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Abstract

We show that an atom free ideal is densely ordered. It is
shown that if I is a maximal ideal of an MV -algebra A, then
A =It@ It where I+ = {z|z < e} and 1+ = {z|z < €} for a
unique idempotent e. The socle, radical and implicative radical
of A are computed in certain cases. It is shown that if A is not
atom free but [ is a maximal ideal which is atom free, then I is
densely ordered, and I = {(At(A))L = (a)+ where At(A) is the
set of atoms of A and a € At(A). Then A = [+ @ I+ where
I+ is atomic and I++ is atom free.

Mathematics subject classifications (1991): 06F'35, 03G25

1 Introduction

One of the objects studied in commutative algebra is the socle. Recall
that a non-zero ideal I of an MV -algebra A is essential if I+ = {0},
where [+ = {z|a Ay =0 for all y € I} (see [8], [12]). Then the socle of
A, denoted by Soc (A), is the intersection of all the essential ideals of
A. On the other hand, the intersection of all the maximal ideals of A is
the radical of A, denoted by Rad (A). One of the goals here is to obtain
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a relation between Soc (A) and Rad (A) similar to that of commutative
algebra. In this paper, we obtain some results, namely we show that
a maximal ideal is essential under some conditions. Relations are also
obtained among maximal, essential and implicative ideals.

We also consider the question of splitting the algebra A in terms of
ideals I and J, namely if [ and J are ideals of A, we say that A =T&J
if I'NnJ = {0} and if for each @ € A we can find a unique x € I and
a unique y € J such that ¢ = x 4+ y. We obtain some results in this
direction, in particular where [ is linearly ordered and J is prime. We
also show that if A has atoms and has a maximal ideal which is atom
free, then A = I & J where [ is atom free and J is atomic. An atom
free ideal is shown to be densely ordered.

We refer the reader to the references for the theory of BC'K and
MYV -algebras, in particular to [1], [3], [7], [14], [15], [16] and [17]. We
shall follow the notation and terminology of [7] and shall assume the
results there without further reference, as well as the results in [1], [3]
and [8]. We shall use freely the BC K-algebra operation found in [7]
and [16] as we feel that computations involving the BC' K -algebra oper-
ation are often more transparent than those using just the MV-algebra
operations. A shall denote a general MV-algebra, B(A) its Boolean
subalgebra of idempotents, and At(A) its set of atoms. Let Bj(A) =
B(A)—{1}. Then the only idempotent in A — B;(A)is 1. [ shall de-
note a general ideal of A which may have different additional properties
attributed to it in each case.

Some frequent results we shall use in the computations involve the
distributivity of multiplication over addition under some conditions.
In [13] we showed the following results. We have = za + za if and
only if eAZAaAa =0. Alsoif e AyAzAZ =0, then (z4y)z = xz+yz=.
We shall assume these results without further mention.

We thank the referee for some helpful comments.

2 Direct Sum of Ideals

Recall that [ is implicative if whenever x™ € [ for some n > 1, then
x € I (see [7] and [10]). These are precisely the ideals which give
quotients A/I which are Boolean algebras. Let Inf (A) = {z]z? =
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0}, N(A) = {z]a™ = 0 for some integer n > 1} and I Rad (A) =
intersection of all implicative ideals of A. Observe that [ is implicative
if and only if Inf (A) C I (see [10]). It is observed in [10] that we
have Rad (A) C Inf (A) C N(A) C I Rad (A). If X C A is a non-
empty subset, let (X) denote the ideal of A generated by X (see [7]).
Then it is shown in [10] that (N(A)) = I Rad (A), and that N(A) is
an ideal of A if and only if Rad (A) = I Rad (A), or equivalently, if
and only if every maximal ideal of A is implicative. Observe also that
Inf (A) = {& A 7 for all = € A} (see [10]).

We first obtain some preliminary results.

Lemma 2.1 If I is implicative, then B,

Proof. Let x € I*. Then a Az € I+ N Inf (A) C I+ N1 = {0}, that
is, © € B(A).

Recall that it is shown in [7] Theorems 3.7 and 3.8 that [ is prime
and implicative if and only if it is maximal and implicative, and that
I is prime and implicative if and only if for each & € A either x € I or
z el

Theorem 2.2 A is a Boolean algebra if and only if every prime ideal
is implicative.

Proof. Suppose that A is a Boolean algebra and that [ is prime. Let
x € A. Then x Az = 0 € [ and hence either + € [ or © € [. By
[7] Theorem 3.8, it follows that [ is implicative. Conversely suppose
that every prime ideal of A is implicative. Let @ € A. Suppose that
I is prime and hence implicative. Then # Az € Inf (A) C [. Thus
x A & € {intersection of all prime ideals of A} = {0}. Thus = € B(A).

Remark. This removes the additional hypothesis of [10] Corollary 3.3
that A be quasi-locally finite.

Theorem 2.3 [f I is prime then It is linearly ordered.

Proof. Let x,y € I*. Now, (z *y) A (y*2) = 0 € I and hence
either v xy € I or y* x € I. Thus, either z vy € I NIt = {0} or
y+x € INT+=1{0}, that is, either <y or y < .

Remark. Compare this result with [1] Theorem 2.6 and [7] Theo-
rem 4.14.
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Theorem 2.4 Suppose that I is prime and implicative. If I is not
essential, then there exists v € B(A) N At(A) C At(B(A)) such that
I ={0,2} and

I'={yly <z}

Proof. By Lemma 2.1, [+ C B(A), and by Theorem 2.3, I+ is
linearly ordered. Then by [7] Lemma 5.1, I+ is either {0} or {0,2} for
some x € B(A). Since [ is not essential, it follows that I+ = {0,z}.
Now let y € I. Then yx € I NI+ = {0} and hence y < z, that is,
I C {yly < z}. Obviously, since t Az = 0 € [ and x # 0, we have
z € . Thus I = {yly < z}. Now, if 0 < b < a for some b € A, then
bAz <z Az =0, that is, b € It. This means that b = x, that is,
x € B(A)N At(A) C AL(B(A)).

If X C A, let X = {z|r € X}. Then the subalgebra A; of A
generated by [is A; = TUT (see [1] and [7]). A is bipartite if and only
if A = Ay for some maximal ideal I (see [10]). The following result is
easily verified.

Lemma 2.5 If [ is prime, then B(A) C Aj.

Theorem 2.6 Suppose that I # {0}. If I N B(A) = {0}, then ¢ :
Ar — AJT+ given by o(x) = x/1+ is an imbedding.

Proof. We have [t NA; =1t N(IUI)=(I+NnIT)U(I+nI). Here
It NI ={0}. If there exists an element z in [+ N I, then x € I+ and
z€l. Hencex Az € It NI ={0}. Thus z € I'N B(A) = {0}, that is,
1 = 2 € I*. This means that I = {0}, a contradiction. Thus I+NTI = 0,
and I+ N A; = {0}. The result now follows from [7] Theorem 5.3.

Theorem 2.7 Suppose that I is linearly ordered and IN Rad A = {0}.
Then I contains a largest element, which is of course idempotent.

Proof.  We need only consider the case I # {0}, A. Suppose that
INn B(A) = {0}. Then by Theorem 2.6, » : Af — A/I* given by
@(x) = x/I+ is an imbedding. Since I* is prime, we have that A/I+
is linearly ordered, and hence so is A;. We now claim that Aj is locally
finite. If not, then there exists « # 0 in A such that ord @ = oo (recall
from [3] that ord « is the smallest positive integer n such that na = 1).
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Now, for each positive integer n we cannot have © < nz because if
& < nx then #z" = 0, that is, (n 4 1)z = 1, contradicting the fact that
ord * = oco. Since Aj is linearly ordered, we must then have nz < &
for each positive integer n. This means that @ € Rad (A) (see [5], [6]
and [10] for this characterization of Rad (A)). But x € A; = TU . If
x € [ then z € I, and since nz < & we have nz € [ for all positive
integers n. Thus z, ¥ € [ and hence 1 = x + & € I, a contradiction.
Thus = € I, that is, * € I N Rad (A) = {0}, again a contradiction.
Thus Aj is locally finite. Since I # {0}, we may take any element
x # 0 in I. Then nx = 1 for some positive integer n, and hence 1 € I,
a contradiction. This proves that I N B(A) # {0}. This means that
there exists a non-zero idempotent in I, and by [7] Lemma 5.1, this is
the largest element of [.

Corollary 2.8 Suppose that I is linearly ordered and I N Rad (A) =
{0}. Then there exists a unique e € B(A) such that [ = {z|x < e} and
It = {z|x <e}.

Proof. By Theorem 2.7, I = {x|z < e} for a unique e € B(A). Then
forall z € I we have x Ae < eAe=0, thatis, e € It. If y € I+ then
y Ae =0, that is, y < e. Thus It = {z]z < €}.

Corollary 2.9 Suppose that I is prime and Rad (A) C [ then there
exists a unique ¢ € B(A) such that I+ = {x|x < e} and [t = {z]z <

e}.

Proof. We have that It is linearly ordered and I+ N Rad (A) = {0}.
Now apply Corollary 2.8.

Theorem 2.10 Suppose that I is mazimal. Then either [ is essential
or there exists a unique e € B(A) such that e # 1 and [ = [*+ =
{z]|z < e}.

Proof. If I+ # {0}, then [*+ # A and hence I = [**. Since I is
prime an Rad (A) C I, it follows by Corollary 2.9 that there exists a
unique e € B(A) such that I = [+ = {z|z < e}. Obviously e # 1.
We observe that if @ € A¢(A), then either a* = 0 or a* = a. Hence
At(A) C Inf (A) U B(A). Obviously, since Inf (4) N B(A) = {0}, we
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have that At(A)N B(A) = 0 if and only if A{(A) C Inf (A). Similarly,
let a € At(A). If a ¢ I+, then we can find z € I such that a A z # 0.
Since a A v < a and a € At(A), we have that ¢ A v = a. Thus a < x
and hence a € I. Thus we have At(A) C I U I*+. It follows trivially
then that if I is essential, we have At(A) C I.

Theorem 2.11 Suppose that At(A)N B(A) = 0 and suppose that I #
{0} is mazimal. If I is implicative, then it is essential.

Proof. Suppose that [ is not essential. Then by Theorem 2.10, there
exists a unique e € B(A) such that [ = {z]|x < e} and e # 0, 1. Since
I is implicative and maximal, it follows that A is bipartite, that is,
A = A;. Now, I = {z|e < z}. Since ¢ # 0,1, it follows that 0 < e.
Because € € B(A), we have € ¢ At(A). This means that there exists
z € A such that 0 < 2 < ¢é. But then x ¢ I, which means that = € I.
Hence x < e, and it follows that + = 0, a contradiction. Thus [ is
essential.

If we remove the hypothesis that [ is maximal, we can obtain a
weaker result as follows.

Definition 2.12 [ # {0} is weakly essential if for all ideals J such
that
JN{A = B(A)} # 0, we have I N J # {0} (see [9]).

Observe that if J is a proper ideal, then J N {A — B1(A)} is idem-
potent free. Thus J N {A — Bi(A)} # ) means that J N {A — Bi(A)}
contains a non-zero non-idempotent. It is shown in [9] Theorem 3.15
that if J is a proper ideal, then

JN{A - B(A)} # 0 if and only if JN Inf (A) #£ {0}.

Theorem 2.13 Suppose that I # {0}. If I is implicative, then it is
weakly essential.

Proof. By Lemma 2.1, I+ C B(A). Suppose that J is an ideal
satisfying JN{A — B (A)} #0. It INJ = {0}, then J C [+ C B(A).
Let # € JN{A — Bi(A)}. Then « = 1, which means that J = A,
contradicting I N J = {0}. Hence I N .J # {0}, that is, [ is weakly

essential.
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Definition 2.14 Suppose that I and J are ideals of A. We say that
A=1adJif InJ = {0}, and for ecach x € A, we can find unique
elements a € I, b € J such that x = a + b.

Lemma 2.15 Suppose that I and J are ideals of A and I NJ = {0}.
Ifa+b=c+d where a,c € I and b,d € J, then a = ¢ and b = d.

Proof. We have a*(c+d) = a*(a+0b) =0. Thus (a*¢)*d = 0. Hence
a * ¢ < d. This means that a x ¢ € J. But since @ € [ and a*c¢ < a, we
have that a* ¢ € . Hence axc € I NJ = {0}, that is, a < ¢. Similarly
¢ < a and hence a = ¢. In a similar way, we can show that b = d.

Let e € B(A) and let J = {z|z < e}. Then J* = {z]z < e} and
J, J* are ideals of A. We have the following result (see [10]).

Theorem 2.16 A=.J ¢ J*.

Proof.  Clearly J N J+ = {0}. Let + € A. Then * = xe + zé and
re € J, ve c Jt.

Remark. While we can always express A as a direct sum in this way
for any idempotent e, it is the goal of this section to show that we can
express A as a direct sum of a linearly ordered ideal and a prime ideal,
and as a direct sum of other types of ideals with stronger properties.

Theorem 2.17 Suppose that I is linearly ordered and I N Rad (A) =
{0}. Then A = I & I+, and there exists a unique e € B(A) such that
I={z|x <e} and I+ = {x]|x < €}.

Proof. By Corollary 2.8, we have a unique e € B(A) with [ = {z|z <
e} and I+ = {z]|z < €}. By Theorem 2.16, we have A = I & I+.

Corollary 2.18 Suppose that I is mazimal. Then A = I+ & I+ and
there exists a unique e € B(A) with [+ = {x|x < e} and [*+ = {z]z <
e}.

Proof. Clearly I+ N Rad (A) = {0}. Now apply Theorem 2.17 to I+.

Remark. Let e € B(A). Then I = {z]x < e} is an MV-algebra
with the same zero as A, with e as its largest element, and with the
complement ¥ = ez. The multiplication and addition in [ are as in A

(see [2] or [7] page H76).



188 C.S. Hoo

Theorem 2.19 Suppose that I is linearly ordered and I N Rad (A) =
{0}. If J is an ideal of the MV -algebra I+ = {x|x < €} where e €
B(A), then it is an ideal of A. Also Rad (I+) = ¢ Rad (A), and
B(I+) = eB(A).

Proof. Clearly 0 € J. Suppose that vy, y € J where x,y € A. Then
since by Theorem 2.17, [ = {z]x < e} and [+ = {z]x < €} for a unique
e € B(A), we have y < €. Thus ye = 0. We can write @ = ze + xe.
Then z*y = (ve + xe)y = vey + xey since (xve) A(ze) Ay <eAe=0.
Since z *y € J C It we have x *xy < e, that is, xye = 0. This
means that ze < y. Hence ze € I NI+ = {0}. Thus = ze € [+.
We now have that z,y € I+ and = xy, y € J, where J is an ideal
of I*+. This means that z € J, proving that J is an ideal of A. Now
let « € Rad (A). Then na < & for all integers n > 0. But n(ex) =
(ex)+ ...+ (ex) = e(x + ...+ &) = e(na). This means that n(ex) =
é(nx) < éx = éet+éx = é(e+) =€ ex = ex for all integers n > 0. This
means that ez € Rad (I*+). Thus e Rad (A) C Rad (I+). Conversely,
if z € Rad (I*), then z € I+ and na < 7 = ez for all integers n > 0.
But = ze since # € I+, This means that nz < ez < z, that is,
z € Rad (A), and 2 = éx € € Rad (A). Thus Rad (I*) C € Rad (A)
and hence Rad (I+) = e Rad (A). Finally, let f € B(I'). Then
f € B(A). But since f € I+ we have f < €, that is, fe = 0. Also
[ =fle+e) = fet+fe= fe. Thus f € eB(A), that is, B(I*+) C eB(A).
Conversely, if f € B(A), then ef € I+ and ef € B(I*). This means
that eB(A) C B(I+), proving that B(I+) = eB(A).

Theorem 2.20 Let J be an ideal of I*. Then J N Rad (1) = {0} if
and only if J N Rad (A) = {0}.

Proof.  Suppose that J N Rad (I*) = {0}. Let x € J N Rad (A).
Then # € J C I+ and # € Rad (A). This means that + = ex €
e Rad (A) = Rad (I*). Thus « € J N Rad (I*t) = {0}. On the
other hand, suppose that J N Rad (A) = {0} and 2 € J N Rad (I*).
Then « € J and € Rad (I*) = e Rad (A). Hence = ey for some
y € Rad (A). This means that © < y and hence * € Rad (A). Then
z € JN Rad (A) = {0}.
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Lemma 2.21 Let J be an ideal of I+. Then J- NI+ = {z € [*|z A
y =0 for all y € J} = the orthogonal complement of J in I+, where
Jt={rcAlaAy=0 foralyc J}.

Proof. Clearly {x € It|xAy =0forally € J} C JtNI+. Conversely,
let z € JtN It Then z € It and 2 Ay = 0 for all y € J. Thus
ve{zeltzAy=0forall y e J}.

We can now iterate the construction described in Theorem 2.17.
Suppose that [ is a linearly ordered ideal of A such that 7,1 Rad (A) =
{0}. Then there exists a unique e; € B(A) such that [; = {z € Az <
er}, I = {z € Al < &} and A = [, & I*. Now suppose that I,
is a linearly ordered ideal of I+ such that I, N Rad (I}) = {0}, and
hence I is a linearly ordered ideal of A such that I, N Rad (A) = {0}.
Then there exists a unique e, € B(I{") = e, B(A) and hence a unique
e, € B(A) such that ey = eey, I, ={z € [f|lv < ey}, I} ={ax €
It e <&} and [t = L I+ Here Iy NI = {x € I}z <& = é16,}.
Then I = La(IINn}). Thas A=La - =L& Le ([N
Here e; < €1, that is, e;e; = 0. Hence ¢; 4+ ¢, = 1. We can continue
this process as long as we can find non-zero linearly ordered ideals
which have zero intersection with Rad (A). Eventually, we obtain A =
LHaolhbd...0 1, dJ where I1,...1,, n < oo, are linearly ordered
ideals of A with [; N Rad (A) = {0}, and J contains no non-zero
linearly ordered ideals with zero intersection with Rad (A). In case A
is semisimple, that is, Rad (A) = {0}, we end when we reach .J with
no non-zero linearly ordered ideals. We observe that it was shown in
[7] that atoms generate linearly ordered ideals. Hence, as long as there
are atoms, we will obtain non-zero linearly orded ideals.

3 Atoms, The Radical and The Socle

We first establish a distributive law for A over 4+ under certain condi-
tions that we shall need in later computations.

Theorem 3.1 Foralla,b,c € A, we have aA(b+c) < (aAb)+(aNe).

b =bAc < ec and clearly
= 0. Then a A (b+ ¢) =

o)

Proof.  We have [a A (b+ c)]?) < (b+
[a A (b+ ¢)] < a, so that [a A (b + ¢)]

Y}
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[aA(b+c)]V(aAb)={lan(b+c)(aVb)}+(anb) ={([an(b+
c d)V([a{\(b+c)]b}+(aAb) < (aAe¢)+(aAb)because we also have
anN(b+c)b<an(b+ec)<La.

Corollary 3.2 Suppose that a,zq,...,x, are elements of A satisfying
aNz; ANy =0 foralll < i, j <n. Then a A (z1+ ... +2,) =
(aNar)+ (aNzy)+ ...+ (aAxy).

Proof. An easy induction proves that a A (zy+...+x,) < (a Axy)+

.+ (aANaxy). Since a A1+ ...+ x,) > (aAa) V... V(aAa,)
and (a Ax1) A ... A(aAx,) = 0, we have a A (21 + ... + ) >
(aNay)+ ... 4+ (aAay).

We now improve Theorem 5.26 of [7] by removing the condition
that the algebra be linearly ordered. We shall prove the result in
general for commutative BC K-algebras. We thank M. Palasinski for
useful comments on Lemma 3.3 and Theorem 3.4.

Lemma 3.3 Let A be a commutative BC K -algebra and let I # {0}
be an ideal in A. If x,y,z € I satisfy z <z <y then yxx < y*z.

Proof. We have y*x < y*z. [f yxa = y*z, then y*(y*xx) = y*(y*z),
that is, y A * = y A z. This means that * = z, a contradiction. Thus
yrx <Yk z.

Theorem 3.4 If I is an ideal of A such that I N At(A) = 0, and if
x <y €I, then we can find z € I such that v < z < y, that is, I is
densely ordered.

Proof. 1f @ = 0, then 0 < y € [ and hence y ¢ At(A). This means
that we can find z (which will necessarily be in I) such that 0 < z < y.
Hence we may assume that 0 < « < y. Then yxa < y. Let u = aA(y*x).
Then v <yxax <y.lf u=0,then 0 < y*xz <y since z < y. Hence
y*xx € I and hence y*x ¢ At(A). Thus we can find an element ¢ such
that 0 < ¢t < y*x < y. This means that y*t < y, and since t < y*xz < y
we have v = y Az = y*(y*x) < y*t < y. Here obviously y*t € I. On
the other hand, if u > 0, then since u € I we have u ¢ At(A). Hence
we can find an element ¢ such that 0 < ¢ < v < y. This means that
r=yAr=yx*x(y*xa)<ys{zA(yxa)} =y+ru<yx*xt<y. Again
obviously y xt € I.
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Theorem 3.5 Suppose that At(A) N B(A) = 0 and let I # {0} be
an implicative ideal of A. Then either I is essential or It is densely

ordered ideal of B(A).

Proof. We have I+ C B(A). If I is not essential, then I+ # {0}. We
have I+ N At(A) C B(A)N At(A) = 0. Hence by Theorem 3.4, [+ is a
densely ordered ideal of B(A).

Definition 3.6 Let Max be the set of all maximal ideals of A, IMax
the set of all ideals of A that are both maximal and implicative, Imp

the set of all implicative ideals of A, & the set of all essential ideals of
A, and WE the set of all weakly essential ideals of A. Let W Soc (A) =
NWE be the weak socle of A.

In general, &€ C WE (see [9] and [12]). Hence W Soc (A) C
Soc (A). We have IMax C Max and hence Rad (A) C N IMax.
If N(A) is an ideal, then by [10] Theorem 3.1, we have Max C IMax,
that is, Max = IMax. Hence Rad (A) = N IMax. In this case, we have
Rad (A) = Inf (A) = N(A) = I Rad (A) ([10], Theorem 3.1).

Theorem 3.7 If At(A)N B(A) =0 and N(A) # {0}, then Soc (A) C
N IMax. If further N(A) is an ideal of A, then Soc (A) C Rad (A) =
Inf (A) = N(A) = I Rad (A).

Proof. By Theorem 2.11, IMax C £. Hence Soc (A) C N IMax. The

rest of the result follows from the above comments.
Theorem 3.8 If N(A) # {0}, then W Soc (A) C T Rad (A).
Proof. By Theorem 2.13, Imp C WE.

We now impose a stronger condition on A.

Theorem 3.9 Suppose that for each a € At(A) we have (a) N B(A) =
{0}. Then At(A) C Rad (A).

Proof. Let a € At(A) and let n > 1 be an integer. Now, (na)a < a. If
(na)a = a, then a = axa"™. Here aAa" = 0, that is, @" = @"*a = a" 1.
Then na = (n+ 1)a, that is, na € B(A). Thus na € (a) N B(A) = {0}.
This means that a = 0, a contradiction. Hence we must have (na)a =
0, that is, na < a. This means that ¢« € Rad A.
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Lemma 3.10 Suppose that A # {0,1} and that At(A)N B(A) = 0. If
I is weakly essential then At(A) C I and I+ is densely ordered.

Proof. Let a € At(A). Then a € A — By(A) and hence (a) N {A —
Bi(A)} # 0. This means that I N {(a) # {0}. Thus na € I for some
integer n > 1, and hence ¢ € I. We now have [*NAt(A) C I+NI = {0}.
Then by Theorem 3.4, I+ is densely ordered.

We now obtain a stronger result than Lemma 2.1.

Theorem 3.11 If I is weakly essential, then I+ C B(A). Further, if
At(A) N B(A) = 0, then I+ is densely ordered.

Proof. Let « € I*+. If « ¢ B(A), then « € A — B;(A). Hence
() N {A — B1(A)} # 0. Since I is weakly essential, it follows that
In{z) # {0}. But INn{x) C I NI+ = {0}, a contradiction. Hence
z € B(A) thatis, [+ C B(A). If AH{A)NB(A) = 0, then ITNAt(A) = 0
and hence I+ is densely ordered by Theorem 3.4.

Corollary 3.12 Suppose that A # {0,1} and that B(A) = {0,1}.

Then I is weakly essential if and only if it is essential.

Proof.  In one direction, it is obvious. Suppose that [ is weakly
essential. Since B(A) = {0,1}, we have At(A) N B(A) = . The result
then follows by Theorem 3.11.

Remark. If 7 # {0} is implicative, then by Theorem 2.13, it is weakly
essential. Then by Theorem 3.11, I+ C B(A). Thus Theorems 2.13
and 3.11 imply Lemma 2.1.

Lemma 3.13 [f [+ C B(A), then I** is implicative. Thus, if I is

]J_J_

weakly essential, then is implicative.

Proof. TLet x € Inf (A) and let e € I*+. Then 2 Ae < 2 < 7 since
22 =0. Thus x Ae <z Veand hence 0 = (z Ae)* (zVe)=(zAe).
This means that @ A e = Inf (A). But x Ae € I+ C B(A) and
Inf (A) N B(A) = {0}. Hence z A e = 0, and hence x € [*++. Thus
Inf (A) C I+, proving that [+ is implicative. The rest of the result
follows from Theorem 3.11.
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Theorem 3.14 Suppose that At(A) N B(A) = 0. If I is weakly essen-

tial and prime, then I is essential.

Proof. We have I+ C B(A). Suppose that I+ # {0}. Let e, f be non-
zero elements of I+, Since e Ae = 0, then eithere € Torec I. Ife € I,
then e € I'N I+ = {0}, a contradiction. Thus e € I. Similarly, f € I.
Now f = fAl= fA(eVe) = (fAe)V(fAe). But fAaee ItNT = {0}.
Thus f = f Ae, that is, f < e. Similarly, e < f and hence e = f. Thus
I+ = {0,e} for some 0 # e € B(A). This means that e ¢ At(A) and
hence I+ N At(A) = (. By Theorem 3.4, it follows that It is densely
ordered. This is obviously impossible. Hence I+ = {0}.

Lemma 3.15 If [ is mazimal, then [- C B(A)U N(A).

Proof. Letz € I*. If x ¢ B(A), then Az # 0. Hence 7 ¢ I. It follows
then that 2™ € I for some integer n > 1. Thus 2™ € IN T+ = {0}, that
is, © € N(A).

Remark. It follows that if N(A) = {0} and [ is maximal, then if
I is not essential, we have that [ is implicative. This follows from

Lemmas 3.13 and 3.15.

Theorem 3.16 Suppose that I # {0} is maximal. Then for each
0 # a € I+, there exists an integer n > 1 such thalt nx € B(A), and
nx € Al(B(A)) if I+ # {0}. Further, if P is any prime ideal of A and
M is a mazimal ideal of A such that P C M, then It NP =1+t N M.

Proof. Let x € I+. Suppose that z # 0. Then x # 0,1 since I # {0}.
Now, 2 ¢ I and hence 2" € [ for some integer n > 1. Hence z" Az = 0,
that is, " = z"*'. This means that " = 2*", that is, 2" € B(A).
Hence na € B(A). Now suppose that e € B(A) and 0 < e < na.
Then 7" < e. But € € B(A) and {y € Aly < €} is an ideal of A
properly containing {y € Aly < z"}. Since [ is prime, we have that
It is linearly ordered. If I+ # {0}, then since nx € B(A) N I+, we
have I+ = {y € Aly < nz} and hence I = {y € Aly < z"}. Since
I is maximal, it follows that e = 1 and hence e = 0, proving that
nr € At(B(A)). Now suppose that P is a prime ideal of A and M
is a maximal ideal of A such that P C M. Then I* NP C It N M.
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Let z € I*tNM. If v = 0, then x € I* N P. If v # 0, then by
the earlier result we have nx € B(A) for some integer n > 1. Hence
0= (nz)Az" € P.If 2" € P then 2" € M, and nz € M gives a
contradiction 1 = nax + " € M. Hence nx € P, which means that
relItnP.

Lemma 3.17 If {I,},cs is a family of ideals A, then N{I|a € J} =
(U{I,]a € JH)*.

Proof. Let x € N{IX|a € J}. Then x € I+ for each o € J. Let
y € (U{l,|Ja € J}). Then y < y1 4+ ... + y, where each y; € I,,.
If n =1, then y € I,, and hence x Ay = 0. If n > 2, we have
tAy; ANy; =0forall 1 <2, j < n. Then by Corollary 3.2, we have
s Ay <aAypr+...4+y.)=(@Ay)+...+(xAy,) = 0. Thus we
have z € (U{I,|a € J})*. Conversely, since I, C U{l,|a € J} for
all o € J, we have [, C (U{l.|a € J}) for each o € J, and hence
(U{I, | € J})* Cc n{l}]|a € J}.

Theorem 3.18 Suppose that I is mazimal and At(A) — I # (. Then
I =1 = {ala € AH(A) — 1)+ = (a)* for any a € At(A) —I.

Proof. Let a € At(A)—1I. Since At(A) C TUI*, it follows that a € I+.
Hence (a) C I*+. This means that [ C I*+ C (a)*. Therefore [ =
I+ = (a)* since {a)* # A and [ is maximal. Then by Lemma 3.17,
we have [ = [+ = N{{a)*|a € At(A) — I} = (At(A) — I)*.

Corollary 3.19 Suppose that At(A) # 0 and I is mazimal and At(A)N
I =10. Then I is densely ordered and I = [+ = (At(A))* = (a)* for
any a € At(A), and hence A = I+ & [+ where I+ is atomic and I++
is atom free.

Proof. The fact that [ is densely ordered follows from Theorem 3.4.
Let a € Al(A). Then a € I+ and the proof proceeds as in that of
Theorem 3.18 to show that I = [*+ = (At(A))* = (a)* for any a €
At(A). Hence by Corollary 2.18, A = I+ & [+, Here I+ = (At(A))*+
is atom free. Also [+ = (a)** for any a € At(A). Clearly, since {a) is
linearly ordered (see [7] Corollary 4.6), it follows that {a)= is prime (see
[7], Theorem 4.14), and hence {a)** is linearly ordered by Theorem 2.3.
Thus if 2 € I+ = {a)*+, then either a < z or x = 0.
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Theorem 3.20 Suppose that At(B(A)) N By(A) = 0 and I # {0} is

mazimal. Then I is essential.

Proof.  Suppose that I+ # {0}. Then by Theorem 2.10, we have
I =1 = {2 € Alz < e} for some e € B(A). Here ¢ # (. We have
I={re€ Ale<z}and A; = TUI. Clearly ¢ # 1, and ¢ € B(A).
We have € € At(B(A5)). In fact, if # € B(A;) and 0 < « < €, then
since ¥ € Ay, we have < e and hence « = 0. Now, B(A) C A; by
Lemma 2.5. Hence B(A) = B(A;) C A; and At(B(A)) = At(B(A))).
Thus € € At(B(A)) N By(A) = 0, a contradiction. Thus I is essential.

Corollary 3.21 Suppose that At(B(A))N Bi(A) =0 and {0} is not a
mazimal ideal of A. Then At(A) C Soc (A) C Rad (A) C Inf (A) C
N(A) C I Rad (A). Hence if A is semisimple as well, we have At(A) =
0 and Soc (A) = {0}.
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