On some constructions of new triangular norms

Radko Mesiar Slovak Technical University Bratislava Radlinského 11, 813 68 Bratislava Slovakia

Abstract

We discuss the properties of two types of construction of a new t-norm from a given t-norm proposed recently by B. Demant, namely the dilatation and the contraction. In general, the dilatation of a t-norm is an ordinal sum t-norm and the continuity of the outgoing t-norm is preserved. On the other hand, the contraction may violate the continuity as well as the non-continuity of the outgoing t-norm. Several examples are given.

Keywords: contraction, dilatation, ordinal sum, triangular norm.

1 Introduction

Among several constructions of the new t-norms form given ones [2,3,4], we recall two basic constructions arisen from the semigroup interpretation of a triangular norm, see Schweizer and Sklar [3].

Ordinal sum: Let $[a_k, b_k]$; $k \in \mathcal{K}$ be a disjoint system of open subintervals of the unit interval [0,1] and let $[T_k; k \in \mathcal{K}]$ be a system

40 R. Mesiar

of given t-norms. For $x, y \in [0, 1]$, put

$$T(x,y) = \begin{cases} a_k + (b_k - a_k)T_k ((x - a_k)/(b_k - a_k), \\ (y - a_k)/(b_k - a_k)) & \text{if } x, y \in [a_k, b_k] \\ & \text{for some } k \in \mathcal{K} \end{cases}$$

$$\min(x,y) \qquad \text{otherwise}$$

Then T is a t-norm and it is called an ordinal sum with summands $\langle a_k, b_k, T_k \rangle$, $k \in \mathcal{K}$, briefly $T \sim [\langle a_k, b_k, T_k \rangle; k \in \mathcal{K}]$.

Semigroup deformation: let $\phi : [0,1] \to [a,1]$, $a \in [0,1[$, be an increasing bijection. Let T be a given t-norm. For $x,y \in [0,1]$ put

$$T_{\phi}(x,y) = \phi^{(-1)}(T(\phi(x),\phi(y)),$$

where $\phi^{(-1)}: [0,1] \to [0,1]$ is the pseudo-inverse of ϕ , $\phi^{(-1)}(x) = \phi^{(-1)}(\max(a,x))$. Note that if a=0 then T_{ϕ} is called a ϕ -transformation of T and T and T_{ϕ} are isomorphic (and hence the properties such as continuity, strictness, etc., are preserved). If a>0 then the deformation T_{ϕ} preserves the continuity and the Archimedean property (and the nilpotency) but the strictness may be violated. Take, e.g., the product t-norm T_P and let $\phi(x) = 2^{x-1}$, i.e., a = 1/2 and $\phi^{-1}(x) = 1 + \log_2 x$. Then

$$(T_P)_{\phi}(x,y) = 1 + \log_2 \max(1/2, 2^{x-1} \cdot 2^{y-1}) = \max(0, x+y, -1).$$

Hence the ϕ -deformation of the strict product t-norm T_P is the nilpotent Lukasiewicz t-norm T_L , $(T_P)_{\phi} = T_L$.

Recently, Demant [1] has suggested two new types of t-norm constructions. Let $\phi : [0,1] \to [0,a]$, $a \in]0,1]$, be a given increasing bijection. For $x \in [0,1]$ we define the pseudo-inverse of ϕ by $\phi^{(-1)}(x) = \phi^{-1}(\min(a,x))$. Let T be a given t-norm. For $x,y \in [0,1]$, we define:

Contraction:

$$T^{(\phi)}(x,y) = \begin{cases} \phi^{(-1)}\left(T(\phi(x),\phi(y))\right) & \text{if max } (x,y) < 1\\ T(x,y) & \text{otherwise} \end{cases};$$

Dilatation:

$$T_{(\phi)}(x,y) = \begin{cases} \phi\left(T(\phi^{(-1)}(x), \phi^{(-1)}(y))\right) & \text{if } T(x,y) < a \\ T(x,y) & \text{otherwise} \end{cases}.$$

Both the contraction and the dilatation of a t-norm T are again t-norms, see [1]. Note that in the case a=1 both the dilatation and the contraction are the usual semigroup transformation of Schweizer and Sklar [3], $T^{(\phi)} = T_{\phi}$ and $T_{(\phi)} = T_{\phi^{-1}}$. Further note that the only t-norms preserved by arbitrary deformation, transformation, and contraction are the limit t-norms T_M and T_W . However, the only t-norm preserved by an arbitrary dilatation is T_M , while $(T_W)_{(\phi)} \neq T_W$ whenever $\phi(1) \neq 1$.

2 Contractions of t-norms

For a given bijection $\phi:[0,1]\to [0,a]$ with a<1 and a given t- norm T, the values of the contraction $T^{(\phi)}$ on the half-open square $[0,1[^2$ depend on the values of T on the half-open square $[0,a[^2]$ only (the remainder of the domain is contained in the borders of the unit square where all t-norms coincide). Hence the non-continuity (and the absence of the Archimedean property) of T need not be true for its contraction $T^{(\phi)}$. On the other hand, the continuity of T may be violated by $T^{(\phi)}$, too, while the Archimedean property remains preserved.

Example 1 i) Let $\phi(x) = a \cdot x$, $a \in]0,1[$, and let $T = T_P$. Then the contraction $T^{(\phi)}$ is defined by

$$T^{(\phi)}(x,y) = \begin{cases} a \cdot x \cdot y & \text{if } max (x,y) < 1 \\ x \cdot y & \text{otherwise} \end{cases}.$$

Note that $T^{(\phi)}$ is not continuous although T is continuous. Further, the strictness $T^{(\phi)}(x,y) < T^{(\phi)}(x,z)$ for each x>0, y< z, holds true.

42 R. Mesiar

ii) Let $\phi(x) = a \cdot x$, $a \in]0,1[$, and let $T \sim [<0,a,T_P>,<<a,1,T_W>]$ be an ordinal sum t-norm. Then T is non-continuous (and non-Archimedean) but $T^{(\phi)} = T_P$ is continuous and Archimedean.

For a composition law of two contractions we have the following result.

Proposition 1 Let $\phi:[0,1] \to [0,a]$ and $\psi:[0,1] \to [0,b]$ be two bijections with $a \le 1$ and $b \le 1$. Let T be a given t-norm. Then

$$\left[T^{(\phi)}\right]^{(\psi)} = T^{(\phi \circ \psi)},$$

i.e., the ψ -contraction of a ϕ -contraction of T is the $\phi \circ \psi$ -contraction of T.

The problem of t-norms invariant under given ϕ -contraction will be partially solved in the next section.

3 Dilatations of t-norms

Non-trivial dilatations (i.e., when a < 1) are always ordinal sums with two summands.

Proposition 2 Let $\phi : [0,1] \to [0,a]$ be a given increasing bijection where $a \in]0,1[$ and let T be a given t-norm. Then the ϕ -dilatation of T is an ordinal sum with two summands,

$$T_{(\phi)} \sim \left[<0, a, T_{\phi/a} >, < a, 1, T_a > \right],$$

where $T_{\phi/a}$ is the transformation T of with respect to the mapping ϕ/a : $[0,1] \rightarrow [0,1]$, while T_a is the deformation of T with respect to the linear transformation $\lambda_a: [0,1] \rightarrow [a,1]$, $\lambda_a(x) = a + (1-a) \cdot x$, depending only on T and a (independent of ϕ up to the value $a = \phi(1)$), $T_a = T_{\lambda_a}$,

$$T_a(x,y) = \left(\max \left[0, T(a + (1-a) \cdot x, a + (1-a) \cdot y) - a \right] \right) / (1-a).$$

Remark 1 For Archimedean continuous t-norms we have the following result: let f be an additive generator of a given t-norm T [5] and let the left derivative of f in the point 1 be non-trivial, $f'_{-}(1) \in]-\infty, 0[$. Then $\lim_{a\to 1^{-}} T_a = T_L$, where T_L is the Lukasiewicz t-norm. The proof follows from the fact that if T has an additive generator f then T_a has an additive generator $f(a + (1 - a) \cdot x)$.

It is easy to see that for arbitrary dilatation the t-norm T_M remains stable. Further, for each $a \in]0,1[$ it is $[T_W]_a = T_W$ and hence for arbitrary ϕ it is $[T_W]_{(\phi)} \sim [<0,a,T_W>,< a,1,T_W>]$. Applying the ϕ -dilatation to T_W infinitely many times we get a new t-norm T_a^* depending only on a and invariant under ϕ -dilatation,

$$T_a^* \sim \left[\langle a^n, a^{n-1}, T_W \rangle; \ n \in \mathbb{N} \right].$$

A natural question arises: for a given transformation ϕ , are there some other ϕ -dilatation invariant t-norms up to T_M (a continuous t-norm) and T_a^* (a discontinuous t-norm)? It is obvious that each ϕ -dilatation invariant t-norm T^* different from T_M should be an ordinal sum of type

$$T^* \sim \left[< a^n, a^{n-1}, T >; n \in N \right],$$

where T is a t-norm such that $T = T_a = T_{\phi/a}$. Requiring the continuity of T, we have the following result.

Proposition 3 Let T be a continuous t-norm and let $a \in]0,1[$. Then T_a equals T if and only if T is the member of the extended Yager's family $\left[T_p^y, p \in]0,\infty\right]$ [6], i.e., $T_\infty^y = T_M$ and for $p \in]0,\infty[$, the t-norm T_p^y is generated by an additive generator f_p , $f_p(x) = (1-x)^p$, $x \in [0,1]$.

Note that the proof is based on a modified Cauchy functional equation. Further, let f be an additive generator of a given t-norm T. Then $T_{\phi/a}$ has an additive generator $f \circ (\phi/a)$, see [5], and thus T equals

44 R. Mesiar

 $T_{\phi/a}$ if and only if f differs from $f \circ (\phi/a)$ only by a multiplicative constant. For nilpotent t-norm T with the normed generator f (this is the case of the Yager's t-norms) this means that ϕ/a is the identity, i.e., $\phi(x) = a \cdot x$. We have just shown the next result.

Proposition 4 Let $\phi:[0,1] \to [0,a]$, where $a \in]0,1[$, be an increasing bijection. If ϕ is not linear then the only continuous t-norm invariant under ϕ -dilatation is the strongest t-norm T_M . If ϕ is linear, then the only continuous t-norms invariant under ϕ -dilatation are the members of the family $[T_{a,p}^*; p \in]0,\infty]$, where $T_{a,p}^* \sim [\langle a^n, a^{n-1}, T_p^y \rangle; n \in N]$.

Note that $T_{\infty}^* = T_M$. Further, it is usual to put $T_0^y = T_W$ (the left limit member of the Yager family). Then each member of the family $\left[T_{a,p}^*; p \in [0,\infty]\right]$, where $T_{a,0}^* = T_a^*$, is invariant under the ϕ -dilatation for $\phi(x) = a \cdot x$.

Remark 2 Note that the ϕ -contraction acts as an inverse of the ϕ -dilatation, the opposite being not true, i.e., for arbitrary t-norm T it is $\left[T_{(\phi)}\right]^{(\phi)} = T$. Now, it is obvious that if a given t-norm T is invariant with respect to a given ϕ -dilatation it has to be invariant also with respect to the corresponding ϕ -contraction.

References

- [1] Demant, B., Deformationen von t-Normen, ihre Symmetrien und Symmetriebrechungen, preprint.
- [2] Fodor, J.C., A remark on constructing t-norms, Fuzzy Sets and Systems 41 (1991), 195-199.
- [3] Schweizer, B. and Sklar, A., Associative functions and statistical triangle inequalities, *Publ. Math. Debrecen* 8 (1961), 169-186.
- [4] Schweizer, B. and Sklar, A., Associative functions and abstract semigroups, *Publ. Math. Debrecen* **10** (1963), 69-81.

- [5] Schweizer, B. and Sklar, A., *Probabilistic metric spaces*, North-Holland, New York, 1983.
- [6] Yager, R.R., On a general class of fuzzy connectives, Fuzzy Sets and Systems 4 (1980), 235-242.