Enriched MV-Algebras

Ulrich Hőhle Fachbereich 7 Mathematik, Bergische Universität Gau β stra β e 20, D-42097 Wuppertal, Germany

Abstract

This paper introduces the structure of enriched MV-algebras and studies on this basis various relations between σ -complete MV-algebras and T-tribes.

1 Introduction

In recent years much research work has been devoted to MV-algebras and T--tribes ([2], [3], [4], [10], [11], [5], [9]). The purpose of this paper is to continue these studies and to explore various relations between sigma-complete MV-algebras and T-tribes. In order to fix a common framework we introduce the structure of an enriched MValgebra – this is an MV-algebra provided with an additional, monoidal structure which in a certain sense is compa tible with the underlying MV-algebra. It is not difficult to see that any MV-algebra can be viewed as an enriched MV-algebra in at least two different ways (cf. Proposition 3.1). Moreover, t-norms (cf. [13]) satisfying M.J. Frank's functional equation (cf. [6]) give rise to enriched MV-algebras. In this context we present a purely algebraic proof of Butnariu's and Klement's theorem ([5]) that every T_s -tribe is a σ -complete MV-algebra $(0 < s \le \infty)$. Further we gi ve a sufficient condition under which the MacNeille completion of an enriched, σ -complete MV-algebra has square roots ([7]). As an immediate consequence we obtain that the

MacNeille completion of any Prod-tribe is a complete MV-algebra having square roots (cf. section 6 in [7]).

We start with a preliminary section which recalls some fundamental properties of MV-algebras from the view point of residuated lattices.

2 Preliminary remarks

An integral, commutative, residuated ℓ -monoid is a triple $(L, \leq, *)$ satisfying the following axioms (cf. [1], [7])

- (L, \leq) is a lattice with universal bounds.
- (L,*) is a commutative monoid.
- The universal upper bound 1 is the unity of (L, *).
- There exists a binary operation \rightarrow : $L \times L \longmapsto L$ which is right adjoint to * i.e. the equivalence

$$\alpha * \beta \le \gamma \iff \alpha \le \beta \to \gamma$$
 (AD)

holds for all $\alpha, \beta, \gamma \in L$.

Because of the antisymmetry of \leq , the binary operation \rightarrow is uniquely determined by (AD). In any integral, commutative, residuated ℓ -monoid the relations

$$(\alpha \to (\beta \to \gamma) = (\alpha * \beta) \to \gamma = \beta \to (\alpha \to \gamma)$$
$$\alpha \to \beta = 1 \iff \alpha \le \beta$$

hold true.

An MV-algebra is an integral, commutative, residuated ℓ -monoid provided with the additional, important axiom:

(MV)
$$((\alpha \to \beta) \to \beta) = \alpha \lor \beta$$
 for all $\alpha, \beta \in L$.

The following list comprehends the most basic properties of MV-algebras:

• $(\alpha \to 0) \to 0 = \alpha$ where 0 is the universal lower bound in L.

- $(\alpha \to 0) \lor \beta = \alpha \to (\alpha * \beta).$
- $\alpha * (\alpha \to \beta) = \alpha \land \beta$. (Divisibility)
- $(\alpha * (\beta \to 0)) \to 0 = \alpha \to \beta$.
- $(\alpha \to \beta) \lor (\beta \to \alpha) = 1$. (Algebraic strong de Morgan law)

An MV-algebra $(L, \leq, *)$ is σ -complete (resp. complete) iff the underlying lattice (L, \leq) is σ -complete (resp. complete). In any σ -complete MV-algebra the subsequent relations are valid (cf. [3], [4]):

$$(\bigvee_{n \in \mathbb{N}} \alpha_n) \to 0 = \bigwedge_{n \in \mathbb{N}} (\alpha \to 0)$$

$$(\bigwedge_{n \in \mathbb{N}} \alpha_n) \to 0 = \bigvee_{n \in \mathbb{N}} (\alpha \to 0)$$

$$\alpha * (\bigvee_{n \in \mathbb{N}} \beta_n) = \bigvee_{n \in \mathbb{N}} (\alpha * \beta_n)$$

$$\alpha * (\bigwedge_{n \in \mathbb{N}} \beta_n) = \bigwedge_{n \in \mathbb{N}} (\alpha * \beta_n)$$

Further we denote by α^n the n-th power of α w.r.t. *. Then in any σ -complete MV-algebra,

$$e_{\alpha} = \bigwedge_{n \in \mathbb{N}} \alpha^n$$

exists and is idempotent w.r.t. *.

3 Enriched MV-algebras

A quadruple $(L, \leq, *, \otimes)$ is called an *enriched MV-algebra* if and only if the following conditions are satisfied:

- (EMV1) $(L, \leq, *)$ is an MV-algebra.
- (EMV2) (L, \leq, \otimes) is a commutative, partially ordered monoid (cf. [1]).
- (EMV3) 1 (= upper universal bound) is the unity w.r.t. \otimes .

(EMV4)
$$\alpha * \beta = (\alpha \otimes \beta) * (((\alpha \to 0) \otimes (\beta \to 0)) \to 0).$$

Because of the algebraic strong de Morgan law, every MV-algebra can be viewed twofold as an enriched MV-algebra in the following sense:

Proposition 3.1 Let $(L, \leq, *)$ be an MV-algebra. Then $(L, \leq, *, \wedge)$ and $(L, \leq, *, *)$ are enriched MV-algebras.

Proof. From
$$(\alpha \to (\beta \to 0)) \lor ((\beta \to 0) \to \alpha) = 1$$
, we infer

$$((\alpha * \beta) \rightarrow 0) \lor (((\alpha \rightarrow 0) * (\beta \rightarrow 0)) \rightarrow 0) = 1;$$

hence the equation $\alpha * \beta = (\alpha * \beta) * (((\alpha \to 0) * (\beta \to 0)) \to 0)$ follows; i.e. $(L, \leq, *, *)$ is an enriched MV-algebra. Applying again the algebraic, strong de Morga n law (resp. the divisibility) we observe that (L, \leq) is a distributive lattice and the inequality $\alpha * \beta \leq (\alpha * \alpha) \vee (\beta * \beta)$ holds. Hence we obtain

$$\alpha * \beta = ((\alpha * \beta) \land (\alpha * \alpha)) \lor ((\alpha * \beta) \land (\beta * \beta))$$
$$= (\alpha * (\alpha \land \beta)) \lor (\beta * (\beta \land \alpha)) = (\alpha \land \beta) * (\alpha \lor \beta);$$

i.e. $(L, \leq, *, \wedge)$ is an enriched MV-algebra.

Proposition 3.2 Let $(L, \leq, *, \otimes)$ be an enriched MV-algebra, and e be an idempotent element of L w.r.t. *. Then the relation

$$e * \alpha = e \otimes \alpha = e \wedge \alpha$$

holds for all $\alpha \in L$.

Proof. Since the universal upper bound 1 is the unity in $(L, \leq, *)$ as well as in (L, \leq, \otimes) , we derive from (EMV4):

$$\alpha * \beta < \alpha \otimes \beta < \alpha \wedge \beta.$$

On the other hand, if e is idempotent w.r.t. *, we conclude from the divisibility of $(L, \leq, *)$

$$e \wedge \alpha = e * (e \rightarrow \alpha) = e * e * (e \rightarrow \alpha) < e * \alpha$$
:

hence the assertion follows.

171

Let us consider the real unit interval [0,1] provided with Łukasiewicz' arithmetic conjunction T_m – i.e.

$$T_m(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$$

Then it is well known that $([0,1], \leq, T_m)$ is a complete MV-algebra. Moreover let T be an arbitrary t-norm on [0,1] – i.e. T is a binary operation on [0,1] satisfying the following conditions:

- $([0,1], \leq, T)$ is a commutative, partially ordered monoid (cf. [1]).
- 1 (resp. 0) is the unity (resp. zero element) w.r.t. T.

Proposition 3.3 (M.J. Frank's functional equation) Let T be a t-norm. Then the following assertions are equivalent:

- (i) $([0,1], \leq, T_m, T)$ is an enriched MV-algebra.
- (ii) $\alpha + \beta = T(\alpha, \beta) + 1 T(1 \alpha, 1 \beta)$ for all $\alpha, \beta \in [0, 1]$.

Proof. The implication (ii) \Longrightarrow (i) is obvious. Therefore let us assume that (i) holds. In order to verify (ii) we distinguish the following cases:

Case 1 Let $1 < \alpha + \beta$; then we infer from (EMV4) and the definition of T_m :

$$0 < \alpha + \beta - 1 = \max(T(\alpha, \beta) + 1 - T(1 - \alpha, 1 - \beta) - 1, 0).$$

Case 2 Let $\alpha + \beta < 1$; by analogy to Case 1 we obtain

$$0 < 1 - \alpha - \beta = T(1 - \alpha, 1 - \beta) + 1 - T(\alpha, \beta) - 1.$$

Case 3 Let $\alpha = 1 - \beta$; then (ii) holds by definition. Summing up the assertion (ii) follows from the previous cases 1-3.

Proposition 3.4 Let $(L, \leq, *)$ be an MV-algebra and (L, \leq, \otimes) be a commutative, partially ordered monoid. Further the universal upper bound is the unity w.r.t. \otimes . If \otimes satisfies the following condition:

172 U. Hőhle

(D)
$$\beta = ((\alpha \otimes \beta) \to 0) \to ((\alpha \to 0) \otimes \beta)$$
 for all $\alpha, \beta \in L$,
then the quadruple $(L, \leq, *, \otimes)$ is an enriched MV-algebra.

Proof. Combining (D) with (MV) and the divisibility of MV-algebras, we obtain:

$$(\beta \to 0) \to ((\beta \to 0) \otimes \alpha) =$$

$$[(((\alpha \to 0) \otimes (\beta \to 0)) \to 0) \to ((\beta \to 0) \otimes \alpha)] \to ((\beta \to 0) \otimes \alpha) =$$

$$[((\alpha \to 0) \otimes (\beta \to 0)) \to 0] \lor [(\beta \to 0) \otimes \alpha],$$

$$\alpha * [((\beta \to 0) \otimes \alpha) \to 0] =$$

$$[((\beta \to 0) \otimes \alpha) \to 0] * [((\beta \to 0) \otimes \alpha) \to 0) \to (\alpha \otimes \beta)] =$$

$$[((\beta \to 0) \otimes \alpha) \to 0] \land (\alpha \otimes \beta).$$

Since the universal upper bound is the unity of \otimes , the relations

$$((\alpha \to 0) \otimes (\beta \to 0)) * ((\beta \to 0) \otimes \alpha) = 0$$
$$((\beta \to 0) \otimes \alpha) * (\alpha \otimes \beta) = 0$$

follow immediately. Hence we have established that

$$(\beta \to 0) \to ((\beta \to 0) \otimes \alpha) = ((\alpha \to 0) \otimes (\beta \to 0)) \to 0$$

$$\alpha * (((\beta \to 0) \otimes \alpha) \to 0) = \alpha \otimes \beta$$

Taking into account $\beta \leq ((\beta \to 0) \otimes \alpha) \to 0$ we deduce from the divisibility of MV-algebras:

$$\alpha * \beta =$$

$$\alpha * (((\beta \to 0) \otimes \alpha) \to 0) * [(((\beta \to 0) \otimes \alpha) \to 0) \to ((\beta \to 0) \to 0)] =$$

$$(\alpha \otimes \beta) * (((\alpha \to 0) \otimes (\beta \to 0)) \to 0);$$

hence (EMV4) is verified.

Examples 3.5 (a) Let \mathbb{B} be a *Boolean algebra*. Then we can view \mathbb{B} as an MV-algebra $(\mathbb{B}, \leq *)$ in which every element $\alpha \in \mathbb{B}$ is idempotent

w.r.t. * – i.e. * = \wedge . Because of $(\alpha \to 0) \vee \beta = \alpha \to \beta$, the quadruple $(\mathbb{B}, \leq, \wedge, \wedge)$ is an enriched MV-algebra satisfying Axiom (D).

(b) Let T_m be Łukasiewicz' arithmetic conjunction on [0,1] and Prod be the usual multiplication. Since Prod is distributive over the usual addition, the quadruple $([0,1], \leq, T_m, Prod)$ is an enriched MV-algebra satisfying Axiom (D).

A t-norm T is called strict Archimedean if and only if T is continuous on the square $[0,1] \times [0,1]$ and fulfills the additional property

$$0 < T(\alpha, \alpha) < \alpha \quad \text{for all } \alpha \in]0,1[$$

Proposition 3.6 For any strict Archimedean t-norm T there exists a binary operation * on [0,1] such that $([0,1], \leq, *, T)$ is an enriched MV-algebra satisfying axiom (D).

Proof. Since T is strict and Archimedean, we can apply the theorem of Mostert and Shields (cf. [12]) (resp. of Ling [8]) and obtain that $([0,1], \leq, T)$ is order isomorphic to $([0,1], \leq, \cdot)$, where \cdot denotes the usual multiplication on [0,1]. In this context the order isomorphism $h: [0,1] \longmapsto [0,1]$ is called the *multiplicative generator* of T-i.e.

$$T(\alpha, \beta) = h^{-1}(h(\alpha) \cdot h(\beta))$$

Now we introduce a further binary operation * on [0,1] as follows

$$\alpha * \beta = h^{-1}(T_m(h(\alpha), g(\beta))) \qquad \alpha, \beta \in [0, 1],$$

where T_m denotes Łukasiewicz' arithmetic conjunction defined supra. Then $([0,1], \leq, *)$ is a complete MV-algebra, and the right adjoint operation \rightarrow is given by

$$\alpha \rightarrow \beta = h^{-1}(\min(1 - h(\alpha) + h(\beta), 1)).$$

Moreover the quadruple ([0,1], \leq , T_m , Prod) is an enriched MV-algebra provided with Property (D) (cf. 3.5(b)). Since ([0,1], \leq , *, T) is order isomorphic to ([0,1], \leq , T_m , Prod), the assertion follows.

174 U. Hőhle

Proposition 3.7 Let $(L, \leq, *, \otimes)$ be an enriched MV-algebra satisfying (D). Then for every element $\alpha \in L$ with $\alpha \otimes (\alpha \wedge (\alpha \to 0)) \neq 0$, there exists an element $\beta \in L$ provided with the following properties:

- (i) $\beta \leq \alpha$, $\beta \neq 0$.
- (ii) $((\beta \to 0) * (\beta \to 0)) \to 0 \le \alpha$.

Proof. Let us assume $0 \neq \alpha \otimes (\alpha \wedge (\alpha \to 0))$. We define

$$\gamma = \alpha \otimes (\alpha \to 0), \qquad \beta = \gamma \wedge (\alpha * (\gamma \to 0))$$

and derive from (D) and the divisibility of MV-algebras the following relation

$$\alpha * (\gamma \to 0) =$$

$$[(\alpha \otimes (\alpha \to 0)) \to 0] * [((\alpha \otimes (\alpha \to 0)) \to 0) \to (\alpha \otimes \alpha)] = \alpha \otimes \alpha.$$

Thus the inequality

$$\alpha \otimes (\alpha \wedge (\alpha \to 0)) \leq \beta (= (\alpha \otimes (\alpha \to 0)) \wedge (\alpha \otimes \alpha))$$

follows; in particular $\beta \neq 0$. Now we are in the position to proceed in the same way as we do in the proof of Lemma 6.5 in [7], and we obtain that β fulfills the desired properties.

4 Enriched, σ -complete MV-algebras

A quadruple $(L, \leq, *, \otimes)$ is called an *enriched*, σ -complete (resp. complete) MV-algebra if and only if $(L, \leq, *, \otimes)$ is an enriched MV-algebra satisfying the additional conditions:

- (EMV5) (L, \leq) is a σ -complete (resp. complete) lattice.
- (EMV6) For every $\alpha \in L$, the element $d_{\alpha} \stackrel{\text{def}}{=} \bigwedge_{n \in \mathbb{N}} \underbrace{\alpha \otimes \ldots \otimes \alpha}_{n \text{ times}}$ is idempotent w.r.t. *.

Referring to the last statement of Section 2 we make the trivial observation that any σ -complete (resp. complete) MV-algebra $(L, \leq, *)$ can be viewed as an enriched σ -complete (resp. complete) MV-algebra $(L, \leq, *, *)$.

Theorem 4.1 Let $(L, \leq, *, \otimes)$ be an enriched, σ -complete MV-algebra and \mathcal{T} be a subset of L. If \mathcal{T} satisfies the following conditions:

- (i) $\alpha, \beta \in \mathcal{T} \implies \alpha \otimes \beta \in \mathcal{T}, \ \alpha \to 0 \in \mathcal{T}.$
- (ii) $(\alpha_n)_{n\in\mathbb{N}}\in\mathcal{T}^{\mathbb{N}}$ with $\alpha_{n+1}\leq\alpha_n\implies\bigwedge_{n\in\mathbb{N}}\alpha_n\in\mathcal{T}$.

Then \mathcal{T} is closed w.r.t. *. In particular \mathcal{T} is an enriched, σ complete MV-subalgebra of $(L, \leq, *, \otimes)$.

Proof. We choose $\alpha, \beta \in \mathcal{T}$, put $\varkappa = \alpha * \beta$ and define two sequences $(\alpha_n)_{n \in \mathbb{N}}$ and $(\beta_n)_{n \in \mathbb{N}}$ as follows:

$$\begin{array}{rcl} \alpha_1 & = & \alpha \;,\; \beta_1 = \beta \;,\; \alpha_{n+1} = \alpha_n \otimes \beta_n \;, \\ \beta_{n+1} & = & \left(\left(\alpha_n \to 0 \right) \otimes \left(\beta_n \to 0 \right) \right) \to 0 \;. \end{array}$$

Obviously $(\alpha_n)_{n\in\mathbb{N}}$ is nonincreasing and $(\beta_n)_{n\in\mathbb{N}}$ is nondecreasing. By induction, we infer from (EMV4):

$$\mathbf{x} = \alpha_n * \beta_n \quad \forall n \in \mathbb{N};$$

hence the relation

$$\mathbf{x} \leq \alpha_{n+1}$$
 , $\beta_n \to 0 \leq \underbrace{\left(\mathbf{x} \to 0\right) \otimes \ldots \otimes \left(\mathbf{x} \to 0\right)}_{n \text{ times}}$ $\forall n \in \mathbb{N}$

follows from the construction of $(\alpha_n)_{n\in\mathbb{N}}$ and $(\beta_n)_{n\in\mathbb{N}}$. Further we define two elements $\gamma, \delta \in L$ by

$$\gamma = \bigwedge_{m \in \mathbb{N}} (\mathbf{x} \to 0)^m, \quad \delta = \bigwedge_{m \in \mathbb{N}} (\bigvee_{n \in \mathbb{N}} \beta_n)^m,$$

where the m-th power is taken w.r.t. \otimes . Since $(L, \leq, *, \otimes)$ is an enriched σ -complete MV-algebra, we conclude from (EMV6) that γ

and δ are idempotent w.r.t. *. Because of $\beta_n \to 0 \leq (\varkappa \to 0)^n$ we obtain:

$$\mathbf{x} \leq \bigvee_{m \in \mathbb{N}} ((\mathbf{x} \to 0)^m \to 0) = \gamma \to 0 \leq \delta.$$

After these preparations we put

$$\lambda = \bigwedge_{n \in \mathbb{N}} (\delta \otimes \alpha_{n+1})$$

and infer from (i) and(ii) that λ is an element of \mathcal{T} . In order to verify the assertion of the theorem, it is now sufficient to show that λ coincides with \mathbf{x} (= $\alpha * \beta$). Since δ is idempotent w. r.t. *, the inequality $\mathbf{x} \leq \lambda$ follows from $\mathbf{x} \leq \delta \wedge \alpha_{n+1}$ and Proposition 3.2. In order to establish $\lambda \leq \mathbf{x}$ we again apply Proposition 3.2 and obtain from (EMV4):

$$\lambda * (\mathbf{x} \to 0) = \bigwedge_{n \in \mathbb{N}} \delta * \alpha_{n+1} * (\mathbf{x} \to 0)$$

$$= \bigwedge_{n \in \mathbb{N}} \delta * (\alpha_n \otimes \beta_n) * ((\alpha_n * \beta_n) \to 0)$$

$$= \bigwedge_{n \in \mathbb{N}} \delta * (\alpha_n \otimes \beta_n) * ((\alpha_n \otimes \beta_n) \to ((\alpha_n \to 0) \otimes (\beta_n \to 0)))$$

$$\leq \bigwedge_{n \in \mathbb{N}} \delta * ((\alpha_n \to 0) \otimes (\beta_n \to 0))$$

$$\leq \delta * \bigwedge_{n \in \mathbb{N}} (\beta_n \to 0) \qquad \leq \qquad (\bigvee_{n \in \mathbb{N}} \beta_n) * (\bigwedge_{n \in \mathbb{N}} (\beta_n \to 0)) = 0;$$

i.e. $\lambda \leq \varkappa$.

Remark 4.2 Let T be a strict Archimedean t-norm satisfying Frank's functional equation:

$$\alpha + \beta = T(\alpha, \beta) + 1 - T(1 - \alpha, 1 - \beta).$$

Because of Proposition 3.3. the quadruple $([0,1], \leq, T_m, T)$ is an enriched MV-algebra. Since T is strict Arichimedean, we obtain that $([0,1], \leq, T_m, T)$ is even an enriched, complete MV-algebra. Further

let X be a non empty set. T hen the structure of $([0,1], \leq, T_m, T)$ can be extended pointwise to $[0,1]^X$ by

$$f \leq g \iff f(x) \leq g(x) \quad \forall x \in X$$

 $\mathbf{T_m}(f,g)(x) = T_m(f(x),g(x)), \quad \mathbf{T}(f,g)(x) = T(f(x),g(x))$

Obviously $([0,1]^X, \preceq, \mathbf{T_m}, \mathbf{T})$ is again an enriched, complete MV-algebra. In this setting Theorem 4.1 was first established by D. Butnariu and E.P. Klement (cf. Theorem 1.5 in [5]). In particular, a non empty subset \mathcal{T} of $[0,1]^X$ is called a T-tribe iff \mathcal{T} satisfies the conditions (i) and (ii) in Theorem 4.1.

Referring to [7], an MV-algebra $(L, \leq, *)$ is said to have *square* roots iff there exists a (unary) operation $S: L \longmapsto L$ equipped with the following properties (cf. Section 2 in [7]):

- $S(\alpha) * S(\alpha) = \alpha \quad \forall \alpha \in L.$
- $\bullet \quad \beta * \beta \quad \leq \quad \alpha \quad \implies \quad \beta \leq S(\alpha).$

Theorem 4.3 Let $(L, \leq, *, \otimes)$ be an enriched, σ -complete MV-algebra provided with Axiom (D). Then the MacNeille completion of $(L, \leq, *)$ is a complete MV-algebra with square roots (cf. section 6 in [7]).

Proof. (a) First we verify the following assertion:

For every
$$\alpha \in L$$
 with $\alpha \neq 0$ there exists $\beta \in L$ with $\beta \neq 0$ such that $((\beta \to 0) * (\beta \to 0)) \to 0 \leq \alpha$.

In the case of $\alpha \otimes (\alpha \wedge (\alpha \to 0)) \neq 0$ the previous assertion follows from Proposition 3.7. Therefore let us assume $\alpha \otimes (\alpha \wedge (\alpha \to 0)) = 0$. Then Axiom (D) impli es

$$\alpha = \alpha \otimes (\alpha \vee (\alpha \to 0));$$

hence the relation

$$\alpha = \alpha \otimes (\alpha \vee (\alpha \to 0))^n$$

follows for all $n \in \mathbb{N}$, where the n-th power is taken w.r.t. \otimes . If we put $d = \bigwedge_{n \in \mathbb{N}} (\alpha \vee (\alpha \to 0))^n$, then we conclude from (EMV6) that d is idempotent w.r.t. *. Ref erring to Proposition 3.2, we obtain:

$$\alpha = \bigwedge_{n \in \mathbb{N}} (\alpha \otimes (\alpha \vee (\alpha \to 0))^n) \leq \alpha \wedge d \leq \alpha * d$$

$$\leq \alpha * (\alpha \vee (\alpha \to 0)) = \alpha * \alpha;$$

i.e. α is idempotent w.r.t *; hence $\alpha \to 0$ is also idempotent w.r.t. *. In particular the equation $((\alpha \to 0) * (\alpha \to 0)) \to 0 = \alpha$ holds, and therewith the asserti on is verified.

- (b) Because of the σ -completeness of $(L, \leq, *)$ the triple $(L, \leq, *)$ is a semi-simple MV-algebra (cf. Lemma 6.2 in [7]); hence the Mac-Neille completion $(L^{\sharp}, \leq^{\sharp}, *^{\sharp})$ of $(L, \leq, *)$ is again an MV-algebra (cf. Theorem 6.3. in [7]). In order to verifiy the assertion of the theorem, it is sufficient to show that every element α^{\sharp} of the MacNeille completion of $(L, \leq, *)$ is a square w.r.t. $*^{\sharp}$ (cf. Theorem 5.3 in [7]). Let us choose an element $\alpha^{\sharp} \in L^{\sharp}$ provided with the following property:
- (**) If $\lambda^{\sharp} \leq^{\sharp} \alpha^{\sharp}$, then there exists an idempotent element $\iota \in L^{\sharp}$ w.r.t. $*^{\sharp}$ s.t. $\lambda^{\sharp} = \alpha^{\sharp} \wedge \iota$.

We put $e = \bigwedge_{n \in \mathbb{N}} (\alpha^{\sharp})^n$ (where the n-th power is taken w.r.t. $*^{\sharp}$); then e is idempotent w.r.t. $*^{\sharp}$ (cf. Lemma 6.1 in [7]).

Referring to Theorem 6.4 in [7], it is sufficient to show that α^{\sharp} is idempotent w.r.t. $*^{\sharp}$. Let us assume the contrary – i.e. $\beta^{\sharp} \stackrel{\text{def}}{=} \alpha^{\sharp} *^{\sharp} (e \to 0) \neq 0$. By definition of the MacNeille completion, there exists $\beta \in L$ with $\beta \neq 0$ and $\beta \leq^{\sharp} \beta^{\sharp}$. Now we apply the assertion in the previous part (a) and choose $\gamma \in L$ such that

$$\gamma \neq 0, \qquad ((\gamma \to 0) * (\gamma \to 0)) \to 0 \quad \leq \quad \beta \quad \leq^{\sharp} \quad \alpha^{\sharp}.$$

Because of property (**), there exist idempotent elements $\iota_1, \iota_2 \in L^{\sharp}$ such that

$$\gamma = \alpha^{\sharp} \wedge \iota_1 \quad , \qquad ((\gamma \to 0) * (\gamma \to 0)) \to 0 = \alpha^{\sharp} \wedge \iota_2.$$

Therefore we obtain:

$$(\gamma \to 0) * (\gamma \to 0) = (\alpha^{\sharp} \to 0) \lor (\iota_2 \to 0)$$

$$= ((\alpha^{\sharp} \to 0) *^{\sharp} (\alpha^{\sharp} \to 0)) \lor (\iota_1 \to 0);$$

i.e. $\gamma \ (= \alpha^{\sharp} \wedge \iota_1 \wedge \iota_2)$ is idempotent w.r.t. *. Now we derive from the definition of β^{\sharp}

$$\gamma \leq \bigwedge_{n \in \mathbb{N}} (\beta^{\sharp})^n = (\bigwedge_{n \in \mathbb{N}} (\alpha^{\sharp})^n) * (e \to 0) = 0 ;$$

i.e. $\gamma = 0$ which is a contradiction to $\gamma \neq 0$. Hence α^{\sharp} is idempotent w.r.t. $*^{\sharp}$.

Corollary 4.4 Let Prod be the usual multiplication on [0,1]. Then the MacNeille completion of any Prod-tribe (cf. Remark 4.2) is a complete MV-algebra with square roots.

Proof. Since Prod is a strict t-norm, we conclude, by Proposition 3.3 and Theorem 4.1 (cf. Remark 4.2), that every Prod-tribe is an enriched, σ -complete MV-algebra, where the algebraic operations * and \otimes are defined as follows

$$(f * g)(x) = T_m(f(x), g(x)) , \qquad (f \otimes g)(x) = Prod(f(x), g(x)).$$

In particular Axiom (D) is satisfied (cf. Example 3.4(b)). Therefore the assertion follows from Theorem 4.3.

We close this section with the remark that a complete characterization of complete MV-algebras with square roots is available (cf. Remark 6.11 in [7]).

References

- [1] G. Birkhoff, *Lattice Theory*, Amer. Math. Soc. Colloquium Publications, Third edition (Amer. Math. Soc., RI, 1973).
- [2] L.P. Belluce, Semisimple algebras of infinite valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986), 1356–1379.
- [3] _____, Semisimple and complete MV-algebras, Algebra Universalis 29 (1992), 1-9.

[4] _____, α-Complete MV-algebras, in: "Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory", (U. Höhle and E.P. Klement, Eds.), (Kluwer, Acad. Publ., Dordrecht, 1995), 7-21.

- [5] D. Butnariu and E.P. Klement, Triangular norm-based measures and their Markov kernel representation, J. Math. Anal. Appl. 162 (1991), 111-143.
- [6] M.J. Frank, On the simultaneous associativity of F(x, y) and x + y F(x, y), Aequationes Math. 19 (1979), 194–226.
- [7] U. Hőhle, Commutative, residuated l-monoids, in: "Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory", (U. Hőhle and E.P. Klement, Eds.), (Kluwer, Acad. Publ., Dordrecht, 1995), 53–106.
- [8] C.H. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212.
- [9] R. Mesiar and M. Navara, T_s -Tribes and T_s -measures, J. Math. Anal. Appl., to appear.
- [10] D. Mundici, Interpretation of AF C*-algebras in Lukasiewicz sentential logic, Functional Analysis 65 (1986), 15-63.
- [11] D. Mundici and M. Pasquetto, A proof of the completeness of the infinite-valued calculus of Lukasiewicz with one variable in "Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory", (U. Höhle and E.P. Klement, Eds.), (Kluwer, Acad. Publ., Dordrecht, 1995),107-123.
- [12] A.B. Paalman-de Miranda, *Topological semigroups*, Math. Centrum Amsterdam (Amsterdam 1964).
- [13] B. Schweizer and A. Sklar, *Probabilistic metric spaces* (North Holland, New York, 1983).