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Abstract

In this paper we study the effect of Atanassov’s operator
on the properties of properties reflexive, symmetric, antisym-
metric, perfect antisymmetric and transitive intuitionistic fuzzy
relations. We finish the paper analysing the partial enclosure
of the intuitionistic fuzzy relations and its effect on the conser-
vation of the transitive property through Atanassov’s operator.
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1 Introduction

In the first part of this paper we have introduced the intuitionistic
fuzzy relations, as well as the properties of the intuitionistic fuzzy re-
lations in a set. We have also studied the composition of intuitionistic
fuzzy relations, and we have analysed the different properties of this
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composition according to the choice of t-norms and t-conorms made,
concluding that the composition of intuitionistic fuzzy relations satis-
fies the biggest number of properties when we take o = V, # t-norm,
A = A and p t-conorm. We will work with this choice of t-norms and
t-conorms throughout the paper, unless we indicate it in a different
way.

In this paper we study the conditions with which the reflexive, sym-
metrical, antisymmetrical, perfect antisymmetrical and transitive in-
tuitionistic properties are kept when applying K. Atanassov’s operator
to an intuitionistic fuzzy relation. In 1986, K. Atanassov established
different ways of changing an intuitionistic fuzzy set into a fuzzy set
and defined the folowing operator:

If £ € IFSs(X) then

Dy(E) = {<a,up(z)+p- 7r(),
1 —pp(x) —p-7p(x) > |v € X}

with p € [0,1]. Obviously D,(F) € FSs.

A study of the propierties of this operator, (we will call it Atana-
ssov’s operator), is made in ([2], [7], [8])-

The paper consists of three items. In the first one, we study the ex-
istent relation among Do(R), Di(R) and R, as well as the invariability
of A and V through D,.

In the second part, we analyse the conservation of the reflexivity,
symmetry, antisymmetry and perfect antisymmetry through D,,.

Last part is dedicated to analyse the conservation of transitive prop-
erty. We start by presenting some examples which show that, gener-
ally, this property is not kept by the operator mentioned before. As
our objective is to find the most general conditions with which we

can assure that the transitive property is kept, we start by studing
the existent relation between D, (R \//\c:)i R) and D,(R). Afterwards, we
characterize the transitivity of R through the transitivity of Do(R) and
Di(R). Next, we present the relations existent between D,(R Xci)i R)

and D,(R) \//\c’)ﬁ D,(R). We finally see that a way of assuring the con-
P

servation of the transitive property consists in imposing the condition
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of partial encosure on the starting intuitionistic fuzzy relation. In this
way we guarantee that if R is transitive, then D,(R) is transitive for
every p of [0,1].

2 Operator D, applied to an IFR

Proposition 1 Let R be an element of IFR(X x X ) and D, Atana-

ssov’s operator. Then
i) Do(R) < R < Di(R).
ii) If pe[0,1], then R = Dy(R).
iii) D,(A) = A, D,(V) =V Ype[0,1].
iv) (Dy(R.)). = Di_y(R) ¥p € [0,1].

Proof. 1) ppy(ry(%,y) = pr(2,y) + 0 - 7r(2,y) =
= pr(z,y) < pr(z, )+1 mr(z,y) =1 —vr(r.y) = pp,(r)(z,y).
1 - HDo(R (51?7?1) =1-= ,UR(IL’,y) > I/R(:L',y) = l/Dl(R)(:I:,y) for every
(z,y) € X x X
ii) Evidently pgr(z,y) < pr(z,y) + p- wr(x,y); let’s see that

vr(z,y) < vp,mr)(z,y).

vppry(.y) = 1 —pr(a,y) —p-wr(e,y) =
= (L—=p)—=(1—=p) pr(z,y)+p vele,y) =
= (I—=p)- (1 —pr(z,y)) +p-vr(z,y) >
> (1 —=p)-vr(x,y)+p-velz,y) = ve(z,y).

iii) For the relations A and V the corresponding mn and 7y are
always equal to zero and, therefore, the equalities we are going to
demostrate are evident.

iv)

DP(RC) = {< (xvy)vl/R(xvy) —|—p7r(:1:,y),1 - VR(xvy) —pﬂ'(l‘,y) >
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v,y € X}

{< (xvy)vl - VR(xvy) —pﬂ'(l’,y),l/R(l',y) —|—p7r(:1;,y) >
v,y € X}

{<(z.y),pr(z,y) + (1 = p)r(2,y),

1= pr(2,y) — (1 —p)w(a,y) > IxyEX}Z

{< (2,y),1 —vg(z,y) — pr(x,y), vr(z,y) + pr(z,y) >
| 2,y € X} = (Dy(Re))e. O

3 Effect of D, on the reflexive, symme-

try, antisymmetrical, perfect antisym-

metrical and antisymmetrical intuitio-

nistic

fuzzy properties.

Theorem 1 Let R be an element of IFR(X x X).

i) If R is reflexive, D,(R) is reflexive fuzzy for every p € [0, 1].

i) If R is symmetrical intuitionistic, then D,(R) is symmetrical
fuzzy for every p € [0, 1].

iii) If R is antisymmetrical intuitionistic, then D,(R) is antisymmet-
rical intuitionistic for every p € 0,1].

Proof. 1) R is reflexive. We have for every x in X

pr(z,x)
1D, (ry(T, )

1, vr(z,2) = 0Vx € X, then
(1 —=p)-prlz,z)+p- (1 —vp(x,x))=1Vpe[0,1].

ii) R is symmetrical intuitionistic, then V(z,y) € X x X

,MR(%

y) = ﬂR(yvx)v VR(xvy) = VR(yvx)v then

ip,wy(2,y) = (1=p)-pr(z,y) +p- (1 —vr(z,y)) =
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= (L=p)-prly,2) +p- (1= vy, 2)) = pp,m(y, ).

iii) Let’s take (z,y) € X x X and « # y, then

to,ry(T,y) = pr(e,y)+prr(e,y) # pr(y,x) + pre(y, ) =
= IMDP(R)(yvx)' O

With regard to the antisymmetry of R € IFR(X x X), Do(R) and
Di(R), we get the

Theorem 2 R € [FR(X x X)
a) R is perfect antisymmetrical intuitionistic.
b) Di(R) is perfect antisymmetrical fuzzy.

¢) Dy(R) is perfect antisymmetrical fuzzy for every p € [0,1].

Points a), b) and ¢) are equivalent.

Proof. a) = b) If for every (z,y) € X x X with 2 # y, up,(r)(z,y) >0
is verified, then
IMR(xv y) + 7"—R(xv y) >0

i) if pp(z,y) > 0, then pip, (r)(y,2) =0
i) if pr(x,y) = 0, then wr(x,y) > 0 and, therefore vp(x,y) < 1, so
KDy (y,l’) = 0.

b) = ¢) Let’s take (z,y) € X x X with  # y and ,uD(R)(:L',y) > 0,
then

NDP(R)(xv y) = pr(z,y)+p- mr(z,y) =
= (1 =p)ur(z,y) +p(l = vr(z,y)) >0

it is evident that p # 1, because if p would be = 1, the proof would
have already finished. It can happen:

i) 1 —wvg(x,y) > 0, as D1(R) is perfect antisymmetrical intuition-
istic, we have ug(y,x) =0 and vg(y,x) = 1.
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ii) We know, because of the condition of intuitionism, that 1 —
vr(z,y) =0 and pgr(x,y) > 0 cannot occur at the same time.

Finally, just say that if p = 0, then pp(x,y) > 0, then up,(r)(z,y) >
0, so pp,(r)(y,x) =0, from where

pr(y,x) =0
/’LR(y7 l’) + pﬂ-R(yv l’) = 07 then and
VR(yvx) =1

ii) Let’s have @ # y with ugr(x,y) = 0 and vr(x,y) < 1, then
0 < wr(x,y) < 1, therefore

to,w)(*,y) = pr(z,y)+prr(z,y) > 0 then
pr(y,z) = 0and vp(y,z)=1. O

4 Conservation of the transitive prop-
erty through D,. Partial closure

Notice that the previous theorem do not analyse the transitive prop-
erty. Next example shows that, in general, transitivity is not kept.
Let’s take X = {x,y,z} and R € IFR(X x X) transitive, that is,
V,A .
R>R 2 R= pr 2> [V, and vp < Y von s O1) the following way:
AV

AV

x Yy oz x Yy oz
202 0 09 |z 04 06 0
FE=1 4 01 07 03 "E=1 0y 07 02 0.6
5 01 0 09 0.8 08 0.1

therefore
x Yy oz
z 04 04 0.1
TR=1 4y 02 01 0.1
z 0.1 02 0
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the composition R Zéc R is given by

r Yy oz r Yy oz

202 0 09 |2 04 06 0
PR&r ™ | y 01 07 03 "RERT |y 0.7 02 0.6
’ z 01 0 09 ’ z 0.8 0.8 0.1

let’s notice that ug(z,y) = IMRVé/\R(l',y) and Z/Rvé/\R(l',y) Yz, y).
AV AV

For the composition we have got that

x Yy oz

| » 04 04 01
"TRERT |y 02 01 01
’ 2 01 02 0

Among all the possible values of p € [0,1], we take p = 0.6 and

calculate yip, ;(r) and F Do o () 5 Do o ()

x Y z
x 044 0.24 0.96

HbDos(R) = | ' 022 0.76 0.36
£ 0.16 0.12 0.90

x Y z
| 2 044 024 0.96
Moo(r) ' postmy ~ | y 022 076 0.36
’ © 0.16 0.12 0.90

getting, from one hand 0.96 > 0.90 and, from the other hand, 0.12 <
0.16, so that Dog(R) and Dogs(R) Zéc Dogs(R) are not comparable.
We want to study the most general conditions in which we can

assure that the transitive property is kept through K. Atanassov’s op-
erator. In order to do that, we device this item into four subitems.
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4.1 Relations between D,(R) and D,(R \//\c’)f R)

Now we propose to relate D,(R) with D,(R Vé: R), through their
A, rho

membership functions, in order to use these results in the posterior
study of transitivity.

Let R be an element of IFR(X x X) and let’s take the following
subsets A, B and C of X x X

A = {(x,y)|7eréﬁR(:1:,y) >7TR(:1;,y)}

Ap

B = {(x,y)lﬂRvéﬁR(%y)ZWR(%?J)}

Ap

¢ = {(xay)lﬂRvéﬁR(%y)<7TR($,y)}-

Ap

Theorem 3 If (z,y) € B, then

[ (2,y) < pp,ry(2,y) Vp

D,(R'$R)
Ap

if and only if
povee (€9) < pr(e,y).

Proof. =) As WRvyﬁR(x,y) = wr(x,y) and for every p

Ap

o i (29) < oy r) (2,9),

is fulfilled, then

(@, y) + 7 vp (2,y) < pr(e,y) + pre(,y)

Ap

R)

H ¥ Ry
A

therefore
v < .
Mg (108) < Hr(z,y)
Ao
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v - v <
<) as T cSﬁR(:Jc,y) 7r(z,y) and Ho cSﬁR(:Jc,y) < pur(x,y) we get

Ap Ap

pvep (T9) + 07 e (2,y) < pr(z,y) + pra(z,y),

Np Np
then

[ (2,y) < pp,ry(x,y)Vp. O

D, (R'ER)
Ap

Corollary 1 If B= X x X, then
75 . .
Dy(R'S R) < Dy(R) ¥p if and only if 1 v (2,y) < in(a,y)
for every (x,y) € X x X.

The study made for the elements (x,y) € X x X such that 7r(x,y) =
7TRV”3($, y) is resumed in the following table:

Ap
(z,y) € B
Vp
v, Z, < x,
v 0) < pn(,y) (s’ ™ ¥) < 10 ()
RVcS’BR ’ — 5 o
Ap
Ap|
v z, S x,
1Y) > iRl ) s\ ™ Y) < 10 ()
RVcS’BR ’ 5 b
Ap

Theorem 4 If B =X x X, then for every p we have

D,(R Xci)i R) < D,(R) ir and only if R is transitive.
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v,
Proof. =) D,(R S, R) < D,(R), then

g (O 8) DT s (20y) < pr(ey) + pra(e,y)
A,p A,p
therefore
<
Mgy (108) < HR(,Y).
Ap

T‘—R(xv) = FRVéﬁR(xvy) V(l’,y) € X X X and IMRVéﬁR(xvy) S IMR(xvy)v

Ap Ap

then I/RVﬁR(:L', y) > vr(x,y), therefore R \//\c’)ﬁ R < R.
o 14
A

<) R transitive, then R > R W R and, therefore D, (R v R) <
N,p Asp
D,(R) for every p. O

Theorem 5 [f (x,y) € A and p € [0,1], then

IMR(xv y) > ,URVC,)/SR(J?, y)
Np
. . and
ﬂDp(RvéﬁR)(way) < pip,ry(,y) if and only if ) S )
A,p < Ao
P> wo)-maley)
e
Proof. As (z,y) € A, we have
7TRV6,6R($, y) — 7TR({L'7 y) =
Np
(IMR(J;7 y) N 'uRvéﬁR(x7 y)) + (Z/R(l', y) - VRVéﬁR(xv y)) > 0.
Ap Ap

=) We suppose that " (2,y) < pp,(r)(2,y), then
r

(R'CR)
Ap
\"2 \"2 <

pove (Ty) o7 ve (0,y) < pr(e,y) + pra(, y),

Ap Ap
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therefore

pr(E,y) > p v (2,y) i p # 0
Np

pr(,y) =t vs (2,y) if p =0
Ap

by means of hypothesis we know that ’ (RvéﬁR)(:Jc,y) < wp,r) (T, Y),
r

Ap

that is to say,

0 S P (7‘— v,8 (l',y) - WR(xvy)) S ﬂR(xvy) - IMRVéﬁR(xvy)v

R 6 R)
Np Np
then
pR(Y) = e (2,9)
p< ~ :
B WRvéﬁR(xv y) - 7"—R(xv y)
Ao
“R(gjvy)_“RvéﬁR(l’vy)
<) in(@,y) 2 e (y) and p < g SR then
e R/\%pR

— v > v —
pr(e,y) = pvs (2,y) 2 p (”R (T Y) m(x,y))

Ap Ap

inequality is also verified if pgr(x,y) = ¢ _vs_(x,y) because in such way

Ro R
Ap
p = 0. In conclusion, o (VﬁR)(:I;,y) < up,m(r,y). O
§4 o]
Ap

ur(zy)—1 v 5 (2y)
R o R

With regard to the sign of ( £.f we can do the following
ﬂ-RVéﬁR zy)—7r(z,y)
Ap
considerations:
“R(gjvy)_“RvéﬁR(l’vy)
. /\7
D v(a0) =) 2 O then <
Ap °

Ap
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pr(zy)—1 v g (2.y)
R o R

b) if vr(z,y) — I/RvéﬁR(l',y) < 0, then — s (x,y)d?iR(ac,y) > 1, there-
Ap R o R
Ao
ur(@y)—u v (2y)

W s fulfilled, that |
fore, for every p € [0,1], p < T GO ) is fulfilled, that is to
np

say

The following table shows the valus that p must take in order to
fulfil that . (Rv’ﬁR)(x’y) < pip,(ry(x,y) when (z,y) € A.

Np
- MR(LZ/)—M v, (x,y)
IMR(xvy) - IMRVéﬁR(x7y) R/\opR
Ap Vp € 07 T vg (g;7y)—7TR(l’,y)
a) and RAopR
., > 7
Z/R(l',y) v AéiR(xvy) 0 'MDP(RVc’)ﬁR)(w’y) < ﬂDp(R)(x7y)
; A,p
Ap ?
b) and " (RvéﬁR)(x,y) < 1o, r)(7,y)
vr(2,y) = v _vs (2,y) <0 T
RoR
Np
Apl
,UR(xvy) < K _v,p (l’,y)
c) Ro R MDP(RVaﬁR)(w’y) < 1oy (:9)
Np
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Theorem 6 If A =X x X and p € [0,1] is fized, then

pr(T.Y) Z povs (2.9)

Ap

Dy (R \//\éi R) < Dy,(R) & ¥Y(z,y) € XxX MR(QE’y)_“R\;é,BR(l’W)
| p< Inf v
(my)eA ”RvéﬁR(l’vy) wr(z,y)

Proof. 1t is evident because of the previous Theorem. O
Corollary 2 If A= X x X, then

pr(@y) = p v (2,9)

D,(R vy’ R) < D,(R)Vp € [0,1] if and only if e > 1.
ro mve (€y) = TR(2,Y)
Ap
Proof. 1t is a direct consequence of the two previous theorems. O

Theorem 7 [f A= X x X, then

D,(R \//\C?f R) < D,(R)Vp if and only if R is transitive.

Proof. =) Through the Corollary 2, we have that

pr(wy) = pove (€y) 27 v (2,y) = 7r(2,y) > 0, then
A, p Np
IMR(xv y) Z ﬂRVéﬁR(xv y)
Ap
( RoR

pr(,y) =t e (29)) + (vR(2,y) = v vs (2,y)), therefore

Ap Ap

<) It is evident because of the monotony of D,. O
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Theorem 8 If (z,y) € C and p € [0,1] is fized, then

iy (T y) = iRz, y)
Ao
7"-R(xv y)(_ﬂ—RVéﬁR(xv y) ‘

Ap

ﬂDp(RVéﬁR)(x’y) < pip,ry(z,y) if and only if p >

Ap

Proof. As (x,y) € C, then wr(x,y) — WRVﬁR(:L',y) is bigger than zero,

therefore ’
TR(r.1) — 7 (19) =
A,p
= (ﬂRVéﬁR(xvy) - ,MR(SL’,y)) + (VRVéﬁR(x,y) — I/R(:z;,y)) >0
Np N,p
=)
r (Rvé,@R)(l',y) < pp,r)(z,y), therefore
P
Ap
ppve(8:9) +p7 v (2,y) < pr(e,y) + prr(z, y), then
A,p Ap

1) If IMRVéﬁR(xvy) > ﬂR(xvy)v then

A
i@ y) = iz, y)
p=> "
- 7"'R(xv y) - FRVéﬁR(xv y)
A
1oy (@y)—pr(zy)
B RAopR
i) If ﬂRvéﬁR(l’,y) < pr(x,y), then WR(%vy)—WRv,ﬁR(W/) < 0, therefore
e /\?p

IMRVéﬁR(xv y) - ILLR(:E7 y)
Ao

- 7"'R(xv y) - FRVéﬁR(xv y)

Ap
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t oy (zy)—ur(zy)
R o R

<:) p > WRE\xy)_”RvéﬁR(l’vy) as WR(xvy) - FRVéﬁR(xvy) > 0 and p €

A
Ao 0

[0, 1], we have

pove (@y) = pr(ey) < p | 7r(v,y) - WRvéﬁR(xay)) , then
A,p A, p

'qu(RvéﬁR)(x’y) < ,UDP(R)(w?y)‘ 0

Ap

The cases in which (z,y) € C satisfy mg(z,y) — WRvyﬁR(x,y) > 0,

Ao
that is
FR(J?,?J) - FRVéﬁR(xv y) =
Ao
= (ﬂRvéﬁR(xvy) - ﬂR(%y)) + (VRvéﬁR(xay) - VR(xvy)) >0
A,p Np

being possible the following situations
EL) IMRVéﬁR(xvy) - IMR(xvy) Z 0 and VRVéﬁR(xvy) - VR(SI?,y) Z 0.

Ap Np
In this case we have

TR(E,Y) =T v (0,9) 2 pve (2,y) = pr(e,y)
Np

Ao
therefore
pove (T,y) = (. y) # v () = pr(,y)
he <1, then Vp € he 1
Tr(2,y) = 7 v (,7) TR(,y) = 7 v (2,7)
Ap A p
iy 5 Y) = By (2:y).

Ap

toyp (2y)—ur(zy)
R o R

Notice that if WRE\;’y)_r Ve = 1, then I/RvégR(:z:,y) = vgr(z,y),
R/\OPR A p

from where ’ z,y) < pp,ry(x,y), being p = 1 the single value

AR}S’BR)(
that fulfils the ineduality of the Theorem.
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b) MRvéﬁR(:z:,y) — pr(z,y) > 0 and Z/RvéﬁR(l',y) — vr(z,y) < 0so

Ap Ap

7"'R(xv y) - FRVéﬁR(xv y) < IMRVéﬁR(xv y) - ILLR(:E7 y)v

Ap Ap

then
IMRVéﬁR(xv y) - ILLR(:E7 y)
Ap
>1
FR(J?,?J) - FRVéﬁR(xvy) 7
Ap
therefore

Ap € 0,1] ] (2,y) < pp,m) (@, y)-

v,B
o

Dp(R
Ap

R)

c) s (€y) = pr(e,y) <0 and v vs (2,y) = ve(e,y) > 0, then

Ap Ap

Ap

(2,y) — pr(z,y) <p (WR(:L', y) =7 v (T y)) , then

o v (224) S ppymy(e,y Ip.

The following table shows a review of the three last studied posi-
bilities.
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fove (@) = pr(,y) 20 o e
A,p Ao
Vp € Tr{zy)-7 y 5 (2y)’
@) and roR
v <
VRVéﬁR(xvy) —vr(z,y) >0 'qu(RAéiR)(x7y) < pip,r)(%,y)
A,p ;

' Ap € [0,1]
) and 3
VRvéﬁR(l'ay) < vg(x,y) ﬂDp(R\/iéﬁR)(x’y) < tipyry(2,y)
v - <
pove (@) = pr(,y) <0
A,p Vp
) and
VRvéﬁR(l'ay) — vr(z,y) >0 /LDP(sz\éﬁR)(xay) > ,UDP(R)(J},y)

Theorem 9 If C' = X x X and p € [0,1] is fived, then

IMRVéﬁR(xv y) - ILLR(:E7 y)

V7ﬁ . . A
D,(R o R) < D,(R) itf and only tf p > Sup £ .
p( Aop ) p( ) (z,y)eC WR(xv y) - FRVéﬁR(xv y)

Ap

Proof. 1t is evident through the previous Theorem. O

Corollary 3 If O = X x X, then

V.08 . .
D,(R 2 R) < D,(R) Vpif and only if
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i@ y) = iz, y)

Sup ald <0 if and only if
(z,y)€C Tr(T,Y) — ﬂ—RVéﬁR(xv y)
. . N < :
uRAéﬁR(x,y) pr(,y) < 0V(z,y)

Proof. 1t is a consequence of the two last Theorems. O

Theorem 10 [fC' = X x X, then

DR \/ic’)ﬁ R) < D,(R)Vp if and only if R is transitive.
P

Proof. =) For every (x,y) of C, we have

7TR($, y) > WRvéﬁR(xv y)
Ap
pr(,y) + vr(z,y) < IMRVC’,’BR(‘%” y)+ Z/RVcS’BR(:I;7 )

Ap Ap

and as the previous Corollary /LRVﬁR(:Jc,y) < pur(x,y), the result is

Ap

VR(xv y) < VRvéﬁR(xv y)‘

Ap

<) It is a consequence of the monotony of D,. O

The two following Theorems take previous partial results and take
the partition X x X = AU B U C into account.

Theorem 11 [f € IFR(X x X) and p € [0,1] is fized, then

2 . .
D,(R S, R) < D,(R) if and only if
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Y(z,y) € BNRVC,)/BR(%?J) < pur(x,y)

Ao
y <
iy (20y) < pr(,y)
Ao
V(z,y) € A prRlEY) =k e (20)
Ao
p = Int o )

R o R
Np

t oy (zy)—ur(zy)

Y(z,y) € Cp > Sup . o

Ao
R(l’vy)_7T v,8 (l’ﬂ‘/)‘
R o R

Ap

Proof. 1t is enough to consider the Theorems 3, 6 and 9. O

Theorem 12 Let’s take R € [FR(X x X).

Dy(R \//\of R) < D,(R)Vp if and only if
i (2:y) < prle,y) Vie,y) € BUC
MR(%@/)—MRvéﬁR(l’vy)

— > 1 V(x,y) € A.

™ v,B (x,y)—qu(Ly) -
R o R

Ap

Proof. 1t 1s a consequence of the Corollaries 1, 2 and 3. O

Theorem 13 Let’s take R € [FR(X x X)

R is transitive if and only if D,(R \//\éi R) < D,(R) Vp.

Proof. 1t is enough to remember the Theorem 4, 7 and 10. O

Corollary 4 Let’s have R € IFR(X x X) and RS’ R < R, then
P

Dy(R8 R) < Dy(R)¥p € [0,1] &



136 P. Burillo & H. Bustince

' <
'MRAéﬁR(x’ y) > ,MR(J?, y) V(l‘, y)
i vp (29)-nr(e)
R o R

and—:* Y(x,y) € A.

TREW) T s (@)
R o R

Ap

=

Proof. If R \//\éﬁ R =< R, then
P

pr(T.Y) 2 povs (2.9)
Ao
VR(xv y) > VRvéﬁR(xv y

Ap

) therefore mg(x,y) < ﬂ—RvéﬁR(x7y)

Ap

for every (x,y) € X x X, therefore X x X = AU B and through the
Theorem 3 and the Corollary 2, the Corollary is proved. O

Corollary 5 Let's take R € IFR(X x X) and RZ RS R, then
P
Dy(R IOf R) < Dy(R) Vp € [0,1] if and only if p_vs (2.y) < pir(x,y)

for every (x,y) € X x X.

Proof. Tt is analogous to the one made in the previous Corollary. O

4.2 Characterization of the transitivity with D,
and D,.

In order to relate the transitivity of R with the transitivities of Dy(R)
and D;(R) and subsequently of D,(R) we need the

Lemma 1 For every R € IFR(X x X)

. B B
i) Do(R 8 R)= Dy(R) 8 Do(R)
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i) Di(R ' R)=Di(R) 'S Di(R)

are fulfilled.

(z,y)

Proof. 1) p v.g

Do(R (@,y) = n vse

R R
A B* ) ( A B*

R)
o o8 = VBl (@, 2). oy (2,9)] =

Do(R) o Do(R)
—  (Blnlr ) o]} =

A, B*
= /’LR VéﬁR(xv y)

A, B*
i) 4, n 0 gty =1-v, 0 py(72Y)
A,B* A,B*

By o o (TY) = \l,/{ﬁ[um(m(%Z)aﬂD1<R>(Z=?J)]}:
= V{8l = va(z,2),1 — va(z,y)]} =
= V{1 = Fn(e. )1 — ()]} =
_ - MF (e =), vrlzw)]} =

= 1—1/RV65R(:1;,y). O
A, B*

Theorem 14 Let’s take R € IFR(X x X), R is transitive if and only
if Do(R) and D{(R) are transitive fuzzy.
Proof. =) Being R transitive, then

R>R Vé; R, therefore
A, B

Do(R) > Do(R AV%[’ R) = Do(R) Avif Do(R)
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Y R)=D,(R) 'Y Di(R).

Di(R) = Di(R 3 o

<) pr(x,y) = poory(T,y) >

vr(z,y) = 1—pp,m(z,y) <
< 1- 'uDl(R) Vc’;iDl(R)(x7y) = VR ch*R(xvy)' O

Next Theorem establishes a strong condition, with which an intu-
itionistic fuzzy relation R is transitive and D,(R) is also transitive for
every p € [0, 1].

Theorem 15 Let R be an element of IFR(X x X), if

>1l—-v_y
IMR(xvy) - 1 Z/R 6/3R(x7y)

A, B*
for every (x,y) € X x X, then
2) R is transitive intuitionistic

ii) D,(R) is transitive fuzzy for every p € [0,1].

Proof. i) pr(x,y) > 1— v, V,ﬁR(:L',y), then

A B*

L—vr(e,y) 2 pr(v,y) 21 =v ve (2,9) 2 p v (2,0) =

A, B* A, B*
IMR(xvy) S I — VR(xvy)v IMRVéﬁR(xvy) S 1 — Z/RvéﬁR(x7y)
A,B* A, G*
IMR(xvy) > ﬂRVéﬁR(xvy)v L — VR(xvy) >1— VRVéﬁR(xvy)v
A, B* A, G*

therefore

,MR(:E7 y) Z IMR Vé/BR(x7 y)? Z/R(x7 y) S Z/R VéﬁR(x7 y)
A, B* A, B*

V(x,y)eXxX;»RzRAvéﬁiR.
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i) As pr(x,y) > 1 — vpus(z,y) Y(z,y) € X x X we have
75
Do(R) > Dy(R) AV%* Di(R).
We know through the item i) that R is transitive, then through the
Theorem 14, we have that Dy(R) > Di(R) Vé; Dy(R). Using D,
/\ *

properties and the monotony of the Compositiori, the result is

Do(R) < D,(R) < Dy(R) therefore

B B B
Do(R) 8 Do(R) < Dy(R) 8 Dy(R) < Di(R) ¢ Di(R)

through the hypotheses of the Theorem, we get

& Dy(R) <

/\75* o

S Do(R) < D,(R) 3. D,(R) < Di(R)
D,(R) < Dy(R), then
) %" D(R) Wpelo,1. O

AG*

4.3 Partially included relations. Relation bet-
VA

VA
ween D,(R) S D,(R) and D,(R 2 R).

The relations analysed in the previous Theorem constitute an exces-
sively particular group of the set of all the intuitionistic fuzzy relations,
because, for example, if R € IFR(X x X)), is reflexive and satisfy the
conditions of the Theorem, then R is fuzzy. Our objective is to find
the most general conditions with which we can assure that, if R is
transitive intuitionistic, then D,(R) is transitive fuzzy.

The composition that we will consider the following Theorems is

R Zéc R), that is, = A and p = V.
Theorem 16 If R € IFR(X x X) is partially included, then
VA V,A
Dy(R) AN Dy(R) < Dy(R v R)

for every p € [0, 1].
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Proof. Because of we being partially included, it is verified that

—p) - pr(@,2) +p- (1= vr(2,2))] A
(L=p)-pr(zy)+p- (1 —vr(zy))] =
1 —=p)[ur(z,2) A pr(z,9)] + p[l = ve(@,2)) A (1 = vr(2,y))],
therefore
= \/{[ L —p)-pr(z,2)+p- (1_VR(27?J)] =

AL =p) - pr(zy) +p- (1= vr(zy)| } =
= V{la-» MﬂszWm@yﬂ+

0+ (1= vale, 2) A (1= vr(z )]} <

Ky Dy )

< (1=p)-\{unle, =) A pr(zy) f+
+p- \/ {(1 —vp(x,z)) A (1 — Z/R(Z,y))} =
- ”DP(RVéAR)(x’y)’
N D) S D,(R) < D,(RS) R

for every p € [0,1]. O
Next example shows the existence of relations R € IFR(X x X),

which fulfil the condition D,(R) Zéc D,(R) < D,(R Zéc R) for every

p € [0,1] and they are not partially included.
Let’s take X = {x,y} and R € IFR(X x X) given by

x Y z Y
pr=1| 2 02 0 vr=\| « 04 06 |,
y 0.1 0.7 y 0.7 0.2

from where the result is

Z ¥ Z ¥
Hov.A_ = z 0.2 0 V v _ = z 0.4 0.6 .
Ro R Ro R
y 0.1 0.7 y 0.7 0.2
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For every p € [0, 1] we have

x Y
KD, (R) = x 02404p 04 0.4p .
y 0.1402p 0.7+0.1p

therefore

€ Y
IMDP(R)VDP(R) = Z 02 —|— 04}? 0 —|— 04}? .
y 0.1402p 0.7+0.1p

x Y
lquRVDpR: xr 02—|—04p 0—|—04p .
y 0.14+02p 0.7+0.1p

SO

V,A V,A
Dy(R) v Dy(R) = Dp(R AN R) Vpel0,1]

and, however, R is not partially included, because

pr(z,y) — pr(y,x) = —0.1
ve(y,v) — vr(z,y) = 0.1

The following relations present some of the properties studied in
this paper.

A) Transitive and partially included.

Let’s take X = {x,y} and R € IFR(X x X) given by

z y z y
pur|l 1 0205 |. vg|l 2 0 0.016 |.
y 0326 1 y 0.016 0
B) Partially included and non-transitive.

Let’s take X = {x,y,2} and R € IFR(X x X)) such that

z y z vy z
z 0.177 0.177 0.298 z 00 0
PRy 0177 0177 0177 | "Bl y 0 0 0
z 0.177 0.177 0.177 2 0 0 0.101
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C) Transitive and not partially included.
Let’s take X = {x,y,2} and R € [FR(X x X)

x Y z x Y z

z 1 0.089 0.089 z 0 0.176 0.176

PRy 0541 1 0807 | "By 0211 0 0.146
2 0541 0475 1 © 0271 0.086 0

D) It is not transitive and not partially included.

Let’s take X = {x,y,2} and R € [FR(X x X)

x Y z x Y z

0 0.377 0.793 z 0 0320 0.063
Ry 0 0190 0.069 |° "% y 0 0.634 0.517
0 0.005 0.307 0 0.858 0.080

4.4 Transitive and partially included relations.
Conservation of transitivity.

Notice that we take 8 = A and p = V.

Theorem 17 Let’s take R € IFR(X x X)) partially included.
R is transitive if and only if D,(R) is transitive fuzzy for every
p € 10,1].

Proof. Through the Theorem 16, we know that if R is partially in-
cluded, then D,(R) s D,(R) < D,(R Y R), besides, R is transitive
ANV A

if and only if D,(R) > D, (R Zéc R) for every p € [0, 1], so

V,A V,A
Dy(R) &) Dy(R) < Dy(R S, R) < D(R)¥p € [0,1]. O

The previous condition of R being partially included is not super-
fluous, because next example shows a relation R transitive and not
partially included with D,(R) transitive for every p € [0, 1].

T x oy
1 0| wve=|2a 0 06|,
y 0.1 1 y 0.7 0
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it is easily proved that R is transitive and not partially included, be-

cause
pr(z,y) — pr(y,x) = —0.1
vr(z,y) — pr(y,z) = 0.1,
besides
€ Y
KDy(R) = x 1 04 0.4p
y 0.14+0.2p 1
€ Y
VDP(R)VéADp(R) = Z 1 0 —|— 04}?
Y y 0.14+0.2p 1

therefore D, is transitive for every p € [0, 1].

Now we are going to present, by means of simple verified exam-
ples, non- transitive intuitionistic fuzzy relations R, such that D,(R)
is transitive fuzzy for some concrete values of p € [0, 1].

A) Intuitionistic fuzzy relation R that is neither transitive nor par-
tially included, and however, Dga9(R) is transitive fuzzy

T Y € Y
pp=| =« 0 0 vp=| 2« 0 0 ,
y 0.047 0.081 y 0.1 0.2
it is not transitive because
x Y z Y
'uRvéAR = Z 0 0 Z/RVéAR = X 0 0 5
AV y 0.047 0.081 AV y 0.1 0.1

it is not partially included, so that

rr(x,y) — pr(y,y) = —0.081
vr(y,y) —vr(x,y) = 0.2
and Dy o9(R) is transitive, because Dga9(R) = Dg29(R)

V,A
/\C,)v D0.29(R)-
T Y
IMDO.29(R): x 0.290 0.290 5
y 0.294 0.290
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x ¥

y =« 029 029
Do.29(R) o Do.2s(R)

AV ) 029 029

B) Next relation R € IFR(X x X), is partially included, non- tran-
sitive and it is such that Do(R) is transitive

z y z y
pr=1 « 0121 0.121 vg=| = 0.006 0.006 |,

y 0.121 0.121 y 0.006 0.107

it is evidently partially included, it is not transitive because

€ Y € Y
wova =1 = 0121 0.121 vva = 1| 2« 0.006 0.006 |,
R o R R o R

AV y 0.121 0.121 AV y 0.006 0.006

besides
T Y
[LDo(R) = ( r 0.121 0.121 )
y 0.121 0.121
T Y
Z/DO(R)VC,)/\DO(R) =1 z 0.121 0.121
AV y 0.121 0.121

Theorem 18 If R € IFR(X x X) is reflexive, transitive and partially
included, then

V,A V,A
Dy(R) AN Dy(R) = Dp(R AN R) = Dy(R)

for every p € [0, 1].

Proof. Through the Theorem 17, we have
V,A V,A
Dy(R) v Dy(R) < Dy(R AN R) < Dy(R)

and as R is reflexive, then D,(R) is reflexive (Theorem 1), that is to
say
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SO

V,A V,A
Dp(R) /\C,)v Dp(R) = Dp(R /\C,)v R) = Dp(R)' .
Lemma 2 For every R € IFR(X x X), it is verified that
A
i) Do(R) = Do(R)V DZ(R)V D3(R)V ...V D} (R)

i) Dy(R) = Dy(R)V DX(R)N DXR)V ...V DXR)

Proof. We will use the following notaion in the whole proof

R*=R Zoc R, R =R Zoc R Zoc R, DX(R) = Dy(R) ZOC Do(R), etc...

A
i) R=RV R*V R*V ...V R" from where

(xvy) = ,URVR2VR3V...VR"($7?J) =
= pr(z,y) Vo ppe(r,y) Vg (2,y) VoV e (2, y)

"k

for every (x,y) € X x X, through the Lemma 1 we know that

IMDO(RZc’)CR)(x7 y) = IMDO(R)ZCSCDO(R)(:E7 y)?

then
MDO(]A%)(x,y) = paley) =
= pr(z,y) V ppe(2,y) V ppe(2,y) VooV ppe(2,y) =
= ILI/DO(R)(x7y) \/IMDOVC,)/\DO(J?,y)...
therefore

A

Do(R) = Do(R)V DE(R)V ...V D§(R)

ii) we know that

V%(x,y) = VR/\R2/\R3/\.../\R"($7?J) =
vr(x,y) Avge(a,y) A vge (2, y) Ao Avgpn(z,y)
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for every (x,y) € X x X, through the Lemma 1, we have

IuDl(RZé’CR)(x7 y) = IuDl(R)Zé’CDl(R)(x7 y)?

then

NDO(]A%)(%?J) = l—wala,y) =
= 1 —Awr(z,y),vre(x,y), vre(2,y)...) =
= (1 —=vr(z,y) V(1 —vge(z,y)) V...V (1l —vpn(x,y)) =
= ppyr) V b2y V.-V ppp(R),

therefore

A

Di(R) = D{(R)V D}(R)V D}(R)V...VD}(R). O
Theorem 19 For every R € IFR(X x X), it is verifed that

JE—

i) Do(R) = Do(R)

JE—

ii) Di(R) = Dy(R)

Proof. 1t is a consequence of the Lemmas 1 and 2. O

Theorem 20 If for every R € IFR(X x X), is reflexive, then

—
e

D,(R) = D,(R) & D,(R).

Proof. We sill use the same notation that in the Lemma 2

JE—

D,(R) < D,(R) 'S D,(R)= D,(R) < DXR) =
D,(R) < DXR)< D¥R) < DYR)< DYR)<DSR)<...

I I I I

calculating D,(R) and DZ(R) and imposing that D,(R) < D2(R), we
get

D,(R)V DX(R)V D}(R)V DXR)V D3(R)--- =
= D3(R)V Dy(R)V Dy(R)V--- D

p
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5 Conclusions

From the study made on the intuitionistic fuzzy relations we can say
that these ones generalize the fuzzy relations.

However it is necessary to remark that certain properties, such
as intuitionistic antisymmetry doesn’t recover the fuzzy antisymmetry
given by A. Kaufmann when you apply the definition given by us on
fuzzy relations.

We have also seen that Atanassov’s operators support in a natural
way properties as reflexivity, symmetry, intuitionistic antisymmetry,
etc. Nevertheless for the intuitionistic transitive property to be sup-
ported by these operators we have had to study (and define) the par-
tially included relations. Finally, it is worth to remark that all fuzzy
relation is partially included; which is not verified for the intuitionistic
relations.

6 Future works

Nowadays we are using the theory developed in these two papers in
the study of the Equations of intuitionistic fuzzy relations from the
algebraic point of vies as from the algorithmic point of view.

We have also started the study of the Intuitionistic Logic and its
possible application in knowledge Engineering, Natural language, etc...

Finally we have to say that these intuitionistic fuzzy relations are
being applied by K. Atanassov and ourselves on Graphos Theory and
Neural Network.

References

[1] C. Alsina, E. Trillas and L. Valverde, Sobre conectivos 1dgicos no
distributivos para la Teoria de los conjuntos borrosos. Pub. Mat.

UAB, 20, 69-72, (1980).

[2] K.T. Atanassov, Intuitionistic Fuzzy Sets. Fuzzy Sets and Sys-
tems, 20, 87-96, (1986).



148

3]

[11]

[12]

[13]

[14]

P. Burillo & H. Bustince

K.T. Atanassov, More on Intuitionistic Fuzzy Sets. Fuzzy Sets
and Systems, 33, 37-45, (1989).

K.T. Atanassov, Review and New Results on Intuitionistic Fuzzy

Sets, IM-MFAIS, 1, (1988).

G. Birkhoft, Lattice Theory. 3rd ed., American Mathematical
Society Colloquium Publications, Vol. XXV, Providence, R.I.
1967.

T.T. Buhaescu, Some Observations on Intuitionistic Fuzzy Rela-
tions. Intimerat Seminar on Functional Fquations, 111-118.

P. Burillo and H. Bustince, Estructuras Algebraicas en Conjun-
tos intuicionistas Fuzzy, I Congreso Espanol sobre Tecnologias

y Logica Fuzzy, Boadilla del Monte, Madrid, 135-146 (1992).

H. Bustince, Conjuntos Intuicionistas e Intervalo valorados difu-
sos: propiedades y construccion. Relaciones Intuicionistas Fuzzy.

Thesis. Universidad Publica de Navarra, (1994).

D. Dubois and H. Prade. A Class of Fuzzy Measures Based on
Triangular Norms. Inst. J. General Systems, 8, 43-61 (1982).

L.W. Fung and K.S. Fu, An Axiomatic Approach to Rational
Decision-Making in a Fuzzy Environment. Int: L.A. Zadeh, K.S.
Fu, K. Tanaka, M. Shimura. Eds. Fuzzy Sets and decision pro-
cesses, Academic Press, 227-256, (1975).

L.A. Gonzélez, Analisis Algebraico de Relaciones Difusas, Tesis

Doctoral, Alcala de Henares, (1987).

A. Kautmann, [Introduction a la Théorie des Sous-Ensembles

Flous. Vol. I, 11, TIT and IV, Masson, 1977.

E.P. Klement, Operations on Fuzzy Sets and Fuzzy Numbers
Related to Triangular Norms.

K. Menger, Statistical Metrics, Proc. N.A.S., Vol. 28, 1942.



