On the Identity of Fuzzy Material Conditionals

Enric Trillas^a, Susana Cubillo^b and Adolfo R. De Soto^c
^aDept. Inteligencia Artificial. Univ. Politécnica de Madrid.
28600 Boadilla del Monte. Madrid, Spain.

^bDept. Matemática Aplicada. Univ. Politécnica de Madrid. 28600 Boadilla del Monte. Madrid, Spain.

 $e ext{-}mail: scubillo@fi.upm.es$

^cDept. Dirección y Economía de la Empresa. Univ. de León. 24071 León, Spain.

Abstract

Given μ , $\eta: X \to [0,1]$ we study when the equality $I_{\mu}^T = I_{\eta}^T$ holds, T being a continuous t-norm, and I_{θ}^T the elemental preorder:

$$I_{\theta}^{T}(y/x) = \sup\{z \; ; \; T(\theta(x), z) \leq \theta(y)\}.$$

Keywords: Equality of T-preorders, Material Conditionals.

1 Introduction.

Given a subset $A \subset X$, $A \neq \emptyset$, the material conditional associated to A is the relation in $X \times X$ given by $\to_A = (A \times A) \cup (A' \times X)$, which is obviously a preorder. The following theorem gives a characterization of a subset through its associated material conditional [?].

Theorem 1 If A and B are non-empty subsets of X, then:

$$\rightarrow_A = \rightarrow_B$$
 if and only if $A = B$

Proof. The sufficient condition is immediate.

Furthermore, since $\rightarrow_A = (A \times A) \cup (A' \times X) = (X \times X) - (A \times A')$, if $\rightarrow_A = \rightarrow_B$, that is, if $(X \times X) - (A \times A') = (X \times X) - (B \times B')$, then $A \times A' = B \times B'$, which holds if and only if A = B. \square

Given a fuzzy relation $I: X \times X \to [0,1]$, and a continuous t-norm T, it is known [?] that I is a T-preorder if and only if

$$I = \inf_{\mu \in \mathcal{F}} I_{\mu}^{T},$$

 \mathcal{F} being the set of the T-logical states of I, that is

$$\mathcal{F} = \{ \mu : X \to [0,1] ; T(\mu(x), I(y/x)) < \mu(y) \ \forall x, y \},$$

and I_{μ}^{T} the elemental preorder defined by

$$I_{\mu}^{T}(y/x) = \sup\{z \in [0,1] : T(\mu(x), z) \le \mu(y)\}.$$

Choosing $\mu = \varphi_A$, the classic characteristic function of A, is

$$I_{\varphi_A}^T(y/x) = \varphi_{\to_A}$$
;

and then it is natural to consider that the fuzzy elemental preorders are a generalization of the classic material conditionals¹. We can therefore study whether it is possible to extend theorem 1 to the fuzzy preorders.

2 Equality of fuzzy material conditionals.

If we start to pay attention to the equivalence for the Min t-norm, we obtain that if the preorders I_{μ}^{Min} , I_{η}^{Min} are equal, then μ and η can only be different at the maximum values of μx and ηx .

Theorem 2 $I_{\mu}^{Min} = I_{\eta}^{Min}$ if and only if

$$\mu x \neq \eta x \Rightarrow \mu x \geq \mu y \text{ and } \eta x \geq \eta y \text{ for all } y.$$

Proof. Let $I_{\mu}^{Min}(y/x) = I_{\eta}^{Min}(y/x)$, for each x,y. We know that:

$$I_{\theta}^{Min}(y/x) = \sup\{z \; ; \; Min(\theta x, z) \leq \theta y\} = \left\{ \begin{array}{ll} 1, & \text{if } \theta x \leq \theta y \\ \theta y, & \text{if } \theta x > \theta y \end{array} \right..$$

Let us choose an x such that $\mu x \neq \eta x$, and let us suppose that there exists a y verifying $\mu x < \mu y$. We will obtain $I_{\mu}^{Min}(y/x) = 1 = I_{\eta}^{Min}(y/x)$, and then $\eta x \leq \eta y$.

Furthermore, $I_{\mu}^{Min}(x/y)=\mu x=I_{\eta}^{Min}(x/y)<1$, and so $I_{\eta}^{Min}(x/y)=\eta x=\mu x$, which gives a contradiction; so, it must be $\mu x\geq \mu y$ for all

¹The elemental preorders are not the unique generalizations of the material conditional: see for example [?]

y. In a similar way, $\eta x \geq \eta y$ is obtained for all y.

Reciprocally, let us suppose that if $\mu x \neq \eta x$ then $\mu x \geq \mu y$ and $\eta x \geq \eta y$, for all y. We will prove that the equality $I_{\mu}^{Min} = I_{\eta}^{Min}$ holds.

- If $\mu x = \eta x$ and $\mu y = \eta y$, clearly $I_{\mu}^{Min}(y/x) = I_{\eta}^{Min}(y/x)$.
- If $\mu x=\eta x$ and $\mu y\neq \eta y$, then $\mu y\geq \mu x$, $\eta y\geq \eta x$, and $I_{\mu}^{Min}(y/x)=I_{\eta}^{Min}(y/x)=1$.
- If $\mu x \neq \eta x$ and $\mu y = \eta y$, we obtain $\mu x \geq \mu y$, $\eta x \geq \eta y$, and $I_{\mu}^{Min}(y/x) = \mu y = \eta y = I_{\eta}^{Min}(y/x)$.
- Finally, if $\mu x \neq \eta x$ and $\mu y \neq \eta y$, since $\mu x \geq \mu y$, $\eta x \geq \eta y$, and $\mu y \geq \mu x$, $\eta y \geq \eta x$, obviously $\mu x = \mu y$, $\eta x = \eta y$, and $I_{\mu}^{Min}(y/x) = I_{\eta}^{Min}(y/x)$. \square

Note. If T is Archimedean with additive generator h [?], then from: $I_{\mu}^{T}(y/x) = \sup\{z \mid T(\mu x, z) \leq \mu y\} = \sup\{z \mid h^{(-1)}(h(\mu x) + h(z)) \leq \mu y\},$ it follows:

- If $\mu x \leq \mu y$, then $h(\mu x) \geq h(\mu y)$, and $h(\mu x) + h(z) \geq h(\mu y)$ for all z. So, $h^{(-1)}(h(\mu x) + h(z)) \leq h^{(-1)}h(\mu y) = \mu y$ for all z, and $I^T_{\mu}(y/x) = 1$.
- If $\mu x > \mu y$, $h(\mu x) < h(\mu y)$ and $h(\mu y) h(\mu x) \in [0, h(0)]$. Let us see that $I^T_{\mu}(y/x) = h^{(-1)}(h(\mu y) h(\mu x))$. In fact, $h^{(-1)}(h(\mu x) + h \circ h^{(-1)}(h(\mu y) h(\mu x))) = h^{(-1)}(h(\mu x) + h(\mu y) h(\mu x)) = h^{(-1)}(h(\mu y)) = \mu y$ and for all $z > h^{(-1)}(h(\mu y) h(\mu x))$, it is $h(z) < h(\mu y) h(\mu x)$, $h(\mu x) + h(z) < h(\mu y) \le h(0)$ and $h^{(-1)}(h(\mu x) + h(z)) > h^{(-1)}(h(\mu y)) = \mu y$.

Therefore, we obtain

$$I_{\mu}^{T}(y/x) = \begin{cases} 1, & \text{if } \mu x \leq \mu y \\ h^{(-1)}(h(\mu y) - h(\mu x)), & \text{if } \mu x > \mu y. \end{cases}$$

The following theorem asserts that in the case of strict Archimedean t-norms, the preorders associated to μ and η are equal if and only if μ and η have "similar forms".

Theorem 3 If T is a strict Archimedean t-norm with additive generator h, $I_{\mu}^{T} = I_{\eta}^{T}$ if and only if there exists $k \in R$ such that for all $x h(\mu x) = k + h(\eta x)$.

Proof. As T is strict, $h^{(-1)} = h^{-1}$. Let $I_{\mu}^T = I_{\eta}^T$, and let us choose some x, y.

Firstly, let us point out that if $\mu x < \mu y$, then $I_{\eta}^T(x/y) = I_{\mu}^T(x/y) = h^{(-1)}(h(\mu x) - h(\mu y)) < 1$; so $\eta x < \eta y$. Similarly, if $\eta x < \eta y$, it is $\mu x < \mu y$.

So, if $\mu x < \mu y$, $I_{\mu}^T(x/y) = h^{-1}(h(\mu x) - h(\mu y)) = I_{\eta}^T(x/y) = h^{-1}(h(\eta x) - h(\eta y))$, if and only if $h(\mu x) - h(\mu y) = h(\eta x) - h(\eta y)$, if and only if $h(\mu x) - h(\eta x) = h(\mu y) - h(\eta y)$.

Also, if $\mu y < \mu x$, then $h(\mu y) - h(\eta y) = h(\mu x) - h(\eta x)$.

Finally, if $\mu x = \mu y$ then $\eta x = \eta y$, and newly $h(\mu x) - h(\eta x) = h(\mu y) - h(\eta y)$.

Therefore $h(\mu x) - h(\eta x)$ is a constant k for all x, and $h(\mu x) = k + h(\eta x)$ for each x.

Reciprocally, if there exists $k \in R$ such that for all x the equality $h(\mu x) = k + h(\eta x)$ holds, since $h(\mu x) - h(\eta x) = k = h(\mu y) - h(\eta y)$, we obtain $h(\mu x) + h(\eta y) = h(\mu y) + h(\eta x)$; then $\mu x \leq \mu y$ if and only if $h(\mu x) \geq h(\mu y)$, if and only if $h(\eta x) \geq h(\eta y)$, if and only if $\eta x \leq \eta y$.

So, if $\mu x \leq \mu y$, then $\eta x \leq \eta y$ and $I^T_{\mu}(y/x) = 1 = I^T_{\eta}(y/x)$; and if $\mu x > \mu y$ then $\eta x > \eta y$, and $I^T_{\mu}(y/x) = h^{-1}(h(\mu y) - h(\mu x)) = h^{-1}(k + h(\eta y) - k - h(\eta x)) = h^{-1}(h(\eta y) - h(\eta x)) = I^T_{\eta}(y/x)$. \square

In the particular case in which μ and η "have points", that is, they are normalized, we can get:

Corollary 1 If T is Archimedean and strict, and μ and η are such that there exist x, y with $\mu x = 1$, $\eta y = 1$, then

$$I_{\mu}^{T}=I_{\eta}^{T}$$
 if and only if $\mu=\eta$.

Proof. The sufficient condition is clear.

On the other hand, if $I_{\mu}^{T} = I_{\eta}^{T}$, there exists $k \in R$ such that for all z $h(\mu z) = k + h(\eta z)$.

In particular, $h(\mu x) = 0 = k + h(\eta x) \le h(\eta x)$, and necessarily $k \le 0$.

Analogously, $h(\mu y) = k + h(\eta y) = k + 0$, and then $k \ge 0$.

So k=0, and then $h(\mu z)=h(\eta z)$, and $\mu z=\eta z$ for all z. \square

Now, for the case in which μ and η "have not some points", we have

Corollary 2 If T is Archimedean and strict, and μ and η are such that there exist x, y with $\mu x = 0$, $\eta y = 0$, then

$$I_{\mu}^{T}=I_{\eta}^{T}$$
 if and only if $\mu=\eta$

Proof. If $I_{\mu}^{T} = I_{\eta}^{T}$, there exists $k \in R$ with $h(\mu z) = k + h(\eta z)$ for all z.

As $\mu x = 0$, it is $h(0) = k + h(\eta x) \le k + h(0)$, and then $0 \le k$. And since $\eta y = 0$, $h(\mu y) = k + h(0) \le h(0)$, and $k \le 0$.

We get that k=0 and $\mu=\eta$. \square

Theorem 4 If T is a non-strict Archimedean t-norm, with additive generator h,

 $I^T_\mu = I^T_\eta$ if and only if there exists $k \in R$ such that for all x it is $h(\mu x) = k + h(\eta x)$. Furthermore, if that holds, for all x it is $k \le h(0) - h(\eta x)$.

- *Proof.* Let $I_{\mu}^{T} = I_{\eta}^{T}$ be, and let us choose any x, y.

 If $\mu x < \mu y$, $h(\mu x) > h(\mu y)$ and $I_{\mu}^{T}(x/y) = h^{(-1)}(h(\mu x) h(\mu y)) = I_{\eta}^{T}(x/y) < 1$, and then $\eta x < \eta y$, $h(\eta x) > h(\eta y)$ and $I_{\eta}^{T}(x/y) = h^{(-1)}(h(\eta x) h(\eta y)) = 1$ $h^{(-1)}(h(\mu x)-h(\mu y))$, which implies (because of $h(\eta x)-h(\eta y)\in [0,h(0)]$ and $h(\mu x) - h(\mu y) \in [0, h(0)]$ that $h(\eta x) - h(\eta y) = h(\mu x) - h(\mu y)$ and $h(\mu x) - h(\eta x) = h(\mu x) - h(\mu y)$ $h(\mu y) - h(\eta y)$.
 - In a similar way if $\mu y < \mu x$, then $\eta y < \eta x$ y $h(\mu y) h(\eta y) = h(\mu x) h(\eta x)$.
 - In the case in which $\mu x = \mu y$, $\eta x = \eta y$ and $h(\mu x) h(\eta x) = h(\mu y) h(\eta y)$.

Then for all x, y holds $h(\mu x) - h(\eta x) = h(\mu y) - h(\eta y)$, and there exists $k \in \mathbb{R}$ such that for all $x h(\mu x) - h(\eta x) = k$ and $h(\mu x) = k + h(\eta x)$.

In this case, if there exists x with $k > h(0) - h(\eta x)$, we obtain the contradiction $h(\mu x) = k + h(\eta x) > h(0) - h(\eta x) + h(\eta x) = h(0)$. So $k < h(0) - h(\eta x)$ for all x.

Reciprocally, let us suppose that there exists $k \in R$ such that for all $x \mid k \leq R$ $h(0) - h(\eta x)$ y $h(\mu x) = k + h(\eta x)$.

- If $\mu x \le \mu y$, $k+h(\eta x) \ge k+h(\eta y)$, $h(\eta x) \ge h(\eta y)$ and $\eta x \le \eta y$. Therefore, $I^T_\mu(y/x) = I^T_\eta(y/x) = 1$.
 - If $\mu x > \mu y$, $k + h(\eta x) < k + h(\eta y)$, $h(\eta x) < h(\eta y)$, and $\eta x > \eta y$.

Then,
$$I^T_\mu(y/x)=h^{(-1)}(h(\mu y)-h(\mu x))=h^{(-1)}(k+h(\eta y)-k-h(\eta x))=h^{(-1)}(h(\eta y)-h(\eta x))=I^T_\eta(y/x)$$
. \Box

Let us point out that newly, if the preorders associated to μ and to η concur, μ and η must have "similar forms", but now, furthermore, their distance is bounded

by $h(0) - \sup_{x} \{h(\eta x)\}.$

Analogously, in the case in which μ and η "have points", and in the case in which its complements "have points", it holds:

Corollary 3 If T is Archimedean non-strict and μ and η are such that there exist x, y with $\mu x = 1$, $\eta y = 1$, or there exist x, y with $\mu x = 0$, $\eta y = 0$, then

$$I_{\mu}^{T} = I_{\eta}^{T}$$
 if and only if $\mu = \eta$.

Proof. Similar to the case of the Archimedean strict t-norms.

Acknowledgements.

The authors are indebted to Prof. Claudi Alsina (Barcelona-Spain) and to the referees, for their hints in the development of this paper.

References

- [1] Cubillo, S., Contribución al estudio de la lógica y de los condicionales borrosos. (in Spanish), Doctoral Thesis, Universidad Politécnica de Madrid. Madrid, 1993.
- [2] Schweizer, B., Sklar, A., Probabilistic Metric Spaces. Elsevier North-Holland. New York, 1983.
- [3] Trillas, E., Cubillo, S., Rodríguez, A., An Essay on Name and Extension of Rule-given properties. IPMU'94. París, 1994.
- [4] Trillas, E., On Logic and Fuzzy Logic. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 1, No. 2 107-137, 1993.