Mathware & Soft Computing 3 (1994) 297-308

Systolic Architectures for Fuzzy
Processing and their Simulation

Luis de Salvador!, Marcos Garcial, Julio Gutiérrez!-?

! Laboratorio de Hardware y Control Avanzado
Inst. Nac. de Técnica Aeroespacial. Ctra. Ajalvir km. 4.
28850 Torrejon de Ardoz. Madrid. Espana
e-mail: salvadorla@inta.es
2 Dept. Tecnologfa Foténica. Univ. Politécnica de Madrid
Campus de Montegancedo. 28660 Madrid

Abstract

This paper details the study of systolic architectures for fuzzy rules pro-
cessing made at the Hardware and Advanced Control Laboratory - INTA.
The theoretical basis of these architectures is described and analysed. Like-
wise, the resultant schematics are simulated using a hardware description
language (VHDL) with standard cells from ES2. This gives us a very ac-
curate assessment of their real performance. In this way we can detect the
inherent shortcomings in this class of systems and we outline several ways of
overcoming then.

Keywords: Fuzzy, Fuzzy Control, Systolic, Simulation, VHDL.

1 Introduction

One of the fields of research in fuzzy logic is the development of specific hardware
with which we can obtain all the advantages of working with this class of models.
There are, basically, two areas of research in fuzzy controllers: analog design and
digital design. The latter brings out solutions based on systolic architectures. To
systolize a problem consists in dividing it into identical elementary operations that
can be executed together synchronously in parallel [1,2]. We can represent all these
elementary operations as a set of homogeneous processing units that interconnect
together giving an array of n dimensions. Depending on the design of this array,
the inputs and outputs are made through all or a subset of units which are in
the limits of the array. The theoretical basis of systolization of fuzzy inference
processing defined by several authors [3,4,5,6]. These bases have lead to the design
of several systolic architectures for processing. At this stage it is convenient to use
simulation tools. These tools allow:

297

298

L. De Salvador, M. Garcia & J. Gutiérrez

1.- The formalization of design specifications, so that it will also formalize the

2.-
3.-

theory upon they are based.
The study and checking of the designs before their implementation.

The testing of system performance so as to check failures in design theory.

The simulation tool we use is a VHDL1 simulator. The adequacy of VHDL as
a specification and simulation language is justified by its own definition [7,8,9,10].

2

Theoretical Basis

In this section we present the basis of systolic processors of fuzzy rules. By default,
we consider the basis of fuzzy logic already known [11,12].

To develop a systolic architecture, most authors [3,4,5,6] follow several steps,
as described below:

1.

Definition of a set of rules of the model to be developed. These rules are as
follows:

IF Ay is LBA, , and/or ... A, is LBA, ,

THEN By is LBB , and/or B, is LBBy, 4

where n is the number of antecedents, LB A, ; the b-th label of the antecedent
variable A,, m the number of consequents and LBB,; the b-th label of the
consequent variable B,. They comply with the condition {A,} N {By,} is
empty, that is to say, the rule system is not linked. The key words “and” and
“or” are, respectively, the norma and co- norma used [11,12].

. Modification of the rule set, so that each of them involves only one consequent

variable. The rules will have the form:
IF Ay is LBA; , and/or A, is LBA, »
THEN B, is LBB,

. Normalization of the antecedent side to eliminate the “or” operators and to

expand the rule, so that all the antecedent variables will be included there.
This, as we will demonstrate later, is a great mistake from a theoretical point
of view, giving a rule set that is not equivalent to the initial one.

. Including in one set all the rules that have the same consequent variable.

From now on, the rest of the process is described in one set, performing the
same operations for each different set.

. Creation of a “rule basis”. This rule basis i1s a matrix that contains all the

information about conditions to be kept by the antecedents in order that
variable B, will have one result or other. The creation of the matrix is done
in the following way:

Systolic architectures for fuzzy processing and their simulation 299

5.1. The dimension will be the number of antecedents plus one (n + 1).

5.2. The length of each dimension will be the number of labels of the associ-
ated variable.

5.3. The position (21,22, ..., #n, Zn41) will take on the value depending on
whether the rule

IF Ay is LBA ;, and ... A, is LBA, -,

THEN B, is LBB; 4, ,,

belongs to the set of rules or not. It is also possible to consider values between
0 and 1, to consider the fuzzification of antecedent conjunction or the insertion
of modifiers.

Note point 5.2, which shows one important conceptual change in relation to
other authors [3,4,5,6], who consider the length of each dimension as the size
of the universe of discourse of the associated variable. After several studies
undertaken in this laboratory, we have seen that the use of only the number
of labels is sufficient if at the data entry stage we introduce one fuzzifier unit.
This reduces the size of the rule basis by two orders of magnitude, making it
easier to use, and also substantially reduces the number of operations to be
executed, so increasing the performance of the designed architecture. In the
way that we designed the architecture, the fuzzifier unit does not generate
any delay which might result in a reduction of process speed, so that the gain
obtained using this technique is high.

6. Generation of input data matrix. This matrix is generated as follows:
6.1. The dimension will be the number of antecedent variables.

6.2. The length of each dimension will be the number of labels of the associ-
ated variable.

6.3. The position (21, #a, ..., 2,) will have the smallest membership value of
data inputs to labels LBA; 5, ... LBA, »,.

7. Multiplication of both matrices to obtain the inference result. This step 1s
the one really systolized, and it is possible to do i1t in several ways.

8. Defuzzification of result. This step could be performed using any of the
existing methods.

2.1 Systolization

In our model, instead of multiplying two matrices, as described earlier;, we reduce
the rule basis matrix in one dimension, generating several matrices with the in-
formation of only one label of each consequent variable. In this way, the result of
the matrix multiplication gives the membership of the consequent variable to this

label.

300 L. De Salvador, M. Garcia & J. Gutiérrez

Figure 1: Systolization scheme

To compute the multiplication we will use one max-min unit, which will be
described later, requiring as many units as the number of labels of consequent
variables.

The diagram that describes the behaviour of the systolic system is shown in
Figure 1.

This figure shows the general behaviour of the systolic system described above.
In summary, the set of possible rules is evaluated sequentially. The result is inserted
in a “minimum” unit (represented by X') simultaneously with a binary vector. This
vector complies with rules that have an effect on each consequent label. Once all
of the rules are evaluated, the values obtained are defuzzified.

3 Architecture

The architecture described in the previous section is comprised of three main com-
ponents:

1. The fuzzifier
2. The fuzzy inference unit

3. The defuzzifier

The system, at this point, appears as a pipeline of three segments. This means
that the running of these segments is fully synchronised: the maximum delay in
any of them determines the performance of the system.

In this case, system perfomance is limited by the intermediate unit: the fuzzy
inference unit.

Systolic architectures for fuzzy processing and their simulation 301

Figure 2: Structure max-min inference

3.1 Fuzzifier

In the architecture developed, the fuzzifier has been implemented by means of
memory banks: one memory for each antecedent variable. The entry point to the
memory located by an antecedent variable is an index whichs gives the correspon-
dence between the external universe value and the universe of discourse: a value of
8 bits in a universe of discourse of 256 locations. Each entry point references one
word of length equal to the number of possible labels for the antecedent, multiplied
by the precision in bits used in the evaluation of the membership function:
Entry_ x: [label 1]{label 2]...[label 7]

In the simulation of this design we use up to 7 labels with three precision bits
in the membership function. In this way, the shape of the membership function we
can configure is free, without any constraints. Hence, each memory has as many
outputs as labels that have been defined in the universe of discourse.

3.2 Inference unit

The fuzzy inference unit developed here is in accordance with guidelines described
by other authors [3,4,5,6], but with one exception that is essential in our architec-
ture. This 1s the representation of the rules map as indicated in section 2. We
divide the inference unit into three main parts:

a. Systolic array
b. Multiplication of antecedents

c. Rules map

The systolic array is formed by a chain of “max-min” units, as shown in Figure

302 L. De Salvador, M. Garcia & J. Gutiérrez

Figure 3: Max-min unit detail

Each “max-min” unit corresponds to one elementary operator as described in
the previous section, with the following optimization: we carry out the minimum
from the logical product (logical AND) of antecedents. This part is common to all
“max-min” units. The membership function is encoded by three bits but, is later
decodified at 8 bits (unary codification), which allows the evaluation of maxima
and minima using only one level of gates (Figure 3) and subsequently the building
of high speed units.

The antecedent product unit is made up of a set of shift registers. The length of
each shift register is equal to the maximum number of labels that an antencedent
variable contains. This number of antecedents is set at synthesis time. The output
dimension of the shift registers is the equal to the number of bits used to encode the
membership function. In our case, it 1s three bits wide. An auxiliary counter circuit
manages the output of antecedent labels, and optimizes the circuit perfomance
when the number of antecedents used in the definition of the fuzzy system is less
than the maximum number of antecedents available in the hardware system.

The rule map is made up of interleaved memory banks. Each memory bank
corresponds to a consequent variable and a label of the same consequent. It must
provide the membership encoding flow (1’s and 0’s data flow) at the same speed
that the “max-min” units work. These units process so fast that it is necessary to
build a pipeline structure that simulates a memory with the required latency.

3.3 Defuzzifier

The defuzzifier unit works at the same speed that the inference hardware system
generates final values. The method used to process defuzzified values is centroid
computation. This units contains:

1. Parallel multiplier unit [1,2].

2. Built-in-memory divider.

Systolic architectures for fuzzy processing and their simulation 303

Figure 4: Systolic architecture scheme

We can use a built-in-memory divider since we only use eight different levels
to encode the membership values. This procedure allows us to develop a simple
and very fast design. Moreover, the through-put of the defuzzifier is equal to the
through-put of the fuzzifier.

The whole architecture scheme of the systolic system is depicted in Figure 4.

4 Simulation

Between the design specification and its actual implementation there exists an
essential step: simulation using CAD tools. The main problems and disfunction
hidden in the architecture emerge during this phase. Moreover, we can set the
most important parameters of perfornance such as: estimated time to process,
through-put, and so on.

We have employed a hardware description language, VHDL', as a simulation
tool. This approach has many advantages: it is a standard tool [7,8], it permits
to design with modularity criteria, it is able to synthesize over standard cells or
FPGA’s and we can build parametrizable designs. This last feature allows us to
define many parameters of the circuit in a flexible way. In our case, the set of
parameters is:

1. Number of antecedents.
2. Number of consequents.

3. Labels per antecedent.

304 L. De Salvador, M. Garcia & J. Gutiérrez

4. Labels per consequent.

5. Maximum number of labels per antecedent.

The libraries have been developed in our laboratory with the ES2? specifications
for 1um cells .

Because the execution time of the inference unit depends on the definition of
the number of labels per antecedent, the cicuit has been adapted in order to be
able to set the right number of labels per antecedent used. In this way the best
perfomance for every configuration of the fuzzy system is achieved.

Simulation was performed over a circuit generated with the following parameter
settings:

1. Four antecedents with a maximum number of seven labels.
2. Seven labels per consequents.

3. Universe of discourse with 256 samples.

4. Three bits to encode the membership function.

5. Up to 8 Kbytes of memory.

This circuit was programmed to hold four antecedents and three labels per
antecedent. The perfomance of the circuit is the following:

1. The circuit can be run with a clock period of 10 ns.
2. The whole rule base is executed in only 810 ns.
3. The through-put of the system is 1.2 MFLIPS3.

4. The rule execution frequency is 100 MHz.

5. The stimated silicon area is 40-60 mm?.

6. The amount of time necesary to program the rule base and fuzzifier is 46.4
ns.

This architecture therefore provides very high perfomance in relation to other
developments, even non-systolic designs [13,14,15], especially if we take into account
that this is not the maximum perfomance of the system. Moreover, this design does
not need much memory, unlike early fuzzy processign systolic architectures. Finally,
the silicon area is inside the bounds of a small dice of silicon.

Systolic architectures for fuzzy processing and their simulation 305

5 Issues that Arise in Systolic Designs

In developing the present architecture we have detected some conceptual disfunc-
tions and several critical aspects of the simulation process. These issues are de-
scribed in the following subsections: theoretical issues (the most important ones)
and implementation issues.

5.1 Theoretical Issues

One of the advantageous characteristics of fuzzy systolic architectures is their pre-
summed their capability of processing all the possible rules of the fuzzy system
[3,4,5,6].

Although this aspect seems obvious for several authors*, the following problem
arises:

e Consider a control system with two input variables [A, B] and one output

variable [C].

e Impose the condition of only two labels per variable [LBA; LBA,], [LBB;
LBBs), [LBC, LBCs).

e Assume a fuzzy systolic design.

In the presented case, it is not possible to represent in the fuzzy systolic system
the following rule:

IF Ais LBA, THEN C'is LBC),

Because the rule system is represented orthogonally, the most aproximate rule
Wwe can use 1s:

IF Ais LBA, and (B is LBB; or Bis LBBy) THEN C'is LBC,

Althoug both sentences are equivalent in classic (or crisp) logic, this is not so
in fuzzy logic. The reason is that there is not a complementary property in fuzzy
logic [11]. This means:

urppi1(x) or urppa(x) does not imply 1
urppi(®) and upppace) does not imply 0

A very similar result occurs in a rule where the negation of an antecedent
appears.

Our conclusion is the following: fuzzy systolic systems, both the traditional
developments and the system depicted in this paper, process only a limited set of
rules. These rules have an antecedent part made up of the logic product of some
label of every antecedent defined in the fuzzy system.

5.2 Implementation Issues

Among the critical issues that arise in the design and simulation of systolic systems
at implementation, we stress the following:

306 L. De Salvador, M. Garcia & J. Gutiérrez

1. Required memory capacity grows exponentially with the number of antece-
dents that the system holds. This problem is a limitation of these systems,
since it is not possible to build a circuit with a high number of antecedents
due to the limits of dice size.

2. The process speed is highly dependent on the number of antecedents and the
number of labels per antecedent.

3. These kind of fuzzy architectures require the processing of a large number of
rules. This is in conflict with the principles of fuzzy modelling, since one of
its prime objectives is economy of rules.

4. If we use “max-min” units which use membership binary encoded values, this
would result in a slow inference unit.

5. If we make use of “max-min” units with encoded membership values unity,
the result is fast enough, but we must use many lines of data to encode several
logical levels.

Finally, it must be kept in mind that all of these issues only affect very complex
fuzzy control systems, that is, fuzzy systems with a high number of antecedents and
labels per antecedent. Actually, fuzzy systolic architectures are systems suitable
for current applications. There are choices that allow high perfomance without
great cost in terms of silicon area.

Conclusions

The architecture explained in this paper shows two fundamental aspects of the
systolic architectures for fuzzy processing.

First, the optimization that can be achieved when we employ the membership
value product of every antecedent variable instead of the universe of discourse prod-
uct of every antecedent variable. This modification puts fuzzy systolic architectures
in a competitive position in terms of perfomance level. This implies an important
silicon area saving if we compare this design with early developments.

Second, we have found a power process limitation in fuzzy systolic architectures.
Fuzzy systolic systems do not execute all the possible rules of the fuzzy system.
On the contrary, it is only possible to execute a subset of the rules of the fuzzy
system: those that have an antecedent part made up of the logic product of some
label of every antecedent defined in the fuzzy system. This is because fuzzy logic
does not have the complementary property that applies in crisp logic.

At this time, a great deal of development effort in the definition of this kind of
system remains to be done but, even now, it is possible to employ this architecture
for control systems. Implementations must be oriented to the expansion of the
set of rules used to compute the inference values and to improving the relation
between through-put and the number of antecedents. Currently, these tasks are

Systolic architectures for fuzzy processing and their simulation 307

being carried out in the Laboratory of Hardware and Advanced Control in the
National Institute of Aerospace Technology.

Notes

1) V/System of Model Technology
2

European Silicon Structures, library with industrial specifications.

3

(1)
(2)
(3) Fuzzy Logic Inferences Per Second.
(4)

This is not justified by any author in a formal way.

References

[1] Hwang, Kai. Computers Arithmetic. John Wiley & Sons
[2] Hwang, Kai. Advanced Computer Architectures. McGraw-Hill

[3] M.A. Manzoul and S. Tayal. Systolic VLSI Array for Muti-variable Fuzzy
Control Systems. Cybernetics and Systems: An International Journal 21

[4] M.A. Manzoul. Fuzzy Inference on a Systolic Array. Proceedings of 18th
Modeling and Simulation Conference.

[6] F. Fernandez, A. Ruiz, J. Gutierrez. Disefio Sistemdtico de un Procesador
Sistélico de Inferencias Difusas. I Congreso Espanol sobre Tecnologias y
Liégica Fuzzy

[6] Bugarin, A. y Barro, S. y Ruiz, R. Soluciones Sistélicas en Control Borroso.
Il Congreso Fspanol sobre Tecnologias y Légica Fuzzy

[7] IEEE Std 1076-1987. [EEE Standard VHDL Language Reference Manual.
TEEE Inc.

[8] IEEE Standards Interpretations. IEFE Standard VHDL Language Reference
Manual. TEEE Inc.

[9] Navabi, Z. VHDL, Analysis and Modeling of Digital Systems. McGraw Hill
[10] Coelho, D. The VHDL handbook.

[11] G.J. Klir and T. Foller. Fuzzy Sets, Uncertainly and Information. Prentice-
Hall

[12] B. Kosko. Neural Networks and Fuzzy Systems. Prentice- Hall

308 L. De Salvador, M. Garcia & J. Gutiérrez

[13] H.J. Zimmermann. Fuzzy Technologien. Prinzipien, Werkzeuge, Potlentiale.

VDI Verlag.

[14] M. Sasaki, F. Ueno, T. Inoe. 7.5MFlips Fuzzy Microprocessor Using SIMD
and Logic-in-Memory Structure. 2nd IEEFE International Conference on
Fuzzy Systems. 1993

[15] V. Catania, A. Puliafito, M. Russo, L. Vita. A VLSI Fuzzy Inference Pro-
cessor Based on a Discrete Analog Approach. TEEFE Transactions on Fuzzy
Systems. May 1994

