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Abstract

This paper introduces the structure of enriched
MV —algebras and studies on this basis various relations be-
tween o—complete MV —algebras and T—tribes.

1 Introduction

In recent years much research work has been devoted to M V—-algebras
and T- -tribes ([2], [3], [4], [10], [L1], [5], [9]). The purpose of this
paper is to continue these studies and to explore various relations be-
tween sigma—complete MV -algebras and T—tribes. In order to fix
a common framework we introduce the structure of an enriched MV -
algebra — this is an M V-algebra provided with an additional, monoidal
structure which in a certain sense is compa tible with the underlying
MV-algebra. It is not difficult to see that any MV -algebra can be
viewed as an enriched MV-algebra in at least two different ways (cf.
Proposition 3.1). Moreover, t—norms (cf. [13]) satisfying M.J. Frank’s
functional equation (cf. [6]) give rise to enriched MV-algebras. In
this context we present a purely algebraic proof of Butnariu’s and Kle-
ment’s theorem ([5]) that every Ti,—tribe is a o—complete MV —algebra
(0 < s < o). Further we gi ve a sufficient condition under which
the MacNeille completion of an enriched, c—complete MV —algebra has
square roots ([7]). As an immediate consequence we obtain that the
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168 U. Héhle

MacNeille completion of any Prod-tribe is a complete MV -algebra
having square roots (cf. section 6 in [7]).

We start with a preliminary section which recalls some fundamental
properties of MV —-algebras from the view point of residuated lattices.

2 Preliminary remarks

An integral, commutative, residuated (—monoid is a triple (L, <, )
satisfying the following axioms (cf. [1], [7])

e (L,<)is a lattice with universal bounds.
e (L,%)is a commutative monoid.
e The universal upper bound 1 is the unity of (L, *).

o There exists a binary operation —: L X L —— L which is right
adjoint to * — 1.e. the equivalence

axf <y = a<l oy (AD)
holds for all o, 3,7 € L.

Because of the antisymmetry of <, the binary operation — is uniquely
determined by (AD). In any integral, commutative, residuated (—mo-
noid the relations
(a=(B—=7)=(axp)—=7=08—(a—7)
a—fB=1 = a < p

hold true.
An MV-algebra is an integral, commutative, residuated {—monoid pro-
vided with the additional, important axiom:

(MV) (a—=p)—=f8) =aVj for all o, 8 € L.

The following list comprehends the most basic properties of MV -
algebras:

e (a - 0) =0 = a where 0 is the universal lower bound in L.
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e (a—0) V5= a(axh)
e ax(a—f)=aAp. (Divisibility)
¢ (@4 (F—0) =0 =a—p,
e (a—= )V (f—a) =1 (Algebraic strong de Morgan law)

An MV=-algebra (L, <,*) is o—complete (resp. complete) iff the under-
lying lattice (L, <) is o—complete (resp. complete). In any o—complete
MV-algebra the subsequent relations are valid (cf. [3], [4]):

(Va)—0 = A (o — 0)
neN neN
(A a,)—0 = V (o —0)
neN neN

neN neN

neN neN

Further we denote by a” the n-th power of o w.r.t. *. Then in any
o—complete MV —algebra,

ea:/\oz”

neN

exists and is idempotent w.r.t. *.

3 Enriched MV-algebras

A quadruple (L, <,*,®) is called an enriched MV —algebra if and only
if the following conditions are satisfied:

EMV1) (L,<,%)is an MV-algebra.

(
EMV2) (L,<,®) is a commutative, partially ordered monoid (cf. [1]).

EMV3

1 (= upper universal bound) is the unity w.r.t. @.

axff = (a@pB)* (e = 0)@(5—0))—=0)

(
(
(
(EMV4

)
)
)
)
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Because of the algebraic strong de Morgan law, every MV —-algebra can
be viewed twofold as an enriched MV-algebra in the following sense:

Proposition 3.1 Let (L, <,%) be an MV -algebra. Then (L, <,*,A)
and (L, <,*,%*) are enriched MV —algebras.

Proof. From (a« — (8 —0)) V ((# —0) — «) = 1, we infer
((axp) = 0) V((a = 0)*(8—10) =0) = L

hence the equation a x § = (ax* ) * (((a = 0) % (5 — 0)) — 0)
follows; i.e. (L, <,#,%)is an enriched M V—-algebra. Applying again the
algebraic, strong de Morga n law (resp. the divisibility) we observe that
(L, <)is a distributive lattice and the inequality a*3 < (axa) V (5%03)
holds. Hence we obtain

axf = ((axB)A(axa)) V((axB)A(B*F))
= (ax(aAB) V(Bx(BAa)) = (aAf)x(aVpB);

ie. (L,<,*,A)is an enriched M V-algebra. [ |

Proposition 3.2 Let (L,<,*,®@) be an enriched MV —algebra, and e
be an idempotent element of L w.r.t. x. Then the relation

exa = e®@Ra = eNa
holds for all o € L.

Proof. Since the universal upper bound 1 is the unity in (L, <,%) as
well as in (L, <, ®@), we derive from (EMV4):

axf < ap < aAp.

On the other hand, if e is idempotent w.r.t. *, we conclude from the
divisibility of (L, <, %)
ehNa =ck(e—a)=ckxex(e—a) < e*xa

?

hence the assertion follows. [ ]
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Let us consider the real unit interval [0, 1] provided with Lukasiewicz’
arithmetic conjunction T, — i.e.

To(a, ) = max(a+ 5 —1,0)

Then it is well known that ([0, 1], <,T,,) is a complete M V—algebra.
Moreover let T' be an arbitrary t-norm on [0,1] — i.e. 1" is a binary
operation on [0, 1] satisfying the following conditions:

e ([0,1],<,T)is a commutative, partially ordered monoid (cf. [1]).

e | (resp. 0) is the unity (resp. zero element) w.r.t. 7'

Proposition 3.3 (M.J. Frank’s functional equation) Let T be a
t-norm. Then the following assertions are equivalent:

(i)  ([0,1],<,T,,,T) is an enriched MV -algebra.
i) a4+ 8 =Tep)+1-T10-a,1—p)forall a,p €0,1].

Proof. The implication (ii) = (i) is obvious. Therefore let us assume
that (i) holds. In order to verify (ii) we distinguish the following cases:

Case 1 Let 1 < a + f3; then we infer from (EMV4) and the definition
of T,,:

0 < a+4+pf—-1=max(T(a,)+1-T(1 —-a,1—p)—1,0).
Case 2 Let a+ < 1; by analogy to Case 1 we obtain
0 < l—-a-p=Tl-a,1=p8)+1-T(a,p) — 1.

Case 3 Let @ = 1 — 3; then (ii) holds by definition.

Summing up the assertion (ii) follows from the previous cases 1- 3 .R

Proposition 3.4 Let (L,<,%) be an MV —algebra and (L, <,®) be a
commutative, partially ordered monoid. Further the universal upper
bound is the unity w.r.t. @. If @ satisfies the following condition:
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D) B=({(a@h)—=0)—=((a—=0)@p) forall a,8 €L,
then the quadruple (L, <,*,®) is an enriched MV —algebra.

Proof. Combining (D) with (MV) and the divisibility of
MV —algebras, we obtain:
(B=0)=((B—0)0a) =
[((a=0)@(5—=0)=0)= (=02 = (F-200a)=
[((a = 0)@ (3 —10) =0 V[ —0)@a],
ax [((f=0)©a)—0] =
[(B—=0)@a) = 0]+ [((B—=0)@a)—=0)—(a®p)] =
[(5—=0)@a) =0 A (a®f).

Since the universal upper bound is the unity of @, the relations

((@a=0)@(F—=0)*(F-00a) = 0
(B—=0)@a)* (e f) = 0
follow immediately. Hence we have established that
(B=0)=((f—=00a) = ((a=0)@(F—=10)—=0
ax (B=000a)=0) = a@f

Taking into account f < ((8 — 0) @ a) — 0 we deduce from the
divisibility of MV-algebras:

a* 3=
a*x((B—=0®a)=0)+[((B—=0®a)—=0)— ((B—0)—=0)]=
(@@ B) * (((a = 0)@ (8 —0)) —0);

hence (EMV4) is verified. [

Examples 3.5 (a) Let B be a Boolean algebra. Then we can view B
as an MV-algebra (B, < *) in which every element « € B is idempotent
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w.r.t. * —ie * = A. Because of (« — 0)V 3 = a — f3, the quadruple
(B, <,A,A) is an enriched M V-algebra satisfying Axiom (D).

(b) Let T}, be Lukasiewicz’ arithmetic conjunction on [0, 1] and Prod
be the usual multiplication. Since Prod is distributive over the usual
addition, the quadruple ([0, 1], <, T,,,, Prod) is an enriched MV -algebra
satisfying Axiom (D).

A t-norm 7' is called strict Archimedean if and only if 7" is continuous
on the square [0,1] x [0, 1] and fulfills the additional property

0 < T(awa) < « for all @ €]0,1]

Proposition 3.6 For any strict Archimedean t-norm T there exists
a binary operation * on [0,1] such that ([0,1], <,*,T) is an enriched
MYV —algebra satisfying axiom (D).

Proof. Since T is strict and Archimedean, we can apply the theorem
of Mostert and Shields (cf. [12]) (resp. of Ling [8]) and obtain that
([0,1],<,T) is order isomorphic to ([0,1],<,-), where - denotes the
usual multiplication on [0,1]. In this context the order isomorphism
h i [0,1] — [0, 1] is called the multiplicative generator of T —1i .e.

T(a,p) = h™'(h(e) - h(B))

Now we introduce a further binary operation * on [0, 1] as follows

ax B =h"(Tu(h(a),g(B)) o8 €[0,1],

where T, denotes Lukasiewicz’ arithmetic conjunction defined supra.
Then ([0,1],<,%) is a complete MV -algebra, and the right adjoint
operation — is given by

a — B = h Y (min(1 — hla) + A(3), 1)).

Moreover the quadruple ([0, 1], <,T,,, Prod) is an enriched MV-algebra
provided with Property (D) (cf. 3.5(b)). Since ([0, 1], <,*,T") is order
isomorphic to ([0,1], <, T, Prod), the assertion follows. [ |
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Proposition 3.7 Let (L, <,*,®@) be an enriched MV —algebra satisfy-
ing (D). Then for every element o € L with o @ (a A (a — 0)) # 0,
there exists an element € L provided wit h the following properties:

i) B<a B#£0.

(i) (B=0)x(f—-0)—=0 < o
Proof. Let us assume 0 # o @ (a A (o — 0)). We define

y=a@(a=0), p=gA(ax(y—0)

and derive from (D) and the divisibility of MV —algebras the following
relation

a*x(y—0)=

(@ ®(a—0) = 0]+ [(a® (a—0) = 0) = (aa)] = ava.
Thus the inequality

a@lan(@a—0) £ § (=(ao(@—0)A(@sa) )

follows; in particular 5 # 0. Now we are in the position to proceed in
the same way as we do in the proof of Lemma 6.5 in [7], and we obtain
that ( fulfills the desired properties. [ |

4 Enriched, c—complete MV —-algebras

A quadruple (L, <, %, @) is called an enriched, o—complete (resp. com-
plete) MV —algebra if and only if (L, <, %, @) is an enriched M V-algebra
satisfying the additional conditions:

(EMV5) (L, <) is a o—complete (resp. complete) lattice.

(EMV6) For every a € L, the element  d,, dgf ANa®@...0a is

idempotent w.r.t. *.
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Referring to the last statement of Section 2 we make the trivial observa-
tion that any o—complete (resp. complete) MV-algebra (L, <,*) can
be viewed as an enriched o—complete (resp. complete) MV -algebra

(L, <,*,%).

Theorem 4.1 Let (L, <,*,®) be an enriched, o—complete MV —algebra
and T be a subset of L. If T satisfies the following conditions:

i) a,B€T = a@pBecT,a—0cT.

(i) (n)nen € TV with a1 <, = A a, €7.
neN

Then T is closed w.r.t. *. In particular T is an enriched, o—

complete MV —subalgebra of (L, <,%,@).

Proof. We choose a, 5 € 7, put »x = a * 3 and define two sequences
(an)nen and (B )nen as follows:

. = O‘vﬁlzﬂvo‘nﬁ—l:an@ﬂn,
Boy1 = (o = 0)@ (B, —=0)) = 0.

Obviously (o, ),en is nonincreasing and (3, ),en 18 nondecreasing. By
induction, we infer from (EMV4):

¥ = Qg * B, VYn€EN;
hence the relation

# < g, =0 < (x—=0)®@...0(x—0) Vn €N

n times

follows from the construction of (o, ).en and (3, )nen. Further we
define two elements ~.6 € L by

v= Nx=0" §= AV 8",

meN meEN neN

where the m—th power is taken w.r.t. @. Since (L,<,*,®) is an
enriched o—complete MV -algebra, we conclude from (EMV6) that v
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and 6 are idempotent w.r.t. *. Because of 3, — 0 < (x — 0)" we
obtain:

x < \/((n—>0)m—>0):7—>0 < 4.

mEN

After these preparations we put

A= A6 an)

neN

and infer from (i) and(ii) that A is an element of 7. In order to verify
the assertion of the theorem, it is now sufficient to show that A coincides
with » (= a* ). Since ¢ is idempotent w. r.t. *, the inequality » < A
follows from » < 6 A a,41 and Proposition 3.2. In order to establish
A < » we again apply Proposition 3.2 and obtain from (EMV4):

)\*(n—>()): /\5*0zn+1>l<(n—>0)

= n/e\N 6% (o, @geﬂNn) # (o * B,) — 0)
= Q 8% (@ ) * ((a @ ) = (e, = 0) @ (B, — 0)))
< n/e\N5 *((a = 0) @ (8, — 0))
<% n/E\N(ﬂn —0) < (n\e/N Br) * (n/e\N(ﬂn —0)) =0;
ie. A < s ]

Remark 4.2 Let T be a strict Archimedean t—norm satisfying Frank’s
functional equation:

Oé—l'ﬂ: T(Oé,ﬂ) —I_l_T(l_O‘vl_ﬂ)'

Because of Proposition 3.3. the quadruple ([0,1], <, T,,,T) is an en-
riched MV -algebra. Since T'is strict Arichimedean, we obtain that
([0,1],<,T,,,T) is even an enriched, complete MV —algebra. Further
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let X be a non empty set. T hen the structure of ([0,1], <, 7,,,T) can
be extended pointwise to [0, 1]* by

f<9 = [flz) <glx) VeeX

Tw(/f,9)(z) = T.(f(2),9(2)), T(f,9)(z) = T(f(x),9(x))
Obviously ([0,1]%, <, Ty, T) is again an enriched, complete MV -alge-
bra. In this setting Theorem 4.1 was first established by D. Butnariu
and E.P. Klement (cf. Theorem 1.5 in [5]). In particular, a non empty

subset T of [0,1]% is called a T-tribe iff T satisfies the conditions (i)
and (ii) in Theorem 4.1. [

Referring to [7], an MV-algebra (L, <,*) is said to have square
roots iff there exists a (unary) operation S : L —— L equipped with
the following properties (cf. Section 2 in [7]):

e S(a)*S(a) =« Ya € L.
e Bxf < o = B < Sa).

Theorem 4.3 Let (L, <,*,®) be an enriched, o—complete MV —algebra
provided with Axiom (D). Then the MacNeille completion of (L, <, %)
is a complete MV —algebra with square roots (cf. section 6 in [7]).

Proof. (a) First we verify the following assertion:

For every o € L with o # 0 there exists § € L with 3 # 0
such that (3 —0)* (8 —0)) -0 < a.

In the case of @ @ (v A (a — 0)) # 0 the previous assertion follows

from Proposition 3.7. Therefore let us assume a @ (a A (o — 0)) = 0.
Then Axiom (D) impli es

a=a®(aV(a—0);

hence the relation
a=a®@(aV(a—0)"
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follows for all n € N, where the n—th power is taken w.r.t. @. If we

put d = A (aV (a— 0))", then we conclude from (EMV6) that d is

neN
idempotent w.r.t. *. Ref erring to Proposition 3.2, we obtain:

a = N@@(@V(e—=0)") < and < axd

neN
< ax(aV(a—0) = axaq;

i.e. a is idempotent w.r.t *; hence a — 0 is also idempotent w.r.t. .
In particular the equation ((a — 0)* (e — 0)) — 0 = « holds, and
therewith the asserti on is verified.

(b) Because of the o—completeness of (L, <, ) the triple (L, <, *)
is a semi-simple MV —-algebra (cf. Lemma 6.2 in [7]); hence the Mac-
Neille completion (L, <" «¥) of (L, <,*) is again an MV -algebra (cf.
Theorem 6.3. in [7]). In order to verifiy the assertion of the theorem, it
is sufficient to show that every element of of the MacNeille completion
of (L, <, %) is a square w.r.t. ** (cf. Theorem 5.3 in [7]). Let us choose
an element of € L¥ provided with the following property:

(*f) If A¥ < oF | then there exists an idempotent element ¢ € L
wat. +f st M= af A

Weput ¢ = A (af)" (where the n-th power is taken w.r.t. **); then
neN

¢ is idempotent w.r.t. ** (cf. Lemma 6.1 in [7]).
Referring to Theorem 6.4 in [7], it is sufficient to show that of

is idempotent w.r.t. *%. Let us assume the contrary — ie. 3! dlef
a? ¥ (e — 0) # 0. By definition of the MacNeille completion, there
exists 3 € L with 3 # 0 and 3 <' 3*. Now we apply the assertion in
the previous part (a) and choose v € L such that

v #0, (7—=0)x(r—=0)—=0 < 8 <' ol

Because of property (**), there exist idempotent elements ¢y,¢y € L
such that

y=a"Ay (y = 0)x(y —=0)) =0 = o A
Therefore we obtain:

(7= 0)x(y—=0) = (F=0)V(n—0)
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= (& = 0)+ (af = 0)) V (1 — 0);

le. v (= LN t2) is idempotent w.r.t. *. Now we derive from the
definition of 3!

v A = (N\@))x(e—0) =0 ;

neN neN

i.e. v = 0 which is a contradiction to v # 0. Hence of is idempotent
w.r.b. *F, |

Corollary 4.4 Let Prod be the usual multiplication on [0,1]. Then

the MacNeille completion of any Prod-tribe (c¢f. Remark 4.2) is a
complete MV —algebra with square roots.

Proof. Since Prod is a strict t—-norm, we conclude, by Proposition
3.3 and Theorem 4.1 (cf. Remark 4.2), that every Prod-tribe is an
enriched, o—complete MV-algebra, where the algebraic operations
and ® are defined as follows

(f*g)(x) = Tu(f(x),9(x)) ,  (f@g)(x) = Prod(f(z),g(x)).

In particular Axiom (D) is satisfied (cf. Example 3.4(b)). Therefore
the assertion follows from Theorem 4.3. [ ]

We close this section with the remark that a complete characterization
of complete MV-algebras with square roots is available (cf. Remark

6.11 in [7]).
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