

A formal metatheory is a theory about another theory called the object theory.
Each proposed metatheory must have names for syntactical objects of its object
theory and must contain some distinguished predicates intended to express some
syntactical properties of the object theory. Of course it is up to the proposer
of the metatheory to prove its correctness and/or completeness. Everyone has
its own metatheory and this makes difficult to compare different approaches and
to develop a systematic study of object-meta relations. In [?] the situation has
beeen completely reversed. By using bridge rules as a mean to implicitely express
the connection between the object theory and the metatheory one can begin a
systematic study of object-meta relations.The set of bridge rules that have been
studied in [?], called reflection rules, is given in fig.1.

[Rup,Je(4)A  [Rup]e(4)A [Rupy]-e(4)=A [Rup”]-e(4)-A4
[Rdw,]Ae(A) [Rdw]Ae(4) [Rdw"]-A—e(A4) [Rdw"]-A- e (A)

RESTRICTIONS: rules labeled with index r are applicable if and only if the premiss
does not depend on any assumptions in the same theory.

Fig. 1. Reflection rules

We now give the formal definition of OM pair

Definition 1 Given a logical language L, its pure propositional metalanguage
o(L) is the language whose set of atomic wffs is the following:

{o(A) : Ais an L-wff}
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Definition 2 An OM pair is given by O, M, (RR) where:

- O =L,00,A0 is an object theory in the language L with axzioms Qo and set
of deduction rules Ao.

- M = o(L),Qrr, Anr is a metatheory in the pure propositional metalanguage
of L with axioms Qpr and deduction rules Apy.

- (RR) is any subset of reflection rules of figure 77.

In the following L will be a propositional language and Ap and Ay, are the
classical natural deduction rules.

The definition of derivation in an OM pair is straigthforward. One can see such
a derivation as made up by parts, each of which is either an objective subderivation
or a subderivation in the metalanguage appropiately interconnected by reflection
rules.

TH(O) (TH(M)) is the set of all classical consequences of the objective axioms
(of the meta-axioms), while THon(O) (THowm (M) is the set of all objective for-
mulae (metaformulae) provable in the OM pair. Of course TH(O)SSTHom(O)
and TH(M)SSTHom(M). Here is a proof of (AB) e (A) e (B) in any OM pair
containing Rup, and Rdw in its set of reflection rules.

Je(AB) e (A) o (B)[]e(A) o (B)[Rup,]e(A)[JA[Rdw]ABe(AB)[Rup,|s(B)[| B[Rdw]ABe(AB)

2 Some results on OM pairs

Our investigation developed along three main lines:
1. Compairing the strenght of different sets of reflection rules.

2. For a given set of reflection rules trying to characterize THom(O) and
THom(M) in terms of O and M.

3. For a given set of reflection rules trying to understand what relation in the
object theory does o(A) expresses.

About point 1, I will only mention that a partial order on sets of reflection rules
can be obtained using the following definition:

Definition 3 (RR), < (RR), if, for any O and M, S+ A in O, M, (RR), implies
S+HAinO,M,(RR),.

The strongest combination turns out to be Rup + Rdw + Rupy, all the other
rules being derivable from these.

Turning to point 2 above, we have that THop (O) can be expressed in terms of
THom(M). The problem therefore becomes: can we axiomatize THowm(M)?
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If S is a set of objective wifs let:
o(S) = {o(A): A€ S} (1)

Notice that, no matter what O, M and (RR) are we have that Q3 SSTHonm (M)
and that, if (RR) cotains Rup,, then o(TH(O))SSTHom(M).

The problem therefore becomes the following: if Py,..., P, are parameters
and (RR) is a subset of reflection rules containing Rup,, to find a e(L) schema
®[P; ..., P,] such that, for any object theory O and metatheory M, one has

THow (M) = TH(Qr U o(TH(O)) U {®[A4, ..., An]: A; € L}) 2)

Notice that if this is possible for any set (RR) of reflection rules than the approach
via bridge rules would be equivalent to the usual approach of axiomatizing the
metatheory. Surprising enough this is not the case. Indeed in [?] we proved that
the answer is negative in case (RR) = Rup, + Rdw,, by giving a counterexample.
This is by no way a trivial result if one realizes that the restricted reflection rules
above are the ones most commonly used in the literature. When Rdw, is relaxed to
Rdw then usually an axiomatization can be given. We refer the interested reader
to [?].

Point 3 of course is the more interesting one. Given any couple O,M and a fixed
(RR), one would like to express THop(O) in terms of the models of THon (M).
If one can further specify what are the models of THon (M), then the meaning of
o(A) can be understood. This can be easily done when one realizes that there is a
one to one correspondence between sets of objective formulae and models of o(L).
Indeed given a model m of (L) let

[ olm ={A] m[=e(4)}

Viceversa a given set of formulae S implicitely defines the model that evaluates
o(A) to true iff A isin S. By an extension of O we mean any set of formulae closed
under modus ponens that contains TH(O). A set of objective sentences is maximal
if it contains A or —A for any formula A. In [?] the following theorem has been
proved:

Theorem 4 Let OM be an OM pair composed of O and M connected by the set
of reflection rules (RR);

1. If (RR) is Rup, + Rdw, then m is a model of THom (M) if and only if
m = Qar and there ezists a set of wffs TSSL such that | ® |, = TH(O 4+ T);

2. If (RR) is Rup, + Rdw + Rup?, then m is a model of THom (M) if and only
if m | Qur and there exists a set of wffs TSSL such that |e|,, = TH(O+T)
and TH(O +T') is consistent;

3. If (RR) is Rup+Rdw, then m is a model of THon (M) if and only if m |= Qu
and there ezists set of wffs T'SSL such that |e|,, = TH(O+T') and TH(O+T)

is maximal;
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4. If (RR) is Rup + Rdw + Rup?, then m is a model of THom (M) if and only
if m = Qs and there exists a set of wffs TSSL such that |e |, = TH(O+T)
and TH(O 4 T') is maximal and consistent;

5. If (RR) is Rup? + Rdw, then m is a model of THom(M) if and only if
m | Qu and, if TH(O) is inconsistent then | ® |, = 0, otherwise O + | o |,
s consistent.

Theorem 5 Let OM be an OM pair composed of O and M connected by a set of
reflection rules containing Rdw, and Rup,, then THon (0) = ﬂmlzTHOM(M) @]

Therefore one can say that the models of THoum (M) are in case 1 all the exten-
sions of O, in case 2 all the consistent extensions of O, in case 3 all the maximal
extensions of O, etc., that satisfy the axioms.

3 A characterization of negation as failure

Let us consider a logic program P where negation is implemented under the finite
failure rule, i.e. notA succeeds iff the prooof of A finitely fails. The finite failure of
A is only a contingent property of the proof procedure strongly determined by the
particular context in question, the program P. It is not invariant under extensions
of the original program P and therefore it is non monotonic in nature. However
for any program P the following metaproperty is certainly true:

if notA can be proved then A cannot be proved (3)

Notice that the converse does not hold. In the program P = A + A neither
A nor notA can be proved. Only interpreting notA as failure to prove does the
converse hold. Let us consider a propositional language L' whose set of wifs are
obtained by the usual logical connectives plus the unary connective not. We have
now the possibility to formalize property (??) as a meta axiom and to study what
are the constraints that such an axiom imposes on the unary connective not. Let
O, M, (RR) be such that O is any objective theory in the language L' while M has
as its only axiom:

e(notA)—e (A) (4)
and (RR) = Rup, + Rdw Now:
e(notA)— e (A) = —(e(notA) e (A))
which implies, see the example in section 1,
— e (notAA)
Consider the following derivation:

[]- o (—(notA-A))[]L[Rup,|e(notAA)= notAA[Rdw]-(notA—A)e(—(notA-A))— e (notAA)
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Using the theorem of the previous section, this proof tells us that for any ob-
jective theory O, no extension of O can contain —=(notA-A). In particular any
complete extension, any truth set, must contain notA—A.In other words we can
use this formula as an axiom. Notice that nothing changes if we intepret — as in-
tuitionistic negation. No intuitionistic theory can contains —(notA—A), otherwise
there would be a classical theory containing it. Intuitionistic negation satisfies
ﬁA(AB) and (AﬁA)—!A.

i From notA—A one derives

notA(AB) (5)
but
(AnotA)notA (6)

does not hold. An equivalent system based on axiom (??) can be found in Gabbay
[?]. It is easy to show that,
—-A = AnotA

If (??) holds, than the two negations are equivalent. If one interprets notA as
failure to prove A then instead of axiom (??) one should use the meta axiom

e(notAd) = e (A)

It can be easily shown that in this case (?7) holds and the connective not becomes
intuitionistic negation. Many people think that negation as finite failure is Nelson
strong negation. Now strong negation, indicated with —, also satisfies the property

—A-A
but moreover it also satisfies:
——A=A
—(AB)=-A-B
—(AB)=-A-B
—(AB) = A-B.

These further constraints are not a consequence of our axiom (??). Only the
right to left implication does hold when — is substituted with not. Although a
reasonable possibility, to impose the other side of the implication is problematic.
Indeed how not should behave strongly depends from the modalities of the com-
putation, for example if it is serial or parallel, etc. The only thing that one can
say is that finite failure, if interpreted as falsity, is a form of negation that lies in
between two extremes: strong negation and intuitionistic negation.

References
[1] K. Bowen and R. Kowalski. Amalgamating language and meta-language in

logic programming. In S. Tarlund, editor, Logic Programming, pages 153-173,
New York, 1982. Academic Press.

64



[2] G. Criscuolo, F. Giunchiglia, and L. Serafini. A Foundation of Metalogical
Reasoning: OM pairs (Propositional Case). Technical Report 9403-02, IRST,
Trento, Italy, 1994.

[3] D. M. Gabbay. Semantical Investigations in Heytings Intuitionistic Logic. D.
Reidel, 1981.

[4] F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics (or: how we
can do without modal logics). Artificial Intelligence, 65:29-70, 1994. Also
IRST-Technical Report 9110-07, IRST, Trento, Italy.

[5] R. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reasoning.
Artificial Intelligence, 13(1):133-176, 1980.

65



