Mathware and Soft Computing 3 (1994) 285-295

An Elemental Processor of Fuzzy SQL*

J. M. Medina, O. Pons, M. A. Vila
Dept. Computer Sciences and Artificial Intelligence
E.T.S. de Ingenieria Informatica.
Universidad de Granada 18071. Granada (Spain)

email: medina@robinson.ugr.es

Abstract

This paper reports an alternative for implementing an SQL fuzzy exten-
sion on a Fuzzy Relational Database System. This proposal tries to build
an FSQL processor using representation and manipulation mechanisms of-
fered by the RDBMS which operates as a host. For this purpose, we are
based our work on the formulation of a theoretical model of Fuzzy Relational
Databases, on the adoption of a scheme for the representation and imple-
mentation of fuzzy information on conventional RDBMS, and on the tools
for the development of applications available in the host RDBMS. Finally,
the FSQL processor is able to translate sentences formulated in FSQL into
classical SQL sentences executed directly by the RDBMS adopted as host.

1 Introduction

Since the appearance of the Relational Database model, proposed in [5], several
approaches have tried to provide a theoretical environment for the representation
and handling of fuzzy information. These approaches, which are based on the
use of fuzzy sets theory [23] as a tool of representation and manipulation, are
grouped mainly into two tendencies: Unification Models by Simailarity Relations
and Possibilistic Models.

The first approach is described in [1, 2, 3, 4], with additional contributions in
[16, 17, 18]. The second approach comprises several proposals. The most important
of them were introduced by Umano [20], Prade and Testemale [14] and, Zemankova-
Kandel [24].

In [9, 11, 12], we present a model, named GEFRED, which attempts to syn-
thesize the most outstanding aspects of previous approaches within a common
theoretical framework.

*This work has been financed by the CICYT charged to Project TIC94-1347

285

286 J. M. Medina, O. Pons & M. A. Vila

Once the theoretical bases for the fuzzy extension of relational databases have
been established, they require mechanisms to build relational systems which op-
erate in accordance with these principles. These systems, called generically Fuzzy
Relational Database Management Systems (FRDBMS), require a theoretical model
and some construction ideas which make possible to build an operative implemen-
tation. Most relevant proposals have been provided by the proponents of different
theoretical models [6, 7, 14, 19, 24].

FRDBMS must be built following a scheme based on two basic requirements:

e A suitable theoretical support for a fuzzy relational database model.

e Representation and manipulation criteria of fuzzy information which favor
system efficiency.

The first requirement 1s satisfied by adopting a model which is an extension of
the classical relational model (which involves considering it as a particular case of
the fuzzy case with precise data) and provides handling for an extensive range of
fuzzy information.

The second requirement is referred to certain criteria which take the FRDBMS
specification in order to permit an operative implementation.

In [10, 12] some ideas for broaching the building of an FRDBMSs according to
both requirements are presented. The general scheme proposed in these works is
summarized in the second section.

It is very important, when we are designing an FRDBMS, to use a language
which comprises all aspects of the handling of fuzzy information, and preserves the
original operations of classical relational algebra. Given the diffusion of SQL as an
RDBMS manipulation language, it seems appropriate to broach an extension of it
which contemplates these new possibilities.

This paper reports a proposal for an FSQL processor that is perfectly integrated
into the scheme shown in the second section, and permits the translation of fuzzy
SQL sentences into usual SQL sentences executed directly by the classical RDBMS.
Sentences supported by this processor provide suitable mechanisms for expressing
the algebra proposed in GEFRED [11].

In the section below, the structural framework necessary for the formulation of
the proposed processor is propounded. Later we will describe the FSQL processor
and how it operates in the scope of the FRDBMS described in the second section.
To do this, we introduce a basic syntax consisting of fuzzy clauses and functions. We
will complete the study showing an example of how the FSQL processor transforms
a fuzzy sentence into a classical SQL sentence.

2 General Scheme of a FRDBMS

Figure 1 shows the general scheme of the FRDBMS on which the FSQL pro-
cessor is developed. The initial idea is to build 1t on a conventional RDBMS, so all

An Elemental Processor of Fuzzy SQL 287

BD FMB DIC
Fuzzy Classical
Data Base System Catalog
RDBMS

Relational Database

Management System

Ty

FCP

Fuzzy Call Processor

VDI FSQLF FSQL

Visual Interf. Fuzzy FORM Fuzzy SQL

Figure 1: General Scheme of an FRDBMS

the developments take this RDBMS as the element to which all the requests are
directed.

Next, we will look over the different modules which constitute the proposed
scheme:

¢ RDBMS. As we have said above, all the operations conceived for the fuzzy
extension will be translated into requests for the host RDBMS. These requests
will be made using a language that the RDBMS supports. Generally, all the
requests for the system are solved by classical SQL sentences. Finally, all the
processing, whether fuzzy or not, will be translated into a series of requests
for the system in SQL language.

e BD. The database comprises all the permanent information, whether fuzzy
or not, in database tables. Data representation in these tables will depend on

288 J. M. Medina, O. Pons & M. A. Vila

their nature and type. We will use the resorts available in the host RDBMS
to represent the required fuzzy information.

e FMB. The RDBMS dictionary or catalog represents the part of the sys-
tem which stores information about the data collected in the database, and
other information such as: users, data structure, data control, etc. In our
case, we will prolong this part of the system in order for it to collect the
necessary information related to the imprecise nature of the new collection
of processing data. We will name this extension the Fuzzy Meta-knowledge
Base (FMB), and it will be organized following the prevailing philosophy in
the host RDBMS catalog.

e FCP. With our implementation we will try to transform the supporting group
of “fuzzy” operations into a group of requests for the host RDBMS included in
the group of instructions collected by it. The FCP mission consists in trans-
lating “fuzzy” operations formulated upon FRDBMS into ordinary requests
for the host system. This translation takes into account the required “fuzzy”
operation, the “fuzzy” item involved in this operation, their representation
in the database, and the information the FMB has about them. Thus, the
FCP has implemented the way to solve a “fuzzy” request in classical terms.

e FSQL. This module contemplates the “fuzzy” extension of SQL. It will be
responsible for translating the syntax into operations upon the RDBMS by
means of the FSQL processor using FCP routines.

These are the basic modules of the proposed FRDBMS.

With the introduction of a query and manipulation language like FSQL we have
solved the problem of the FRDBMS interface with the user. From here, another
kind of interface or query languages based on graphic interfaces, 4th Generation
languages, etc. can be used.

3 Description of the FSQL Processor

As indicated previously, if we combine a suitable representation for fuzzy informa-
tion with an adequate implementation of it through the data structure given by
the host RDBMS, it is possible to produce processes which translate fuzzy oper-
ations into a group of sentences executed directly by a classical RDBMS. In this
section we are going to illustrate some aspects of this process, based on a reduced
version of an FSQL processor (PFSQL) built upon the Oracle’™ RDBMS [13].
The philosophy which supports this processor is to integrate a group of clauses and
special functions which permit “fuzzy” requests to the system to be expressed in a
certain SQL syntax. According to the proposed scheme, to be expressed in it will
be possible to express sentences which involve “fuzzy” and classical clauses.

Next, we show an annotation similar to BNF of some of the new “fuzzy” clauses
that FSQL syntax incorporates for DML:

An Elemental Processor of Fuzzy SQL 289

fcond_simp : fcond_wtout threshold
fcond_wtout

fcond_wtout : column_item fcomp fuz_constant

threshold : THOLD NUMBER
THOLD ’$’ ID

fuz_constant : ’$> 1D

NUMBER

’#’ NUMBER

>[’» NUMBER ’,’ NUMBER ’]°

’$’> [’ NUMBER ’,’ NUMBER ’,’
NUMBER ’,’ NUMBER °]°

fcomp : FEQ
FGT
FLT
FGEQ
FLEQ

comp_deg : CDEG ’(’ fuz_arith_op ’)’

column_item : id_user ’.’ id_table ’.’ id_attribute
| id_table ’.’ id_attribute
| table_alias ’.’ id_attribute
| id_attribute

)

Nonterminal symbols id_user, id_table, id_attribute and
table_alias identify the object user, table, attribute and alias respectively, and
follow the formation rules established in the syntax of the host RDBMS. The termi-
nal symbol NUMBER identifies a datum with numerical format; the semantic parser
is responsible for verifying the range and type for each occurrence in the entry
Symbols in simple quotes, which belong to the production rule, are literals. The
remaining terminal symbols are reserved words in the new syntax which permit
“fuzzy” conditions, modifiers and functions to be expressed. The following phrases
would be valid statements of the FSQL syntax adopted (assuming the existence of
the tables and labels noted):

SELECT age, CDEG(age) FROM employees
WHERE age FEQ $young THOLD 0.8

SELECT a.emp#,name,education,CDEG(education)

290 J. M. Medina, O. Pons & M. A. Vila

FROM employees a, capacity b
WHERE a.emp#=b.emp# AND
education FEQ $graduate THOLD 0.6

SELECT emp#,dept#, job#,salary,
CDEG(salary),commission,CDEG(commission)
FROM jobs

WHERE salary FEQ $high

AND commission FEQ $low THOLD 0.8

The nonterminal symbol fcomp represents the set of fuzzy comparators in FSQL
syntax. The complete syntax of an atomic fuzzy comparison takes the form:

<column_item> fcomp <fuz_constant> [<threshold>]

where square brackets indicate that the threshold can appear or not in the condi-
tion; in the latter case, the default threshold value equals 0.5 here.

Compound conditions are obtained through the use of NOT, AND and OR
connectives, and fuzzy atomic conditions can be connected with other conditions
which are not fuzzy.

The following syntax is used to visualize the degrees of compatibility that a
given attribute or an expression of attributes presents:

CDEG(<fuz_arith_op>)

where <fuz_arith_op> identifies the attribute expression whose degrees of com-
patibility we want to present.

3.1 Functioning of the FSQL Processor

Figure 2 illustrates the processing of an FSQL sentence through an FSQL processor.
This figure shows the modules involved in the processing of a sentence expressed
in FSQL, from the entry to the obtaining of the results, if there are any, in the
output.

1. For a presumed FSQL statement, the syntax parser verifies that syntax is
correct.

2. Simultaneously, through the semantic parser the FSQLP is responsible for
checking that all “fuzzy” items involved are correctly used. To do this, it
uses the information about these elements present in the FMB.

3. While these processes are being performing, the FSQLP generates a data
structure which organizes the entry information in two groups of processes:

An Elemental Processor of Fuzzy SQL 291

Figure 2: Processing of an FSQL statement

e The group of classes present in the original statement, which do not
require “fuzzy” treatment. No special operations will be performed on
this group.

e The group of “fuzzy” clauses embedded in the entry statement.

From this latter group, the FSQLP takes from the FMB and the “fuzzy”
clauses the related parameters that have been defined, and uses the routines
of the FCL to generate the fragments of SQL statements corresponding to
the function required by these cl auses. All information generated is properly
organized by a data structure used for this purpose.

4. When previous steps have been performed, the FSQLP is able to reconstruct
the final SQL statement from the available information. The sentence gener-
ated is directly executable by the host RDBMS.

5. Finally, this sentence, and if necessary the results obtained from its execution,
are sent to the RDBMS in a previously established format.

The steps described above include a mechanism for error detection which works
at several levels. At the syntax parser level, the PFSQL detects syntax errors in
the entry. Semantic errors are first localized when they arise from the wrong use of
“fuzzy” items. During the process of execution by the host RDBMS, the rest of the
semantic errors will be detected. In addition, the host manager detects possible
execution errors, and communicates them through the appropiate error code.

292 J. M. Medina, O. Pons & M. A. Vila

4 Example of Query Processing by the PFSQL

NAME ADDRESS AGE PERFORMANCE SALARY
Luis Recogidas 31 Good High
Antonio Reyes Catolicos Middle Fair 100000
Juan Carlos Camino Ronda Young Bad 90000
Francisco P. A. Alarcén Old Excellent Low
Julia Puerta Real Young Good Medium
Inés Manuel de Falla 428 Good 125000
Javier Gran Via *30,35 Fair 105000

The symbol # means “approximately”, and * denotes an intervalar value.

Table 1: EMPLOYEES

To illustrate the functioning of the PFSQL, we will use the example shown in
Table 1, which consists of a relation that collects data, some of a fuzzy nature,
about a set of employees.

se(d,d) Bad | Fair | Good | Excellent
Bad 1 0.8 0.5 0.1
Fair 0.8 1 0.7 0.5
Good 05 | 0.7 1 0.8
Excellent | 0.1 0.5 0.8 1

Table 2: Proximity Relation on PERFORMANCE.

The NAME and ADDRESS attributes contain “crisp” information, the first
attribute being the primary key of the relation. The information they contain is
implemented in the Database in the same way as in the host RDBMS, since it
will not receive “fuzzy” treatment. AGE and SALARY attributes store “fuzzy”
information. The following linguistic labels are defined in AGE: “Young”, given
by a trapezoidal distribution [16,30,16,10], “Middle”, given by [35,45,10,10], and
“Old”, given by [50,6 5,10,15]. In addition, the concept “approzimately n” is rep-
resented by the distribution [n-5n,nn+5]. The labels defined in the SALARY
attribute domain are: “Low”, represented as [65000,85000,65000,10000], “Medium”,
as [95000,110000,1 0000,20000], and “High”, given by [130000,180000,20000,820000].

The PERFORMANCE attribute accepts “fuzzy” information, but over a scalar
domain. To formulate a query which contains this attribute, we need to define a
“proximity relation” in its domain. This relation is shown in Table 2.

By way of example, we will explain how the following query can be solved:

An Elemental Processor of Fuzzy SQL 293

“Give me the NAME, ADDRESS, AGE, and the degree to which the condition
for the AGE attribute is satisfied, for those employees with a “middle” AGE (with
a degree > 0.8)”

In terms of the FSQL syntax, this query is formulated as:

SELECT name, address, age, CDEG(age) FROM employees
WHERE age FEQ $middle THOLD 0.8

From the available information, the PFSQL composes the following classical
SQL sentence:

select name,address,DECODE(AGET,O, ’UNKNOWN’,1, ’UNDEFINED’,2, *NULL’,
3,TO_CHAR(AGE1),4,DECODE(AGE1,0, JOUNG’,1,’JOUNG?,2,°0LD"),5, [’ |
TO_CHAR(AGE1) | |’,’ | I TO_CHARCAGE4) ||°]’,6,’ [’ | ITO_CHAR(AGE1)|[’,’ ||
TO_CHAR(AGE1+AGE2)||’,’ | ITO_CHAR(AGE4)|1°]1’,7,’ [’ | I TO_CHAR(AGE1)
[1°,”]| TO_CHAR(AGE2+AGE1) ||’,’ | |TO_CHAR(AGE3+AGE4)||’,’ | | TO_CHAR
(AGE4)11°]1’)"AGE" ,ROUND (DECODE(AGET,0,1,2,1,3,DECODE(SIGN((AGE1-
33)*(47-AGE1)),-1,0,DECODE(SIGN(35-AGE1),1, (AGE1-25)/10,DECODE(
SIGN(AGE1-45),1, (AGE1-55)/-10,1))),4,DECODE(AGE1,1,1.00,0),5,
DECODE(SIGN((AGE4-33)*(47-AGE1)),-1,0,DECODE(SIGN(35-AGE4),1,
(AGE4-25)/10,DECODE(SIGN (AGE1-45),1, (AGE1-55)/-10,1))),6,
DECODE(SIGN((AGE4-37)*(53-AGE4)),-1,0,DECODE(SIGN(35-AGE4+5),

1, (AGE4-25)/(10+5) ,DECODE(SIGN(45-AGE4+5),1,1, (AGE1-55)/(-10
-5)))),7,DECODE(SIGN((0.80*%AGE3+AGE4-33)*(47-0.80+%AGE2+AGE1)),
-1,0,DECODE(SIGN((AGE3+AGE4-35)*(45-AGE2+AGE1)),-1,DECODE(SIGN
((0.80*AGE3+AGE4-33)*(35-AGE3+AGE4)),-1,DECODE(SIGN((47-0.80%*
AGE2+AGE1)*(AGE2+AGE1-45)),1, (55-AGE1)/(AGE2--10)), (AGE4-25)/
(10-AGE3)),1)),0),2) "CDEG(AGE)" from employees where (AGET=0

OR AGET=2 OR AGET=3 AND AGE1 BETWEEN 33 AND 47 OR AGET=4 AND
AGE1 IN (1) OR AGET=5 AND AGE1<=47 AND AGE4>=33 OR AGET=6 AND
AGE4 BETWEEN 37 AND 53 OR AGET=7 AND AGE4>=33 AND AGE1<=47

AND 0.80*AGE3+AGE4>=33 AND 0.80*AGE2+AGE1<=47)

Table 3 shows the results of the execution of this query on the host RDBMS
(this sentence and its execution were made using a FIRST prototype developed on

the Oracle V6 RDBMS).

NAME ADDRESS AGE CDEG(AGE) |
Antonio Reyes Catolicos Middle 1 ‘
Javier Gran Via [30,35] 1 ‘

Table 3: Results of the Example Query

294 J. M. Medina, O. Pons & M. A. Vila

5 Conclusions

In this work we have been presented the scheme of a module which for translating
sentences expressed in FSQL into standard SQL expressions. This module is inte-
grated into a scheme of FRDBMS built over the theoretical concepts formulated in
GE FRED [11]. Thanks to this system, it is possible to develop “fuzzy” extensions
of classical RDBMS that are available at present, thus preserving the investments
made in these systems and enhancing their characteristics of representation and
handling of information.

Future work will address the specification and development of a complete pro-
totype of an FSQL processor. We also plan to undertake the theoretical study of
fuzzy information processing in other Database models; such as Object Oriented
ones.

References

[1]] Anvari M., Rose G.F. “Fuzzy Relational Databases”. Analysis of Fuzzy
Information. Bezdek ed. Vol IT CRC Press. (1987)

[2] Buckles B.P., Petry F.E. “A Fuzzy Representation of Data for Relational
Databases”. Puzzy Sets and Systems, 7. 213-226. (1982)

[3] Buckles B.P., Petry F.E. “Extending the Fuzzy Database with Fuzzy Num-
bers”. Information Sciences, 34. 145-155. (1984)

[4] Buckles B.P., Petry F.E., Sachar H.S. “A Domain Calculus for Fuzzy Rela-
tional Databases”. Fuzzy Sets and Systems, 29. 327-340. (1989)

[6] Codd E.F. “A Relational Model of Data for Large Shared Data Banks”.
Commun. ACM, 13. (6). pp. 377-387 (1970)

[6] Hamon Guy. “Extension d’un langage d’interrogation de Base de Données
en vue de l'utilisation de questions imprécises”, Ph.D. Thesis, (1986).

[7] Li D., Liu. “A Fuzzy Prolog Database System”. ed. John Wiley & Sons.
New York. (1990)

[8] Medina J. M., Vila M.A., “Un Modelo de Bases de Datos Difuso Aplicado
a Informacién Médica”. 1°7 Congreso Espanol sobre Tecnologias y Logica

Fuzzy. Granada. (1991)

[9] Medina J. M., Pons O., Vila M.A., “GEFRED. Un Modelo Generalizado
de Bases de Datos Relacionales Difusas”. 22 Congreso Espanol sobre Tec-
nologias y Légica Fuzzy. Madrid.(1991)

An Elemental Processor of Fuzzy SQL 295

[10]

[11]

[12]

[13]
[14]

[15]

Medina J. M., Vila M.A., Cubero J.C., Pons O. “Towards the Implemen-
tation of a Generalized Fuzzy Relational Database Model”. To appear in
Fuzzy Sets & Systems.

Medina J. M., Pons O., Vila M.A. “GEFRED. A Generalized Model of
Fuzzy Relational Data Bases”. Information Sciences, 76, 1-2, pp 87-109.
(1994)

Medina J. M. “Bases de Datos Relacionales Difusas: Modelo Teérico y
Aspectos de su Implementacion”. Tesis Doctoral. Universidad de Granada.

(1994)
Oracle RDBMS. “SQL Language Reference Manual vs. 6.0”. (1990).

Prade H., Testemale C. “Generalizing Database Relational Algebra for the
Treatment of Incomplete/Uncertain Information and Vague Queries”. In-
formation Sciences, 34. 115-143. (1984)

Prade H., Testemale C. “Representation of Soft Constraints and Fuzzy At-
tribute Values by means of Possibility Distributions in Databases”. Bezdek
ed. Analysis of Fuzzy Information. Vol IT CRC Press. (1987)

Rundensteiner E.A., Hawkes L. W., Bandler W. “On Nearness Measures
in Fuzzy Relational Data Models”. International Journal of Approzimate

Reasoning. 3. pp 267-298. (1989)

Shenoi S.; Melton A. “Proximity Relations in the Fuzzy Relational Database
Model”. Fuzzy Sets and Systems, 31. 285-296. (1989)

Shenoi S., Melton A. “An Extended Version of the Fuzzy Relational
Database Model”. Information Sciences, 52. 35-52. (1990)

Umano M., Mizumoto M. and Tanaka. “FSTDS System: A Fuzzy-Set Mani-
pulation System”, Information Sciences. 14, pp. 115-159 (1978).

Umano M. “Freedom—0 : A Fuzzy Database System”. Fuzzy Information
and Decision Processes. Gupta-Sanchez edit. North-Holland Pub. Comp.
(1982)

Vila M.A., Cubero J.C., Medina J. M., Pons O. “A Logic Approach to Fuzzy
Relational Databases”, TPMU’92 (1992).

Zadeh L.A. “Similarity Relations and Fuzzy Orderings”. Information Sci-
ences, 3, 177-200. (1971)

Zadeh L.A. “Fuzzy Sets as a Basis for a Theory of Possibility”. Fuzzy Sets
and Systems, 1, 3-28. (1978)

Zemankova M., Kandel A. “Fuzzy Relational Data Bases - A Key to Expert
Systems”. Verlag TUV Rheinland. (1984)

