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1 Introduction and Motivating Examples

The aim of this paper is to provide a methodology for turning a known crisp logic
into a fuzzy system. We require of the methodology that it be meaningful in general
terms, using processes which are independent of the notion of fuzziness, and that
it yield a considerable number of known fuzzy systems.

To appreciate the need for such a methodology, consider for example the modal
propositional logic K, with one modality , and let us examine our options for
turning it into a fuzzy system. This logic is complete for the crisp Kripke semantics.
Kripke models have the form = (S, R, a, h), where S # is a set of possible worlds,
R C S x S is a crisp binary relation, (of the form R:S xS+ {0,1}), a € S is the
actual world, and h is a binary function assigning to each ¢ € S and each atomic ¢
a crisp value h(t,q) € {0,1}.

h can be extended to all wffs in the usual way with the inductive evaluation of
h(t, A) being

h(t, A) = 1 iff for all y such that tRy we have h(y, A) = 1.

or

h(t,A) = Inf {h(y, A) | tRy}.

We say A if h(a, A) = 1.

Let us try and turn this logic fuzzy!

Working intuitively, one may turn modal logic into a fuzzy modal logic in several
ways [?]):

1. changing the function h(t,q) into a fuzzy function hf(t,q) € [0, 1] (obtaining
real number values);

2. changing the crisp relation R into a fuzzy one R* : S% s [0, 1];



3. making a € S fuzzy.

4. any combination of the above.

Is there a methodology involved to the above or do we just go from logic to
logic and make fuzzy whatever semantical component we find?

What if we use a different semantics for K and make fuzzy the functions involved
in that semantics? Do we get yet another batch of fuzzy modal logics?

Clearly we could use some general principles.

The methodology we use is that of combining two logics together through the
fibring of their semantics. There are general ways of doing that independent of the
logics themselves, provided they satisfy some simple assumptions [?, ?].

Let 1 and 2 be two logics, say for example that ; is modal logic and 5 is
intuitionistic logic. Our methodology allows for several methods of combinations.

1. One layer 1 (2) allowing for substituting intuitionistic formulas for the atoms
of .

2. One layer 2(;) allowing the substitution of modal formulas for the atoms of
intuitionistic logic.

3. More fibred layers say 1(2(1)) and so on.
4. Full ﬁbrlng 1,2 =1 X9,

Methods for obtaining semantics for such fibred logics from the semantics of the
components were developed in [?] and [?] and [?, ?]. The results are independent of
the semantics employed, are logic independent, and yield a huge number of known
combined logics, existing in the literature in the past thirty years.

In our particular example, let Lo, be Lukasiewicz infinite valued logic (with
values in [0,1]) and let us apply our fibring machinery to and L.,. We get the
following:

1. The fibred semantics for (L) is the fuzzy semantics with h fuzzy, R crisp.
2. The fibred semantics for Lo, () is the semantics with R fuzzy and h crisp.
3. The semantics for Lo ((Loo)) is the semantics where both R and h are fuzzy.

So in short, when you ask me how to make your logic | fuzzy, I would answer—
take a pure fuzzy logic » (e.g. Lo, or any other) and fibre it to 1 in different ways.

The rest of this section explains intuitively, via examples, how fuzzling (making
fuzzy by fibring) is done and how it relates to the general theory of combining
logics. Later sections will develop the formal machinery.

We begin by quickly motivating the notion of fibring. In many application
areas there arises the formal need of combining two languages together. The most
well known in applied logic is the use of temporal logic to describe and verify the



temporal behaviour of systems. Here 5 is the language for describing a static system
and 1 is a temporal language. By substituting sentences of 5 as ‘atoms’ within
we get to express temporal properties of the system. This is called ‘temporalising’
of 5, see [?, ?]. Another well known family of examples are multimodal logics, such
as logics of knowledge and belief, logics of action and dynamic logics.

Example 1. [Fibring two modalities] Let ;,» be two modal propositional
languages built on the same atoms, with modalities ; and 5 respectively. Assume
i is complete for the class of models K;. The models are of the form = (S, R, a, h),
where S is the set of possible worlds, R C S? is the accessibility relation, 4 € S
is the actual world and h is the assignment function, associating with each ¢t € S
and atomic g a crisp value h(t,q) € {0,1}. We can assume the model satisfies the
following:
S ={z|aR"z, for some n}

where xRy iff z = y and, xRy iff 32(zRz A zR"™y).
Satisfaction tA,t € S, A a wff, is defined in the traditional manner:

e tq iff h(t,q) = 1, for ¢ atomic;

e tAANBIiff tA and tB;

ot~ Aiff t A;

e tA iff for all s such that tRs we have sA;
o tA iff for some s,tRs and sA,;

o Aiff aA;

o CA iff A for all € K.

The level (1, 2) fibred language (1) =1 (2) allows for wifs of the form B =
Bi(z1/Ch,...,x0/Cryy1y- -, Ym) where By(x1,...,Zn,Y1,...,Ym) is a wif of ;.

Ci,...,Cy are wils of 5 and B is obtained by the simultaneous substitution in B
of C; for x; respectively.
Let « = (e1,...,en) be a sequence of alternating numbers from {1,2}. We

define the fibred language , by induction.

(e) =er € = 1,2

(e1,.-yen) —e1 ((32,...7en))-

Let oo = {J,, o denote the full fibred language.

We now define fibred semantics for ,. A level (1, 2) fibred model has the form
= (S,R,a,h,) where = (S, R,a, h) is a Kripke model of KXy and is a function on S
giving for each ¢ € S a model (t) = (S, B¢, at, hy) in Ko.

We can assume that S and all the S; are pairwise disjoint.



Satisfaction is defined in the usual manner, with the crucial fibring clause being
the following;:
wiA iff

1. w € S; for some ¢, and i = 2 and for all s € S;(wRs — sA).
2. we€ S andi=1and for all s(wRs — sA).

3. we S andi=2and asA.

4. Undefined,, when w € Sy and i = 1.

In other words, when, at a point w € S, we want to evaluate 24, we go to (¢)
and continue the evaluation.

A level a = (eq,...,e,) fibred model is defined by induction. It has the form
(S,R,a,h,) where (S, R,a,h) is a model in K., and for each ¢t € S, () is a model
in Key,... en), i-e. @ model of level (ez,...,e,).

Let Koo = U, Ka-

The models of K, can provide semantics for .

Example 2. [Simplified fibred models] Consider a model in K(; ). There is
another way of looking at this fibred model. Since S and S;,t € S are all pairwise
disjoint, let * = (S*, W,, R*,a, h*,* ) be the model with:

S* = SUU,es St

R*=RUU, R,
W, ={a}U{a: |t €S}
h*=hul, b

*: 5% — S* be the function with
*(w):{ az, TES

T otherwise

Consider a language * with the modalities , and a jump operator . Satisfaction
is defined by
zA iff Vy(zRy — yA)
xH Aiff y(zRy AyA)
zA iff *(z)A.
Let A be a wff of the mixed language. Translate ; as and 5 as . Let A* be the
translation then
aA iff a* A*
where is satisfaction in (S,R,a,h,) and * s satisfaction in
(S*, Wa, R*,a,h**).
The sets S and S; can be retrieved by

S ={z € S*|aR*"z, for some n}
Sy ={x € S* | a4 R*"z, for some n}.



and the models (t) and can be retrieved by restricting R* and h* to S and S;.
In fact, let (S*, R*,a, h*,*) be a Kripke model with * a function from S* to S*.
We call this model a simplified fibred model (SFM-models) iff the following holds:
Let W, = {a}U{y | 3z € S*(y =* (z)}
For y € W,, let S, = {t | yR*™¢, for some n}.
Then

—_

.U ;éy2 —)SylﬂSy2 =
2. () #x N (y) £y =" (2) # (v).
3. 5" =U,ew, Sy

4. An SFM-model is said to be of depth n + 1 if for all z, *(*"(z)) = F*"(z),
where *0(z) = z.

Example 3. [Motivating fuzzy values] We now give a concrete example of an
SFM-model of level 1. Figure ?? shows a ; Kripke model.

Figure 1:

Here S = {a}U{1,2,3,...} with aRn holding, for n =1,2,....

Assume h(a,q) =0 and h(n,q) =1 forn =1,2,.... Try to evaluate 124.

a12q iff for some n, noq. Since o is in the 5 language, we cannot continue to
evaluate. We need an » model to get a value at n. The fibring function (n) gives
an 5 model (Sy, Ry, an, hy). Let Sy = {an} U {(m,n) | n =1,2,3,...}. Let Ry,
be defined by

T =am
TRy iff or
x = (m,n;) and y = (m,ns) and ny < ny
and let
hm(am,q) =0
and

hom((mm),q) = 1 i m < n.



To complete the picture, let (a) = (1). Thus o4 is false at a, in all the models
(n), but we have
(m,n)2q iff m < n.

This particular fibred model has a sepecial feature which is important. All
the models (n), have isomorphic frames; they are isomorphic to (T" = {0,1,,,
...},<,0), through m,, where my,(am) = 0, and m,(m, —n) = L1, and they differ
only in the assignment h,,(¢). The image of the truth set hp,(2q) = {y | y2q} is
projected on {0,1,..., % |n=1,2,3,...} gets larger and larger as m incrases. In
the limit we have

U mmhim (20) = {% In=1,2,...}

Since we are interested in a(;2q), where the table for ; is existential, we can say
that 1 almost holds; it approaches the ‘fuzzy’ (or ‘modal-»’) truth set {- | m =
1,2,...}.

This is quite a conceptual jump. The model (S, R, a, h) is a model of 1 and has
no business getting set values from the set T via the mappings 7, of the models of
. However, since all the fibred models (t),t € S are based on isomorphic frames,
we can extend the evaluation from the fibred models back into the ; language.

It is important to note that the way we extended the evaluation from the fibred
model to ; of ; was arbitrary. We chose a way of doing it which was reasonable,
but nevertheless it was a choice. We could have said let us take as value for a;2q,
not the union of 7, (2¢) but the maximum or some other reasonable definition.

Having adopted a good definition, we now consider the expanded model (S, R,
a,h,,T,m).

We can define an »-fuzzy value p;(A), for t € S and any A as follows:

o ui(A) =mhi(A) = {m(s) | s € St and sA} for A in 2 or A atomic.

o w(AAB) = p(A) N (B)

o pe(~A)=T - (A)

o ne(14) = U{s\ms} s (A)

o ne(14) = ﬂ{s\ms} s (A)

What we have done can be best understood in algebraic terms. Let be the
boolean algebra of the set T = {0,1,,,...} with the interior operation @2, for

@ C T begin
Q*={xeT] for all yz,y € Q}.

Assign to each atom ¢ and ¢t € S the ‘fuzzy’ algebraic subset u:(q) C T.
In our particular model we assign

pn(q) = {1”"'7%
tha(q) = pa(q)

We extend the assignment by
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o 1i(2A) = (i (A))2
o 1e(14) = Nisprsy 1s(A)

The next example brings the idea forward even more clearly.

Example 4. [Many valued modal logic] This is an example of fibring seman-
tical models (modal logic) with algebraic models (Lukasiewicz many-valued logic).
We consider the modal language ; with and the many valued language 2, with
{A,V,—, =} and with truth values at the real interval [0,1]. We study 1(2). The
albebraic models of 5 are linearly ordered abelian groups which are embeddable
in [0,1]. So it is sufficient to consider assignments u of values and truth table for
values in [0, 1]. The following are the algebraic functions:

e The domain is [0, 1]

e < is numerical <.

T = {0} (0 is truth).

Lis 1 (1 is falsity).

o falz,y) = max (z,y).

o fv(z,y) = min(z,y)

o f(zx)=1-2

o f(z,y) = max(0,y —z).

We now turn to fibring.

Let = (S, R, a, h) be a Kripke model for . The fibring function associates with
each t € S an algebraic model ; = (4¢, <, fa, fv, f—, f=, {0}, ue). Since A; = [0,1],
fibring algebras ¢ to ¢ is nothing more than associating with each ¢ an arbitrary
many-valued assignment p; to the atoms of the modal language.

Let us now evaluate (¢ — p), ¢, p atomic, at the model .

e a(q — p) iff for all ¢t € S such that aRt,tq — p.

e Since the main connective of ¢ — p is many-valued, we have tq — piff ;¢ — p
iff pe(q — p) = 0 iff max(0, pe(p) — pe(q)) = 0 if e (p) < pe(q)-

We would like to highlight a point which will be of importance later. Consider
the above fibring. We start with = (S, R, a,h). Then with each t € S, we fibre an
algebra ;. Since all the algebras have the same domain, the fibring reduces to i,
the assignment. Let us pause at this stage and consider the entity (S, R,a,h, u)
and let us try to evaluate tq. Since ¢ contains no many-valued connectives, we get
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tq holds iff Vs (tRs implies sq) iff Vs(tRs implies h(t,q) = 1). Consider the wif
Iq = def (¢ — ¢q) — q. Really Iq is ¢ but it is formally a many-valued wff. So we
have to evalaute it at the algebra ;. We have (I(q) iff u:(q) = 0. tI(q) iff for all
s(tRs implies p:(q) = 0).

To summarise, consider tq; we have two ways of looking at it.

1. Regard ‘g’ as an atom of the modal language, in which case

tq iff for all S,¢Rs implies h(s,q) =1

2. Regard ‘¢’ as an atom of the many-valued language, in which case

tq iff for all s,tRs implies ps(q) = 0.

The two evaluations need not give the same result.
We now have the opportunity to make tq fuzzy (i.e. ‘fuzzle’ the satisfaction , or
in other words, ‘fuzzle’ the modal logic) by extending u; to ¢: (1)

1t(q) = Supyyirsytts(q).  The reader should note that this definition is a chosen
one and we could have chosen some other ‘averaging’ function.

Using (f) we can now fuzzle any wif of the modal logic and extend p; to all wifs,
by taking the many-valued table for A,V,— and —. We have thus by understable
intuitive definition, through (#), turned (S, R,a,u) into a sort of modal many-
valued logic by changing the crisp {0,1} assignment h into a fuzzy u. Note that
what we are getting is not fibring, it is something new.

Example 5. [Persistence] This example will fibre modal logic to the intermediate
logic Dummett’s LC. It will serve to prepare the ground for fibring in the presence of
persistence. Let be intuitionistic implication. LC is the extension of intuitionistic
logic with the axiom schema

(pg) Vv (qp)

or if disjunction is not available, we can write an implicational axiom schema

(pa)(((gp)r)r).

Let ; be the language with {,A,V, L} and let » be modal logic with . Consider
the intuitionistic LC model with U = [0, 1] (unit real numbers interval) of the
form (U, <,0,h). Since we are dealing with intuitionistic model, we must have
persistence, i.e. for all atomic ¢ and any t,s € U. (*¥)

t < s and h(t,q) = 1 imply h(s,q) = 1.

We also require, for technical reasons, that for all ¢, h(1,q) = 1.
Satisfaction is defined as follows:

e tAANBiff tA and tB
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e tAV Biff tA or tB
e tAB iff Vs(t < s A sA imply sB).
o tlifft=1

The reader familiar with -conorms, (see [?]), can view the above as follows:
For each atomic ¢ let

m(q) = Inf{t | h(t,q) =1}
We have (beause of persistence) that p can be extended to all wifs as follows:
o u(ANB) = max(u(4), u(B))
o u(AV B) = min(u(A), u(B))
o u(A— B)= Inf {t| max (t,u(4)) > u(B)}

For each t € U, let (t) = (S, Re, at, ht) be a modal model of . Note that is not
intuitionistically definable from and so we have to explicitly include if we want.
Here we assume we have only.

By general fibring principles, we must have persistence for modal formulas as
well, for example, for ¥ A. [¥]

(t)*A and t < s imply (s)* A

This means that

t <s— [Vy[a Ry — yA] = Vy[asREy — yAJ|

It is possible to show that we can assume without loss of generality (i.e. without
changing the semantic consequence relation) that: (1)

t<sAzRgyy = xRyt In fact if we let S = U, St we can assume that the fibred
models are
(t) = (87 Rt7 g, ht)

We are going to assume the following additional properties: a; = a for some
fixed @ and ¢t < s and hy(z,q) = 1 imply hs(z,q) = 1 for all z € S and atomic
q. We believe one can show that such assumptions can be made without loss of
generality.

So the models differ only in their accessibility relation R; which satisfies ()
above, and the assignment h;.

Define functions hf(z,q) € U, q atomic, z € S and R* : S? = U by letting

R¥(z,y) = Sup {t | xRy}
(Let us assume the Sup is attained.)

Consider the system (U, <,0,u,S, Rf,a,h?). We can view this system in two
ways:

1This condition is for . For we need ¢ < sAzRty — TcRsy.
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1. An LC model (U, <,0, u) with a fibring of modal models (S, Ry, a, ht), where
xRy holds iff Rf(x,y) > t, and hy(z,q) = 1iff t > h¥(x, q).

2. A fuzzy model (S, R, a, h*) where the accessibility relation R* and the assign-
ment h¥ are fuzzy and where the fuzzy truth set is (U, <, 0, 1) and evaluation
is done using the -conorm maz, as indicated above.?

Let us explore further the fuzzy model (S, R¥, a, h*). Consider, for z € S, the
statement x; A, i.e. zA in the model (¢). Because of persisitence, we can define

pf(x, A) = Inf {t | z,A}.
Consider pf(z, A)

pi(z,A) = Inf{t| =z, A}
= Inf {t | Vy(zR:y implies y; A)}

but xRy holds iff t < R*(x,y) and y;A holds iff u*(y, A) < t.
Hence

i@, 4) = Inf {¢] Vy(t < R¥(z,y) implies uf(y, A) < )}

The previous two examples show that modal and many valued logic can be put
together in two different ways. If we start with a modal model (S, R,a,h) then
we can fuzzle (make fuzzy) h by changing it into a many valued assignment pu
and extend to the entire modal language. If we start with a many valued model
1 then we can fuzzle p by changing it into a function into elements of a modal
algebra. This turned out to be equivalnet to looking at modal models where the
possible world relation is fuzzy but the assignment is crisp. I.e. models of the form
(S, R%, a, u) where Rf(x,y) € [0,1], while p is a {0, 1} assignment. u can be exteded
to all wifs, in which case it bcomes a [0, 1] valued function.

Thge obvious combination of the two approaches is to make both Rf and p*
fuzzy. This leads us to the following definition.

Definition 1 An algebraic fuzzled many wvalued modal model has the form
(S, R*,a, u*), where R*; S v [0,1] is a fuzzy possible world relation and for each
s € S and atomic q, u*(q) € [0, 1].

pt can be exteded to arbitrary formulas as follows:

pi(A* B) = fu(uh(A), pi(B))
2If we choose a different -conorm, say

(AN B) = min (1, u(A) + u(B)
H(A — B) = max (0, u(B) — u(4))
u(AV B) = max (0,u(4) + u(B) - 1)

we get evalutaion which makes the accessibility relation Lukasiewicz fuzzy.
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where x € {A,V,—,} and f. is the many valued truth table for x.

ph (A) = Infy[for all y, R*(x,y) > = implies ug(A) <t.

Summary We summarise the ideas of this section.

Qu

o Making fuzzy is identical with fibring in a special way.
o Any logic 1 can be ‘made fuzzy’ by fibring it with o as 1(2).

e If 1 is the Lukasiewicz infinite valued logic and o is modal logic then 1(2)
can be understood as modal logic with fuzzy accessibility but crisp assignment
to atoms while (1) is modal logic with fuzzy assignment to atoms (but crisp
accessibility).

ery: What about 1(2(1)) and 2(1(2))? Do we get fuzzy accessibility and fuzzy

assignment?

The complete version will deal also with the case study of fuzzy modal logic in

detail.
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