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Abstract

It has been recognized that AI programs suffer from a lack of generality,
the first gross symptom being that a small variation to the problem being
solved usually causes a major revision of the theory describing it. The lack of
generality seems an unavoidable consequence of the process of approximat-
ing the world while building theories about it. In this paper we propose an
approach where generality is achieved by formulating, for each problem at
hand, an appropriate local theory, i.e. a theory containing the needed infor-
mation. The process of theory formulation and reformulation is formalized
using conterts.

1 Introduction to the Problem

Since the birth of Artificial Intelligence, many formalisms and programs have been
devised to model human common sense. The range of applicability of such for-
malisms has been investigated and some industrial applications based on such for-
malisms have been made. However, these formalisms (in different modes and to a
different extent) lack generality in the sense of [?]. In that paper, John McCarthy’s
writes:

“It was obvious in 1971 and even in 1958 that AI programs suffered
from a lack of generality. It is still obvious and now there are many
more details. The first gross symptom is that a small addition to the
idea of a program often involves a complete rewrite beginning with the
data structures.”

*This paper is a re-elaboration of the ideas already presented in [Giunchiglia, 1993, Giunchiglia
et al., 1993a, Bouquet and Giunchiglia, 1995].
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Such a lack of generality is testified by our failure in building a “general” theory
of the world by which we can () solve the problems as they stand, and (i) reason
about and solve variations of the same problems. This failure is not surprising:
all our theories of the world are approximate, i.e. they do not describe the world
completely but only from a certain perspective, at a certain level of abstraction.
The approximations and abstractions performed in the formalization of a problem
are necessarily dependent on the problem being considered. Any new previously
unconsidered information will in general correspond to a new view of the world
which may hide some details and highlight others previously not considered.

In our view, the lack of generality is intrinsic in any theory of the world, since
any such theory will be (in different modes and to a different extent) approximate.
Generality is achieved formulating, for each problem at hand, an appropriate local
theory, i.e. a theory with the least possible amount of information necessary for
solving the problem. Any of such theories will be very approximate, but general
enough to allow for a meaningful solution to the problem being considered. New
information about the problem will force a revision of the previously used approx-
imate theory and the building of a new, reformulated theory, which will be still
approximate but general enough for a meaningful solution to the new formulation
of the problem.

In this paper, theories are called conterts in that each context is meant to
embody the subjective perspective that an individual has about the world. As
described in [?], contexts are partial theories (the individual may have different
perspectives and/or models of the world, which is completely described —in the
individual’s mind— by the set of all its contexts) and also approzimate theories (a
context will never describe the world completely).

The paper is structured as follows. First, in Section 7?7, we show how contexts
can be formalized as logical theories. Furthermore we formalize the idea of rea-
soning inside a formal system allowing multiple contexts. Then, in Section 7?7, we
discuss the relations among contexts, locality and generality, and how we achieve
locality and generality using contexts. As a case study, we focus on the qualification
problem.

2 Contexts as Formal Objects

The basic intuition for introducing contexts as first class citizens in our formalism,
is that reasoning is usually performed on a subset of the global knowledge base;
we never consider all we know but only a very small subset of it [?]. The notion of
context is used as a mean of formalizing this idea of localization of the reasoning.
Roughly speaking, we take a context to be the set of facts used locally to prove a
given goal plus the inference routines used to reason about them (which, in general
are different for different sets of facts). The perspective is thus similar to that
proposed in [?, ?]. In the rest of this section we formalize these ideas by saying
more precisely what we mean by “context” and by “reasoning with contexts”. The
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goal is to model reasoning as deduction.

2.1 Reasoning Inside a Context

The starting point is that the set of facts which provide the context of reasoning is
in general only a subset of the knowledge base. We therefore describe the knowledge
base as structured into sets of facts, which we write Aq,..., A,. Taking a context
to be any A; would lead to a notion of context which is similar to the notion of
a partition in partitioned data bases or to the similar notion of microtheories in
CYC [?]. Even though these partitions do not need to be static and fixed once for
all, this does not seem a satisfactory enough solution. In fact, in general, each A;
is written using different sets of constants, predicate, and function symbols. For
instance, the set of facts about arithmetic will have, as part of the signature, 0, +,
and #*, while the theory of how to get on a plane will use constants like exists flight
and plane. The formalization of an agent’s beliefs about the world or about its
beliefs about its own beliefs requires building up theories with different signatures:
the second set need only contain the belief predicate and the names of formulas,
but not the formulas themselves (see [?], for example). We therefore require that
each context come with its own signature. More interestingly, we also take the
notion of wellformedness to be localized and distinct for each A; (Notice that in
partitioned data/knowledge bases (e.g. CYC) the notion of wellformedness is taken
to be the same everywhere). This allows us, for instance, to have a context which is
essentially a data base of atomic ground formulas and another whose facts express
metalevel heuristics, all expressed in clausal form.

We formalize the requirement that each A; come with its own signature and
wellformedness rules by associating a language L; to each A;.

The next step is to model reasoning. The standard solution is to have a unique
inference engine (possibly consisting of a set of inference modules) which can be
applied to any set of facts or, even, to combinations of them. Our proposal is to
associate a distinct inference engine to each distinct set of facts A;. This allows
us to localize the form of reasoning and, for instance, to define special purpose
inference engines which exploit the local form of wifs. For example, we can use
PROLOG on clausal first order languages and Davis Putnam decision procedure
[?] on propositional languages.

If we call A; the set of inference rules associated with a set of facts A;, then
we can define a context C; to be the triple C; = (L;, A;, A;). In other words, we
take a context to be a logical theory, presented as an axiomatic formal system.
This allows us to take the usual notion of deduction (see for instance [?]) as the
formalization of reasoning inside a context.

2.2 Reasoning with Multiple Contexts

A knowledge base contains in general a set of interacting contexts C1,...,C,. We
need to capture the idea that reasoning in one context may influence reasoning in
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other contexts. We introduce therefore a new set of rules which allow us to derive
a fact in a context because we have derived other facts in other contexts. Thus, if
c:«a denotes the formula « in the context ¢, such inference rules look like

[p]C:AC: Ay, ...,Cph: Ay

Inference rules like p (with premises and conclusions in different contexts) are
called bridge rules [?] as they allow us to bridge deductions in different contexts.
In particular, p allows us to derive A in C' just because we have derived A; in
Ci, ..., A, in C,. We say also that A in C is a justified assumption as it is
an assumption we make in C' which is justified by derivations in other contexts.
Notice that a notion similar to that captured by McCarthy’s lifting axiom [?] can
be formalized by the following bridge rule:

c:A
¢ :ist(A,c)

which intuitively says that, if we can prove A in context ¢, then we can prove (in
a context ¢') that we can prove A in c.

Contexts and bridge rules are the components of multicontext systems (MC
systems) defined as a pair ({C;}ier, BR), where {C;}ier is a family of contexts
and BR is a set of bridge rules. Derivability in a MC system is defined in [?] and
[?]; roughly speaking, it is a generalization of Prawitz’ notion of deduction inside
a natural deduction system.

MC systems are a powerful formal tool for the formalization of common sense.
Even restricting the language of each context to be first order, it seems possible
to build particular MC systems which are provably equivalent to richer formalisms
than (first order) classical logic is (see for example [?, 7, ?]).

3 Contexts, Locality and Generality

A representation in a MC system is not necessarily local. For example, the represen-
tation could use a single context, and thus be reducible to a standard representation
in an axiomatic formal system. However, MC systems provide the tools to achieve
locality: the possibility of structuring knowledge in contexts, and of considering
only a subset of the defined contexts.

Locality does not imply generality: a representation may be local in that it
considers only the information necessary for the problem, but that representation is
also not general since peculiar for solving that very problem. As we said, generality
is achieved formulating and reformulating the local theory where the problem has
to be solved. MC systems provide the formal tool to achieve generality: starting
from a set of already defined contexts, each containing the knowledge necessary for
a specific (sub-)problem, bridge rules allow to build up the appropriate context.

In the next subsections, we will show how to put these ideas into practice for
solving the qualification problem.
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3.1 The Qualification Problem

As pointed out in the introduction, the lack of generality of our representations is
testified by our failure of building a unique theory of the world by which we can
solve (variations of) the problems we have to deal with. A clear effect of this lack
of generality is the so-called qualification problem, which arises in the attempt of
formalizing reasoning about action and change [?]. Consider the following axiom
about air traveling (free variables are universally quantified throughout the paper):

fly(z,y) D at(y) (1)

Intuitively, axiom (??) says that flying from a place z to a place y causes being at y.
This axiom can be useful in very generic circumstances. However, it is quite clear
that it needs a lot of qualifications. For instance, there must be a flight connection
between x and y; the traveler must be at z in order to get the flight; he must have
the ticket. Let us abbreviate with P these three preconditions. Then, instead of
(??), we can write:

P D (fly(z,y) D at(y)) (2)

axiom (??) is more general than axiom (?7), because it depends on a smaller set
of implicit assumption. Still, it implicitly presupposes some temporal relation,
namely that the preconditions are satisfied in the situation where the action takes
place. This can be made explicit with an axiom like:

holds(P, s) D holds(at(y), result(fly(x,y), s)) (3)

whose meaning is that for any situation s, if the preconditions P hold in the
situation s, then in the situation resulting from flying from z to y, at(y) holds.
Are we done? Not quite. Many other facts qualify the truth of (??). A blatant
example is a pilots strike, that would invalidate the conclusion. Also being clothed
is usually a pre-requisite for getting on a plane. But then these two facts should
be added to P. It is clear that this process can go on as long as we like. The
problem is that axioms like (?7?), (??) and (??) are not eternal, in the sense of [?].
Transforming them into eternal sentences would require to explicit all contextual
dependencies. Unfortunately, in general this is not possible. As McCarthy writes
in [7],

“...the axioms we devise to express common sense knowledge are
too restricted in their applicability for a general common sense database.
... With a little ingenuity the critic can usually devise a more general
context in which the precise form of the axiom doesn’t hold [...]”

From this perspective, the qualification problem can be restated as the problem
of conjecturing that a certain theory is detailed enough to solve a problem and of
revising this conjecture once it turns out that this is not the case. The conjecturing
activity can be divided in two steps:
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1. first, we conjecture that a certain theory including only part of the knowledge
of an agent is adequate for reasoning about a given problem;

2. second, we use the selected theory for reasoning as if such theory contained
all we know about the problem to solve. This can be done by the “usual”
nonmonotonic reasoning

However, one of these two conjectures can fail, causing a revision:

1. some new fact could force the reasoner to retract the conjecture that the
theory is adequate for the problem (the set of considered qualifications is too
small). An example is the pilot strike in the air-traveling example;

2. a new fact might cause a violation of an explicitly considered qualification.
This case can be handled by the usual nonmonotonic revision inside the
theory. For example, in the air-traveling example we could add the fact that
the traveler does not have the ticket

The big picture of the solution we propose is as follows. We start with the
formulation of a problem. In the background, we have a commonsense knowledge
base (KB) which contains the knowledge of an agent. The KB is not a unique
theory; it is structured as sets of facts, each about a particular topic. From now on,
we informally call KB contexts these sets of facts. Each KB context is associated to
one (or more) symbol(s) which can be used to formulate problems. This constitutes
an associative memory. We use this associative memory to state a form of relevance
claim: if a certain symbol is associated to a KB context, then this KB context is
assumed to be relevant for any problem in which this symbol appears. For instance,
we can imagine that mentioning tickets in the air-traveling example would imply
that the KB context(s) containing knowledge about tickets will be inferred to be
relevant. This exploits the implicit assumption that the statement of the problem
fixes the description of the world which should be used to solve the problem; in
other words, the amount of detail which should be considered. In our terminology
this means that any specific problem formulation drives the choice of a theory at
a given level of detail and, analogously, any specific problem reformulation allows
us to confirm or revise this choice. This kind of relevance claim is quite simple. In
principle, we can introduce arbitrarily complicated relevance claims. Their form
may depend on many factors. In commonsense reasoning, for instance, it may
depend on the confidence that people have in their ability of solving the problem,
their current attitude (more or less oriented towards details), the time they have
to solve the problem (taking into account more details requires more time) and
so on. However, even such a simple form of relevance claim allows us to exploit
the advantages of localizing the reasoning to subsets of a knowledge base (see for
instance [?]).

The relevance claims and the associative memory define a space of theories.
These theories are called workspace contexts (WS contexts from now on). A WS
context is adequate for a problem if it contains all the assumptions of the problem
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Figure 1: A contextual architecture for the GLM example

and all the relevant KB contexts. This is what we call a theory adequacy require-
ment. Clearly, we can only conjecture that this form of adequacy actually holds.
Indeed, any new fact added to a problem formulation can make it fail.

3.2 A Simple Example: the GLM Problem

The example, originally proposed in [?], concerns an air traveling domain. The
scenario is as follows. A traveler must go from Glasgow to Moscow and he knows
that there exists a flight from Glasgow to London and another from London to
Moscow. The idea is formalizing this reasoning: (a) after the two flights, the
traveler will be at London; (b) if he loses the ticket at London, the plan fails; (c) a
new plan including the purchase of a new ticket will succeed. The point is that the
number of possible obstacles to the plan (losing the ticket is only an example, also
a pilot strike or the theft of the traveler’s clothes in the toilet of the airport are
possible obstacles) is huge, and we cannot sensibly take all of them into account.

The proposed solution is based on the following idea: to keep the reasoning as
simple as possible, reasoning must be carried on in a context where it is assumed
that no obstacles occur unless explicitly stated. Therefore, given the part (a) of
the problem, we want to explicitly use only the fact that the two flights exist.
Since tickets are not even mentioned, we want our context to implicitly assume
that knowledge about tickets can be disregarded in order to infer the success of
the plan. When the loss of the ticket is mentioned, the above assumption must be
revised and tickets must be reasoned about (in particular, the fact that having the
ticket is a precondition for getting on a plane). Finally, using information about
buying things, we can conclude (c).

The architecture of the solution is depicted in figure ??. Each circle represents
a context. The contexts on the left are the KB contexts; each of them contains
portions of the information on the domain that the agent has at his disposal (e.g.
on tickets, on flights, and so on); in particular, the context Action contains axioms
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for reasoning about action and change in general (actually the axioms of [?]). The
contexts on the right are the WS contexts; they are built up by “merging” the
information contained in some of the KB contexts. The context with label C is
called the control context; C' controls the flow of information from KB contexts to
WS contexts. The idea is that in C' are specified some conditions under which the
system can infer that a KB context is relevant for a problem. For instance, if a
problem does mention the loss of the ticket, the system assumes that the facts in
the KB context Ticket must be loaded in the WS context of that problem. This is
stated by axioms of this form:

COND D Lift(kb, wrke(p)) (4)

where COND states the condition for the KB context kb to be relevant for a
problem. The axiom says: if we can prove that the KB context kb is relevant to
the solution of a problem p, then lift kb in the workspace of the problem p. The
notion of lifting a context into another is defined in the following axiom of C:

Lift(cl, e2) = Vw (Ist(cl,w) D Ist(c2,w)) (5)

The consequence of this axiom is that ¢l becomes a “subset” of ¢2, since it imposes
that any formula that can be proved in ¢l be provable also in ¢2. This intended
meaning is given by the following bridge rules on the predicate Ist:

c:aC': Ist(c, a) C:Ist(c,a)c:a

where ¢ is any context different from C' (the control context). The rule on the left
is called reflection down, that on the right reflection up. Reflection down says that
we can derive a in ¢ whenever we have derived Ist(c,a) in the control context C.
Reflection up has the dual meaning.

Now let us imagine that the system is given the formulation of a problem
P1 such that the only KB context provably relevant is Flights (it contains the
information that the existence of the flight is a precondition for flying). Then, the
axioms of C' allow us to lift the context Flights into the WS context of P1, denoted
by wrkc(P1) (because of an axiom like (??) relative to Flights). In wrke(P1) we
can prove that the only relevant precondition for the success of the plan is the
existence of the flights from Glasgow to London and from London to Moscow.
Since we know that the two flights exist, the success of the original plan can be
proven.

This conclusion depends on the implicit assumption made in wrke(P1) that
all the preconditions other than the existence of the flights can be disregarded.
However, this assumption is defeated whenever the loss of the ticket is explicitly
mentioned in the reformulation of the problem (say P2). In this case, an axiom
like (??) is used to prove that also the context Ticket must be lifted in the WS
context of P2. Indeed, in wrke(P2) having the ticket is now explicitly considered
as a qualification, so that its loss is a sufficient reason for inferring the unsuccess of
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the original plan. However, since the context Ticket contains also the information
that tickets can be bought, we can conclude that a new plan including the purchase
of a new ticket will eventually succeed.

3.3 Related Work

The qualification problem has been first identified in [?]. Since then, many theories
have been developed to deal with this problem (see for example [?, ?, ?]) despite
some technical differences, all such theories share a common approach: they assume
that all qualifications for the action under consideration are always explicited in
the theory that is used to reason about the problem; then it is conjectured that
all such qualifications are satisfied unless explicitly stated. (Notice that in our
approach this would correspond to the case in which all the KB contexts are lifted
in the WS context of the problem).

However, as Ginsberg and Smith point out [?], the overall qualification problem
consists of three distinct difficulties:

1. the language or ontology may not be adequate for expressing all possible
qualifications of an action;

2. it may infeasible to write down all the qualifications (even if the ontology is
adequate);

3. it may be computationally intractable to check all the qualifications

Standard approaches do not address the first difficulty and may cause problems
with the second and the third. In the same paper, Ginsberg and Smith propose
two new approaches which (partially) solve the second and third difficulty, but not
the first. On the other hand, our approach is aimed at solving the first difficulty.
Each WS context has a language and a set of facts which may not be adequate
for expressing all possible qualifications of an action. However, the WS context
adequacy is only conjectured and this conjecture can be revised. This allows us to
classify the qualifications for a problem into three groups: the set of all the facts
the reasoner knows about and that potentially qualify the solution; the subset of
these facts that the reasoner explicitly considers in a given formulation; all the un-
expected or unknown qualifications. All the previous approaches don’t distinguish
between the first and the second kind of qualifications. Indeed, any qualification
which is included in the theory has to be explicitly considered.
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