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Abstract

The subject of this paper regards a procedure to obtain
the abstract from of concepts, directly from their most natural
form, thus these can be efficiently learned and the possibility
of operating formally on them is reached. The achievement
of said type of form results also useful to compute conceptual
parameters symbolic and numerical in nature.
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1 Introduction

One of the central problems of Artificial Intelligence as well of Cognitive
Psychology is formalising concepts to get the possibility of operating on
these. In the latter discipline, for better understanding what is intel-
ligence; in the former, for developing intelligent algorithms. Concepts
may derive either directly from structuring entities or from combining
on other concepts, as is performed in the most effective way by human
mind in which reality can be perceiving and efficiently managed. In
knowledge-based technology entities are considered as facts, objects,
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or situations (Stepp, Michalski, 1986). Of fact “entity” corresponds to
the Aristotle’s “substance”; in the present context, it indicates noth-
ing else than that which has reality and distinctness of being in facts
or in thought. We use it to represent the world in distinct discrete
units (Tomela, 1973). Concept learning has been frequently affirmed
to be the principal basis for classification (Brachman, 1985; Chan-
drasekaran, Goel, 1988; Schmolze, Lipkis, 1983; Bobrow, Winograd,
1979) and rational reasoning (Dubois, 1991); the classes they give place
to are categories and the entities these include constitute instances of
the concepts themselves.

Many cognitivists stated the gradualness of efficiency in represent-
ing concepts (Roth and Mervis, 1983; Rosch, 1975; Vandierendock,
1991). The fuzzy nature of the concerning categories as well as the
concepts themselves results so we evident. To learn concepts, consists
of becoming acquantied with the entities that can instance these, i.e.,
that form the respective categories; in addition this also regards both
acquiring concept symbolic and numerical parameters, such as proto-
types, typicality of concept instances etc., and to derive concepts from
other concepts, rationally. Thus to determine said parameter is urg-
ing. The formalism by which it would have been expected to fulfil this
necessity was Fuzzy Set Theory (FST): a theory by which to repre-
sent experimental results regarding gradients of membership is direct.
This theory, incepted by Zadeh in the sixties (Zadeh, 1965), has had
a large success and a lot of applications, specially in the field of pro-
cess control, as is reported in the current literature. Unfortunately, it
has been ascertained that some incongruent structural foundations of
FST, make this unsuitable to set up a concept algebra and, definitively,
prevent a convenient use of such theory in Cognitive Sciences (see for
example Osherson and Smith, 1981) and often in Artificial Intelligence,
too.

In the work we are dealing with, we developed procedure to de-
termine said parameters. This is carried out by putting into relation
the extensional definition of a concepts (ED) with the one intensional
(ID). The former being formed by the (possibly exhaustive) list of the
entities that satisfy a considered concept, i.e., that can be tis instances.
The latter consists instead of the disjunction of the (alternative) con-
junctions of the necessary requirements to be ascertained in a given
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entity, so that this may be considered as an instance of the concept
itself.

The mentioned forms of concept definitions as usual are not directly
available: the intensional one can be derived from that extensional
throughout an heavy algorithm and after the latter has been drawn
from a concept natural form, which is a rough definition (RD): the
form in which concepts more currently are expressed.

One procedure leading to ID from that ED has been studied by us.
This has roots in the minimization algorithm of switching functions,
introduced by McLuskey (McLuskey, 1965). We performed an appro-
priate adaptation of this, in formal terms (Arigoni, 1980 and 1982),
after attemps to utilize it in analyzing semantical information (Arigoni
& Balboni, 1974), by Zadeh and in formalizing concept (Zadeh, 1976).

Recently said algorithm has been more efficiently formalized into
the framework of Abstraction Theory: conceptual abstraction, a func-
tion F permitting to draw ID through ED (Arigoni and Maniezzo,
1992) L.

By this paper, it is shown the equivalence between function F and
a simpler one, we develop herein; this permits abstracting ID directly
from whichever RD, allowing so a more “economical” implementation
of the basic procedure.

2 Fundamental definitions

Let us have an infinite universe X of entities x;, where the latter re-
sult by the attributes denoted by binary interpretation of the values an
infinite number of variables X}, take on them. Hence, to identify a spe-
cific subject ¢* through the entities by which these can be instanced,
we consdier the entites to which a set of variable X, that, singly de-
note either the possession or not of one same attribute (definiens vari-
ables) through their binary interpretation, Finally, we limit the atten-

!The mentioned theory has been incepted by Plaisted (1981); successively,
this was enriched by others (Hobbs, 1985; Tenemberg, 1987; Saitta et all.,
1991; Giunchiglia and Walsh, 1992; and others). Abstraction techniques are fre-
quently used in knowledge-based systems to overcome problems of computational
intractability.
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tion exclusively to the values of additional [ variables X (h)1, ...,I)
that characterize the defined subject significantly (characterizing vari-
ables). Thus the entities relative to each subject o* form a universe
of discourse X° having cardinality 2! and whose entities are [-tuples
To = (T1ay- - Thay- -+, Tls). In these, for every h xp, is either “0” or
“17. Thus, whichever element of the power set P(X?) may constitute
the subset of entities —category— that defines extensionally one concept.

With regard to concept ID, the description of this is accomplished
by evidencing the atributes that are irrelevant in the distinct enti-
ties; irrelevance evidenced by indicating such attributes by an asterisk,
rather than by “0” and “1”. This is illustrated in the following exam-
ple.

Example 2.1 We assume that in a universe X of objects, the sub-
ject “car” by means of an adequate number of definiens variables is
identified. Then , through characterizing variables, specifically three of
these, we compose one X°. This includes so entities relative to eight
different types of cars. By assuming that the considered variables are
Xy (price); Xy (elegance); and X3 (sturdiness), the obtained universe
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XY= {2z, = 000 (inexpensive, not elegant, weak),
o = 001 (inexpensive, not elegant, sturdy),
3 = 010 (inexpensive, elegant, weak),
x4 = 011 (inexpensive, elegant, sturdy),
s = 100 (expensive, not elegant, weak),
r¢ = 101 (expensive, not elegant, sturdy),
xr = 110 (expensive, elegant, weak),
xg = 111 (expensive, elegant, sturdy), }

On X° we define extensionally the concept “I: interesting car”. This
takes place by following a specific criterion. The obtained ED can also
called concrete definition of I, because of the concreteness of its ele-
ments —entities. The so formed category is assumed as including the
wole X°, x5 excluded. This means that, according to I, it is sufficient
that a car is conform to one of the alternative conjunctions of necess-
sary requirements, to be considered as interesting; thus the interesting
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cars form the category:

I°={x; = 000 (inexpensive, not elegant, weak),
9 = 001 (inexpensive, not elegant, sturdy),
3 = 010 (inexpensive, elegant, weak),
xy = 011 (inexpensive, elegant, sturdy),
re = 101 (expensive, not elegant, sturdy),
x7 = 110 (expensive, elegant, weak),
rg = 111 (expensive, elegant, sturdy), }

By applying F on concept I, or better, on the category I° that [
itself underlies, we abstract the concept ID, I*, this, which can also
called abstract definition, and because of the abstractness of its ele-
ments, 1S:

I* = F(I°) = {0+ (inexpensive, *, *),
% 1 (%, *, sturdy),
*1 % (*, elegant, *), }

The latter means that in order a car is considered as interesting, it
is sufficient the fulfillment by this, of one of the listed disjoint conjunc-
tions forming I*, which is simpler than verifying the more numerous
and redundant conjunctions appearing in I°.

It is remarked that because of the different relevance that the at-
tributes can have in the distinct entities of 1S, as it can be revealed
from I*, IC itself is fuzzy.

The concision of the form of I* is well evident; however, the com-
plexity of the procedure to achieve it may be high, specially if: (a) the
number [ of considered variables X, is greater than the one considered
in the example here reported. When it is so, in fact, due to the expo-
nential dependence on | by the cardinality of X°, this may reach high
levels and likewise the extension of the concepts ED performed on it,
may result cumbersome; (b) the definition of concepts into considera-
tion is not its KD, as above it has been assumed the eventuality, but it
is an RD. In this case, which is quite common, before applying F, the
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available RD has to be transformed backwar into the one ED, which
makes the task even more laborious.

To exemplify the hypothesized case, we report about one of the nu-
merous forms of RD that may be the one available for the concept I in
issue. This is:

RD(I)=1* =1{ 00 * (inexpensive, not elegant, *),
% 1 (%, *, sturdy),
011 (inexpensive, elegant, sturdy),
01 * (inexpensive, elegant, *), }
11 % (expensive, elegant, *), }

It is remarked that concept RD is that which can be given by an
inquired human agent. This in that, the latter currently is not capable
of keeping rigorous account of possible irrelevancies on the information
it gives.

The direct abstraction of I* from I® of our example does not
present particular difficulty to be carried out intuitively;, nevertheless
this would be impracticable where X° was greater and the defined con-
cept possibly more extended.

3 The conceptual universe

In the last section, by the symbol “x” for irrelevance, it has been in-
troduced an attribute notation additional to those “0” and “1”. Thus,
also a new notation for the entities forming the possible concept defi-
nitions and for the relative universe is needed. By this all the abstract
entities we already used for ID and RD in Example 2.1, are added to
those of X© earlier considered. Said new entities form a set we indicate
by X*: then by the union of this to X is finally obtained the set of all
the entities, either abstract or concrete, by which to define concepts in
all their possible forms: ED, ID and RD. These may so be formed with
entities of X = X% U X*, and each of these appears in the elements of
the power set P(X).

From the previous section, it is clear that every concept S can be
identified, at different levels of abstraction, by one same number of
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elements —subsets forming a category— S¢, S',....S4 of definitions
(semantically) equivalent one to any other, as it occurs for 1€, ..., [4
of Example 2.1. The equivalence relation that links such possible forms
of definition, indicated by “<>”, introducess on P(X) a partition as
it results from the quotient set P(X)/ <>: for every possible concept,
one part of P(X) includes all the elements that define this; the other,
those which do not do it. The set of elements of P(.X) forming one same
part of this, is exactly the formalization of what we call concept. Since
P(X) comes down from the definiens variables relative to one specific
subject 0%, each definable concept will regard such subject. We define
the set of such concepts as k-conceptual universe and indicate it by
=F ={R,S,T,...}. It is noted that once the subject in issue is fixed,
its index k& can be dropped so to simplify the notations.

The elements —concepts— forming one same conceptual universe =,
can be partially ordered by one relation. This is indicated by “<”
and depends on the meaning of the entities of X that are included in
the categories regarding the different concepts of = and that subsume
one another: possibility by a concept of leading another into a more
extended frame (Wos, 1984), and having a more extended ED (Arigoni
and Rossi, 1994).

4 Used symbols and structure of the pa-
per

In the coming sections the treatment of the subject proceeds in a
strictly formal way; to possibly facilitate its fluency, in this brief section
we outline the structure of the paper and precise the used symbols.

X ={x;: i=1,2,...}: infinite universe of discourse, where the z;
constitute the elements —entitites.

Xj: definiens and characterizing variables; these take values on the
z;. The former serve to individuate the z; relative to one same
subject o, by taking on the entities of this invariably one same
value; through the latter, that are a finite number [, the distinct
x; relative to one same subject are distinguished one from another
by the different values the X} themselves assume.
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xp;e attributes denoted by the values of the X}, in the infinite entities
x;; thus, for every ¢, x; = (2y;, ¥4, .. .).

The: attributes denoted by characterizing variables (h =1,...,1).
To = (T1aye o) Thay-- ., L) finite entities.

X0 ={a,:a=1,...,n=2":Vh, 2, € {0,1}}.

X* ={w,: dup, = *}.

X =XUX*={az,:a=1,....,n=3":23, € {0,1,%}}.

R, S, ...: elements of the power set P(X), or else, categories that
define concepts; in particular: I¢ is the concrete definition and
I* is the abstract one.

<>: concrete equivalence relation among the elements of P(X).

=F = P(X)/ <>: quotient-set each class of which contains the possible

definitions of one same concept, i.e., set of all different possible
concepts that can be defined on P(X), about one subject o*.

R,S,...: concepts that can be defined on the subject o*.

By Section 1 it has been underlined that the aimed purpose of oper-
ating formally on concepts is specified by abstracting these. Sections 2
and 3 have puntualized the different concrete/abstract levels at which
concepts can be defined and the universe these form. Particularly, we
committed to an example to precise: (a) how a (finite) conceptual
universe is derived from an infinite universe of discourse; (b) how to
define a concept, that is, how to specifies all the elements to identify
this, concretely, abstractly, or at intermediate levels, also eventually
roughly.

The development of the paper goes on with developing the outlined
basic elements. In Section 5 there are refined elements previously in-
troduced. In Section 6 is considered an algorithm by which leading to
the intensional, or abstract, definition of a given concept, on the basis
of the extensional, or concrete, definition of the concept itself. Dif-
ferently, Section 7 regards how to achieve the same concept abstract
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definition; herein this is accomplished in a more economic way, that
is, by deriving such an abstraction from whichever of the various pos-
sible natural forms of concept definition: the ones rough. The same
algorithm is deeply analyzed in Section 8. Finally, the procedure con-
sidered in Section 9 permits obtaining the abstract definition of the
negation of a concept, directly from the same type of definition of such
concept.

5 Additional definitions

In the present section we formalize further the previously introduced
elements furthermore.

Definition 5.1 Given two entities x,,x3 € X, we say that x, equals
xg tff Vh = 1,...,0 2y = x13. We indicate this by x, = x5 and,
differently, x, # 4.

Definition 5.2 Given two entities z,,25 € X, we say that z, and
x5 are isosignificant and indicate this by v, = x5 iff v, = x5, or
ANk s w2y # 2 and Vh # k 240 = 215, given xp,, 245 € {0,1}.

Definition 5.3 Given two entities x,, x5 € X, we say that x, and xg

are strictly isosignificant and indicate this by v, ~ xp iff v, = x5 and
Ty F Tg.

Example 5.1

0010 ~ 0011; 1101 ~ 1001; 1010 ~ 1011; 1x01 ~ Ix11;
k001 ~ x000; x11x ~ x01x; 10x*x ~ 00*x.

Definition 5.4 Given two entities x, and xg such that Vh xp, = xpg
or xpg = *, we say that xz generalizes x,, or conversely that z,
concretizes xg. This relation is indicatd by x, > xg; in addition,
if o > x5 and v, # vg then we shall write x, > x3.

Example 5.2

0001>x001; 1010>101*; 1110>11x0; 101> 10x%;
k110>x11x;  0101>01xx; 1x00>%x0k; *x001>% % *1.
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Proposition 5.1 (X, >) is a partially oredered set; we denote its min-
imum element by xy and the maximum by x.. The former represent
the null string (Arigoni and Rossi, 1994), the latter an [-tuple all ele-
ments of which are “*7.

The proof is very simple since is based merely on definition of >.

Definition 5.5 Given an entity x5 € X, we call concretized g the
set:

{25} = {2a € X 1 2, > 25}
Example 5.3
x5 = 001%, {x3}° ={0010,0011};

vp=1%0% {25}¢ = {1000,1001,1100,1101};
rg =1x+x, {25} = {1000,1001,1010,1011,1100,1101,1110,1111};

The sense of Definition 5.5 can be extended to subsets of entities
as in the following

Definition 5.6 We call concretized an element C' of P(X) and indi-
cate it by CY, the set of the concretized entities x5 of C.

Formally: CY = U {x3}.
1’560

Definition 5.7 o : P(X) — P(X x X) is a function defined as fol-
lows:
o(S) = StusT
St o= {(flfa,l'ﬁ) €S xSz, ~ :1;5};
S_ = {(xOUxOZ)ESXS:/HxﬁES§$aN$ﬁ};

Definition 5.8 The function & : o(X) — X, defined as follows:

B(xy, x5 = x5 such that Vh # ks = 24, = x5 and x5 = *

@(xom To = Lo

is called conflation operator 2

2The notion of conflation is due to Tenenberg (Tenenberg, 1987) and can be
accomplished on indistinguishable entities (Hobbs, 1985). In this paper it cor-
responds formally to a particular type of synthesis performed in function of the
meaning of such entities (Arigoni, 1980).
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In the following we shall write z, & x4, instead of &(x,, 25).
Conflation can be schematized as follows:

0 =(0,1,0,...,1,....0)
conflation x5 =(0,1,0,...,%,...,0)
e5=(0,1,0,...,0,...,0)

Proposition 5.2 For every x,,xv5 € X such that x, = x4
1) x, Grg=ua5dz,
2) x4 > xq Bag and x5 > x4 B .

that is, the conflation operator is commutative and the result of every
conflation generalizes both the conflated entities. The proof derives
directly from definition.

It exists a particular relation linking any pair €, D of elements of
P(X) which have the same concrete definition, as specified below.

Definition 5.9 Let be given two subsets C' and D such that C¢ =
DY | this relation is defined as concrete equivalence and is indicated by

C<>D.

Definition 5.10 = = P(X)/ <> is the set of all concepts that can be
defined on X about one subject identified by the definiens variables.

In the following the elements of =, i.e., each class that originates
from the application of relation <> on P(X), shall be indicated by
C,D,R,S,.... As indication of one particular representing we can put

C=[CY,D=[DY, R =[R"], and so on.

6 The abstraction algorithm

Herein we consider the procedure yielding the abstract —intensional—
definition of a concept, once the one concrete —extensional— is given.
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Definition 6.1 The function a : P(X) — P(X) defined as follows:
a(S) ={xs 1 as =2, B g and (x4, 25) € 0(S)}

is called partial abstraction function.

Note that a(S) = B(0(9)), i.e., the image of o(5) in the function
D.

Moreover, given the commuativity of & and the symmetry of ~,
only one of the two pairs (x4, 23), (23, 2,) belonging to o(5), can be
considered.

To complete the definition we have to assume that a(f)) = # =
{x4}, where x4 stands as the null string.

Definition 6.2 Let S¢ C X be given, we denote

CLO(SO) — SC — SO
a'(S9) = a(S9)=5"
a?(5Y) = a(a(SY)) =52

a’(S9) = &

Definition 6.3 Given an entity x, € X, we denote the number of “«”
in xy by po. Moreover we put us = mag({,ua}.
Ta€

Lemma 6.1 Vzr, € S* 3z, € S such that v, > ..

Proof. Let us assume that z, € S°, then:
1) if Azges: such that x, ~ x5 then z, € S and z, > x4

2) if Jwpesi such that @, ~ g then Ju, € S such that x, =
Ty D xpgie T, 2> T,
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Corollary 6.1.1. Vi € N the following holds:

either  pgiv1 = pgi  or  fgi+1 = figi + 1

Proof. Let x, € S" and p, = pgi, from Lemma 6.1 it follows that
dz., € S+ such that z, > z., therefore either z, € S or zy € Sitt
and x, > .. In the first case it follows that pgiy; = pgi; in the second,

fsivr = psi + 1.
Corollary 6.1.2. Vi pg <.

Proof. This is given by induction on i. The thesis is obvious for z = 0,
since pigo = 0 considering that S = S C X° Let us suppose,
as an inductive hypothesis, that pgi-1 < ¢ — 1; by Corollary 6.1.1,
fsi < prgi-i + 1, then pgi < pgioi +1 < (0—1)+ 1 =1.

Corollary 6.1.3. If: < j then pgi < piss.

Lemma 6.2 [fz,,25 € S* and v, ~ x5 then p, = g = .

Proof. From the Corrollary 6.1.2 it follows that p, = pg <17 (po = pig
is implicit if 2, ~ xg); so we have to prove the absurdity of p, = g <
.

Let us suppose that p, = ps = j < 7, then z,,25 € 57, and since
Ty~ Tp, Ty ¢ 57T and a5 ¢ S7HL Tt follows that such x, and x5 do
not belong to any one of the successive abstractions and this is absurd
because of the hypothesis according to which z,,z5 € S* and i > j.

Theorem 6.3. Given SY C X let a/(5°) = S7 and pg; = m, if
m < j, then Vi € N a™'(S5¢) = a™(5°) = a’(S°) holds.

Proof. Let us suppose that a™(S5°)%* # 0, then Jx,, x5 € a™(S°) such
that =, ~ xg and by Lemma 6.2, y, = pg = m. It follows that
Ty =,Dxs € a™t1(5¢) and ty = m+ 1, therefore pgm+r > (m +1).

By Corollary 6.1.2 pigm+1 < (m + 1), so that pgm+1 = (m + 1); but
this is absurd in that from m < j it follows that (m + 1) < j and
due to Corollary 6.1.3 it must be pgm+1 < pgi; definitively, it results
(m+ 1) < m which is absurd.
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This shows that ¢ (5°)" = (), consequently
a"F(S5) = a™(5°)
By induction it can be shown that ¢™*+(S°) = a™(5°); in fact,
assuming a™+=1(5°) = ¢™(5°):
@) = a{@HTHS) = ala”(59)) = a7 = @ (S9)
Moreover if the equality holds Vi € NV, it holds for 7 = j — m, then
a™(§¢) = aTIT(S59) = ol (S°).
We can now give the following

Definition 6.4 A(S) = a™(5") is called global abstraction function.
Note that m(< 1) is the smaller index such that a™(S°) = a™*t1(5¢).

Theorem 6.3 assures the existence of one such index m; moreover
m < [, since in each entity there are at the most [ asterisks.

Definition 6.5 VS € P(X), if il evists ¢ < | such that S = S =
a'(S¢), then S is the i-th normal definition of the concept, otherwise S
is one possible rough definition of the concept.

In particular A(S) is indicated also by SA.

7 The incremental algorithm

The procedure considered in this section still regards the achievement
of the intensional definition of a concept; this, however, is derived
from any given concept rough definition and does not require to go
throughout the extensional definition of the concept itself.

Definition 7.1 Vz,, 25 € X

)1 if (zpa,arg) = (0,1) or (1,0)
On (s 2g) = { 0, otherwise

!
A(zy, ) = 3 op(2a,xp) is the distance between the two entities.
h=1
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Definition 7.2 The function o, : P(X) — P(X x X) is defined as
follows:
O-M(S) = {($a7xﬁ) € S X S . A([EO”[EB) = 1}

Example 7.1 Given S = {a; = 000 * %, 25 = 101 * 01,23 = 100 *
00, 24 = 000000, 25 = * + 0100}

Al oz T T3 T4 Ts
x| 0 2 1 0 0
xy| 2 0 2 3 2
x3| 1 2 0 1 0
xq| 0 3 1 0 1
x5 | 0 2 0 1 0

Since A((000#+x, 100400) = 1, A(10+11,1101#) = 1, A(11000, +1+
10) = 1} O-M(S) = {(1?1,1‘3), (1’3,1}4), (1’471}5)}.

Definition 7.3 The function + : 0,(X) — X is defined as follows:
+(2a, xﬁ) = Ty

such that:

Ty = * and Yh # kay, :{ Thas U Tha 74

Tp3, otherwise
in the hypothesis that 6,(x,,x5) =1 and Yh # k 6,(x,, x5) = 0.
As an example let us consider:

To = 000 * %k

\
/

+(xq, x5) = *0000%

xz = 10000%
Definition 7.4 For every subset S of X, the set defined as follows
r(S)=S\{z, € S: Jag €5 and x, > x5}

is called reduction of S. Note that r(() = 0.
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Lemma 7.1 [fVx, € S dwg € SUT such that x, > xg,t hen Va, € S
dz. € T\S such that x, > ..

Proof. Let us suppose that Jdz. € T\S z, > z., then, from the put
hypothesis, Vz, € S Jz5 € S\T such that x, > x4, and this is absurd;
in fact, given z,,25 € S and x, > x3, it must exists an x5 € S such
that z, > x5 > x5 and so on, so that z, € 5; since an element strictly
more general than x does not exist, we obtain the absurd.

Theorem 7.2. Given the elements S, T of P(X); if Vo, € S Jup €
SUT such that o > xg then r(SUT) =r(T).

Proof. r(SUT) Cr(T):

if eg € r(SUT) then a5 € SUT and Axg € SUT such that x5 > xg;
it follows that x5 € 17" and, in addition, Axg € T such that x5 > x4,
so that x5 € r(T').

r(T) Cr(SUT):

if 5 € r(T') then 25 € T and Azxz € T such that x5 > 245; we have
to show that Azz; € S such that x5 > x4; this follos from lemma
7.1, which states that, in the theorem hypotesis, Vz, € S Jdz. € T\ S
Ty > ¥, le. dx. € T such that x5 > x., but this is absurd since
Ts € T(T)

Corollary 7.2.1. VS, T € P(X), r(r(S)UT)=r(SUT).

Proof. Since r(S) = S\{z, € 5 : Jay € S and z, > x5}, it follows
that:
S=r(S)U{z, € S:3Jege S and x, > x5};

therefore r(SUT) = r(r(S)U{a, € S :Jxg € S and x, > xpt UT).

Since Vz, € {z, € S : Jzg € S and v, > x5} it exists 23 € S
such that x, > x4, then Va, € {2, € S : existszg € S and z, > x5}
existsxg € S UT such that z, > xg.

Since SUT =r(S)UT U {z, € S :3Jazg € S and x, > x3}), by
Theorem 7.2:

r(SUT) = r(r(S)UT)U{z, € S : Jzz € S and z, > z5}) = r(r(s)UT).
Definition 7.5 The function m : P(x) — P(X) defined as follows
m(S) =r(SUSA)
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where
SAy ={axs +xp: 20,25 €S and A(xy,x5) =1} = 4+(0,(9))

is called partial M-abstraction function.
To complete the definition we put m() = # = {xy}.

Example 7.2

S = {1110%# 1111 % 0,%11011,+11010}
7,(S) = {(1110 %%, 1111 % 0), (1111 * 0,11010), (11011, *11010)}
SA; = {111%0,111 % 10,*1101%, }
SUSA; = {(1110%%,1111 % 0,+11011,+11010, 111 % 0, 111 * 10,
*1101%, }
r(SUSA)) = {(1110 % %, 111 * %0, %1101+ } = m(.9)

Theorem 7.3. m(S) =S iff 3 > 1 m'(5) = S.

Proof.

= It m(S) = S then m*(S) = m(m(S)) = m(S) = S and by induction
on i, we have Vi € N m'(S5) = S.

<= m(9) =r(SUSA))

m2(S) = r(m(S)Um(S)A;) = r(r(SUSA ) Um(S)A;) = r(SUSA U
m(S)A1) in the same way (by the use of Corollary 7.2.1) we get

m'(S) = r(SUSALUm(S)AL Um?(S)ALU...Um™(S)A,)
mTHS) = r(SUSAL Um(S)A Um?(S)A U...Um ™H(S)A,
U m'(S)A)
In the hypothesis that Ji: m‘(S) = S it follows that m'(S)A; =

SA; (Definition 7.5); therefore the last term in m'T!(S) equals the
second and it can be canceled. It follows that

S =m'(S) = mT(S)

and then



180 A.O. Arigoni & A. Rossi

Theorem 7.4. (convergence) VS € P(X) 3h € N such that Vi > 0
m" i (S) = m"(S).

Proof. Since Vi, m‘(S) is an element of P(X), which is finite, there

must exist two indexes h, k such that
m"(S) = m"*(S) with for example 0 < h < k
Let r = k — h, then k = h + r and
m'(m"(S)) = m*(S) = m" ()

We are now in the hypothesis of Theorem 7.3: it suffices to put
m"(S) = T and to observe that T is reduced, being this an M-
abstraction.

It follows that m(T) =T, i.e., m"*1(S) = m"(S), and the theorem
is proved for ¢ = 1.

By supposing that

then:
I (S) = mlm () = m(m(5)) = m () = m(9)
The theorem is so proved by induction.

Definition 7.6 The set M(S) = m"(r(S)), where h is the smaller
index such that m"(r(S)) = m"*(r(9)), is defined as global M-
abstraction of 5.

We put M(0) = #.

The existence of the above index is assured by the Theorem 7.4.

Definition 7.7 p(X) = {5 € P(X) : S = r(S5)} is the set of all

reduced sets.
Definition 7.8 VS, T € p(X) we define the following relation:

S>>T & Ve, € Sdzg € T such that x, > xp.
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Proposition 7.5. The introduced relation is a partial ordering on
p(X).
Proof. (reflexivity) S >> S VS € p(X): obvious in that x, > x4
Yz, € 5.
(antisymmetry) Let suppose that Va, € S Jzg € T such that @, > x4
and Vo, € T Jas € S such that x, > xs. If there exist z, € S and
xg € T such that z, € x5, then dxs € S such that 25 > x5 and, by
the transitivity of >, x, > x5 with z,, 25 € 5; which is absurd in that
S =r(9).

It follows that Vx, € S Jdxg € T such that x, > x5 but not x, > x5;
therefore it must be z, = 2.

This solve that S C T', and in the same way it can be shown that
T C S;in conclusion, S = T.
(transitivity) This follows directly from the transitivity of >.
Proposition 7.6. r(S4) = 54 and r(9)Y = 5¢.

The proof immediately follows by definitions.

Proposition 7.7. Given two entities v, and xg5:

ta 2 25 iff {2)C C {25},

Proof. The assertion is demostrated in two parts:

i) As {2,}9 = {5 € X : a5 > 2,} and {a5}Y = {25 € XO: a5 >
xp}, due to the transitivity of > it follows that Vas : s > x,, if
T, > xp then x5 > xp, ie.: for all o5 € {2}, 25 € {l‘g}c or
else {x,}° C {a3}°.

ii) In the hypothesis that {z,}¢ C {25}“ it follows that Vas €

{za}"
(a) x5 > x4, i.e., for all h, either x5 = xp, or x), = *
and

(b) x5 > xp, e, for all h, either xps = x5 or xp5 = *.
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Relatively to attribute xp, and to its homologous x5 the four fol-
lowing cases are possible:

1) e € {0,1} and @5 € {0,1};
2) 2o € {0,1} and 45 = *;
3) Tpo = * and x5 = *;

4) xpe = * and x5 € {0,1}.

Since for every h and every x5 € {z,}Y C {z5}“21s € {0,1}, incase
1), from a) and b) it follows that xps = x4, = xps. The fourth case
is absurd, in fact, in the hypothesis that 2,3 = 1(0), no conflation is
feasible on {x5}% with respect to the h-variable. Thus, being {z,} a
subset of {x5}Y, conflations are impossible also on {z,}“. Tt follows
that x, = 1(0).

Cases 1) and 3) tell us that z, = 2,5 whereas in case 2) it results
xps = *. In conclusion, for all h, either xp, = 5 or 5 = * thatis

Corollary 7.7.1. If for all x5 € {x,} 25 > x5 then x, > x5.

Proof. If x5 € {x,}Y and x5 > x5 then x5 € {x3}° thus {z,}¢ C
{25} and x, > xs.

Theorem 7.8. S¢ C T¢ & S4 >> T4,

Proof. To prove the theorem, we show that:
i) if Va, € SAEI:L'g € T4 such that =, > x5 then S¢ C 1Y
ii) if S C T then Va, € SAEL%'g € T4 such that =, > Tg.

i) From Lemma 7.7 and for the hypothesis put in the theorem it
follows that for every z, € S4 it exists at least one x5 € T4 such
that {z,}¢ C {25}, so that {z,}Y C {25}¢ C T°. Therefore 5S¢ =
Ua{zo ¢ results by elements all belonging to T¢, and then S¢ C T°.

ii) Let z, € S4 be given.

By Definition 5.6 {z,}¢ C S¢ and from the put hypothesis (S¢ C
TY) we have {z,}¢ C TY. By considering the abstractionprocess on
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T, since every conflation feasible on {z,}° remain still feasible on
T, it exists an entity x5 in T which generalizes at least each entity
of {x,}¢. Thus, by Corollary 7.7.1 it exists x5 € T that generalizes
z, € SA.

Corollary 7.8.1. If SA C T4, then S© C TC.

Proof. Since for every z, of X, x, > ., if S* C T then Vz, € S4,
Jzs € TA such that x, > x5 (such an 25 equals z,); then from the
theorem we have S¢ C T°.

Theorem 7.9. A({z,}°) = {z,}.
The proof is given by induction on p, and considering Theorem

7.8.

Theorem 7.10. VT € [SY], i.e. for all T such that T® = S°, if
T =r(T), then T >> S4.

Proof. Yz, € T we have that {z,}° C TY = 5S¢ and by Theorem
7.8 Vz, € A({xa}c) dzs € T4 such that x, > zg; by Theorem 7.9
A({z,19) = {z,}, therefore Yz, € T Jxz € T such that z, > 5.
Since T¢ =S¢, A(T®) = A(SY), that is SA = T4,

The theorem characterize S# with respect to the others elements
belonging to the same equivalence class: it results the minimum in the
relation >>.

Note that if T is not reduced, we still can state that Vz, € T
dxg € S4 such that z, > x g, since the theorem is true for the reduction

of T.

Theorem 7.11. [f Jv; € X\S* and Jz, € SA such that z, > x5,
then Jxs € {25} such that x5 & S°.

Proof. Let us suppose that Vas € {25}, x5 € S then {5} C S¢
and by Theorems 7.8, and 7.9 3z, € SA such that x5 > x.; then
To > Tp > Ty i€ Ty > T, With 2,2, € SA, which is absurd because
of S4 = r(S4) (Prop. 7.6).

Lemma 7.12. Vag € S Ja, € m(S) such that x5 > x.,.

Proof. By considering that m(S5) = r(SUSA;), two cases are possible:

1) if x5 € m(S) then x5 > xs.
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2) if x5 € S\m(95), this means that x5 was deleted, which is possible
only when Jz., € m(5) such that x5 > x..

Corollary 7.12.1. Va3 € S Ja, € M(S) such that x5 > z.,.

Corollary 7.12.2. Ifz, € S then 3z, € M(S) such thal v, > ..

Proof. If x, € SY then dzg € S such that 2, > 23 and by Lemma
7.12 Ja, € M(S) such that 3 > «,, thus =, > z.,.

Lemma 7.13. If z,,23 € X are such that A(z,,x5) =1, then

{za +25)" S {za}? U {25}"

Proof. Since A(x,,x3) = 1 we can suppose that 3k such that xx, =0
and zyg = 1. Let us consider the attributes of x5 = 2, + 23 as it
follows from the definition of +:

1) aps = 0iff 20 = 0 and aps = * or Tpy = x4 = 0 or 253 = 0 and

Tha = *;

2) aps =1 iff 25 =1 and @y, = * or 2y, = x5 = L or 2, = 1 and
xhﬁ:*;

3) wps =+ iff xpy =g =% or h = k.

Let x. € {z5}Y; by noting that VA z,. € {0,1} and VA such that
zps € {0,1} we get xj,, = aps, so that we can show:

a) if zp = 0 then z. > x, i.e. z. € {2,}Y;

b) if ag. = 1 then o, > a5 ie. x, € {25}°;

In the first case xp, = 21, = 0 and for all h # k, if . = 245 =0
then by 1) x4, = 0 or ap, = *; if 2, = x5 = 1 then by 2) 2, =1 or
The = *. In conclusion, ). = xp, or T, = * l.e. X, > X,.

In the second case vy = w45 = 1 and for all A # k, if ;. = 0 then
by 1) aps = 0 or aps = *; if x4 = x5 = 1 then by 2) aps = 1 or
rps = *. In conclusion, x. = x5 or xps = * l.e. x. > s.
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Lemma 7.14. VS € P(X) (M(S5))° = 59,

Proof. We can show that VS( 5))¢ = S holds; from m(S) = r(S U
SA), it follows that (m(S))Y = (S U SA)Y, since VS, r(5)° = S¢
(Proposition 7.6).

Thus:

(SUSA) =89USA e = Upes{ra} UUz esa {19 =59

since Vo, € SA; dr,, x5 € S such that z, + 3 = 2, and by Lemma
713 {2,}° C {2, }9 U {as}°.
Since M(S) = m"(9), it follows that (M(S))“
Note that S is con81dered reduced since (r (S)) SC
From Theorem 7.14 it follows that M(S) € [SC], thus Theorem
7.10 states that:
M(S) >> §4

that is: Vo, € M(S) Jzs € S4 such that z, > 25.

8 M(S)— A(S) equivalence

We start this section by a characterization of M(.9):
Va,, x5 € M(S) the following three cases are possible:

1) Az, 25) = 0;
2) A(za,z) =1 and Jz, € M(S) such that z, + x5 > .;

3) Ax,,xp) > 1.

This follows directly from the Definition 7.6 of M(S), by consider-

ing that in all others situations we can not have m”(S) = m"*+1(5).

Theorem 8.1 Let x5 € X. If {23} C S then Jo, € M(S) such
that x5 > x.,.

Proof. By induction on fig, i.e. on the number of ”*” in z.

If s =1 then {z3}“ contains two elements x5, and zs, such that
xp, ®ap, = vg. Since {x5}Y C S+ C and for every element of S“ one
exists in S more general, we have three possible cases:
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1) l’g € S;
2) xg,, 28, €5
3) dzg,, w5, € S such that xg, > 25, and 25, > g,.

In the first case the theorem follows directly from Lemma 7.12. In
the second, either 25 = x5, © 23, € m(S) or in m(S) it exists an
element which is more general than xz. Again by Lemma 7.12 the
theorem is proved.

In the third case:

let 15, =0, 215, =1, x93 = * and Vh = 2,3,..., [ 235 = xpg, =
Thpa.

Since z3, > 3, and z, > x5, it follows that VA = 2,3,...,1

l’hgg = l’hgl or l’hﬁg = x

and
xhﬁ4 = $hﬁ2 or xhﬁ4 = x

If either 2,43, = * or 245, = *, then:

rg > T, or g > xg,; thus from Lemma 7.12 the assertion is
proved.

If 215, # * and 15, # * then x15, = 715, = 0 and 15, = T15, = 1,
and since Vh = 2,3,...,[ 235, = xpp or x5, = * and x5, = T3 Or
Ty, = * it follows that A(xg,, 25 ) =1 and x5 > x5, + 24,.

Thus zg,+ 2, € m(S) or in m(9) it exists an element more general
than rp—3+xg,. Since Tgy+p, 1s more general than zg, from Lemma
7.12 it follows that the theorem is proved for pug = 1.

Let us suppose, now, the theorem true for yg =n — 1.

Let z,, and z,, two elements of X such that z,; @ z,, = 25.
It directly follows that p., = pa, = n — 1 and, for the inductive
hypothesis, there exist =, and z,, € M(S) such that z,; > x,, and
Tog 2 Ty

Let 210, =0, 214, =1, zipg =x and Vh = 2,3, ..., ], 2py, = Thay, =
Tha-

Since z,, > z,, and r,9 > x., it follows that VA = 2,3,...,/

Y1

Thy, = Thay OT Tpey, = *
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and

Thyy = Thay OT Thy, = *

If z1,, = * or x1,, = *, then from the above we get either x5 > z.,,
v and the theorem is proved.

If 21, # * and 21, # * then 1, = 21, =0 and 2y, = 21,, = 1,
and since Vh = 2,3,...,1 x},, = x5 or Tp,, = * and xp,, = x5 OF
Thy, = * we have A(z,, 2,,) = 1. Thus due to the properties of M(S5),
it follows that Jz., € M(S) such that (x,, + z,,) > z,; since x1, = *
and Vh =2,3,...,1 2}, = 235 or xp, = *, it follows that x5 > 2., i.e.
the theorem is proved.

or vg > ¥

Due to this important property of M-abstraction we are now ready
to show the main result:

Theorem 8.2 VS € P(X) we have M(S) = A(5).

Proof. Theorem 7.14 states that M(S)¢ = S, that is, by Theorem
7.10:
M(S) >> A(S)

We show that A(S) >> M(S), so that M(S) = A(S) follows due
to the antisymmetry of >>.

Let z, € A(S) then {z,}Y C S¢ and, by Theorem 8.1, Jz5 €
M(S) such that xz, > x5. It follows that Vz, € A(S), x5z € M(S5)
such that z, > x5, l.e.

A(S) >> M(9).

Corollary 8.1 If SY =T, then M(S) = M(T).

Proof. Tt S¢ = T, then A(S) = A(T), so that M(S) = M(T).
Corollary 8.2 M(S) = M(5Y).

The proof follows directly from the above corollary, by considering

that (5) = §°.

Corollary 8.3 If S = 5, US,, then M(S) = M(M(S1)U Sy).
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Proof. 5S¢ = (S, U S5,)Y = SYUSY and M(S)° = SY; by Corollary
8.2.2 we get: M(S) = M(SY) = M(M(S5))USY) = M(M(S)US,).

Because of the last corollary, the algorith of M-abstraction can
be named incremental algorithm: When the abstraction of aconcept is
given, we can add to this a set and directly obtain the new abstraction.
With respect to A-algorithm, M-algorithm can operate directly on
concept rough definitions, rather than on the nrmal ones.

Example 8.1 Given S = {1110, 1111« 0,*11011,*11010}
e al(SY)  a*(S9)  A(S)
111000 11100x 1110%x 1110+
111001 1110%x0 1110+ 111xx0
111010 11100 11100« %1101
111011 1110«1 11100«

111100 11101 *1101x
111110 111%10
011011 *11011
011010 1111%0
01101+
S m(S)
1110%x  1110%%
1111x0  111xx0
x11011 *1101x
x11010

Note that m(S) equals M(S) since SA; = {1110, 111*10,*1101%}.

9 The decremental algorithm

In this last section we make up an algorithm through which for any
concept defined abstractly, it can be obtained the abstract definition
of the negation of the concept itself. This constitutes an useful com-
plement to the operations introduced in the previous sections.

Definition 9.1 Vz,, 25 € X:

l’a\/l'g — xW? Zf A(xomxﬁ) = 0 where whw _ Thas Zf Tha 7£ *
ry, if Alaa,x5) >0 Tpa, otherwise.
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T, V xg is the more general entity that concretizes both x, and vg.

Proposition 9.1 Vr,,2v5 € X {2,V 25}° = {2,}° N {zs}°.

Proof. Let us consider the two cases a) A(z,,23) = 0 and b) A(z,, x5) >
0.
a) Ay, x) = 0; Vh three cases are possible:

1) Tha = Thp € {0717*}
2) xpe = * and x5 € {0,1}
3) Tpe € {0,1} and x5 = *

rs = &, V xg concretize both z, and x5 by definition, i.e., x5 > z,
and x5 > xp.

Thus, {25} C {2,}° and 25} C {25}%, that is: {2s}° C {z,}9N
{zs1€.

Let z. € {z,}° N {x3}Y, ie., z. > 2, and z. > x5, we show that
Voo, ze > xg; if . € {x,}Y N {zs}°, then Vh such that x,, € {0,1}
Tpe = Tpa, and for these indexes we have also that x,5 = x5, i.e.:
LThe = Ths-

If 21, = * and we are in case 3) x5 = * holds, while in case 2)
xps = xpp € {0,1}, and also Vh such that xps € {0,1} x4 = 245 in
that o, € {25}°.

In conclusion, either x,, = x5 or x,s = *, that is, x. > x5 with
z. € SY this shows that x, € {25} i.e. {a,}9 N {x5}° C {as}°.

b) A(xa,x5) > 0, that is, 3k such that

1) 23, =0 and 245 =1 or
2) tpo =1 and 253 =0

In the first case: Vz, € {l‘a}c xp. = 0 and Va., € {:L'g}cxm =1 so
that {z,}° N{zs} = 0.

In the second: Vz, € {2,}° 24 = 1 and V., € {xﬁ}cxm =0 so
that {z,}“ N{z}° = 0. {25 = 0 by definition, thus {2} N {5} =
fes}C = 0.

Definitively, the proposition states that Va,,zg, 2, V 25 is an ele-
ment that concretizes both x, and x5 and between these elements such
T, V xg is the more general.
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Definition 9.2 Vz,,25 € X:

0 ifap, =1
The = 1 if Lha = 0
if xpy = *

Toks = Ty where Ty = T3 and Yh # k xpy = Tho;
Topp = Ts Where xps = T and Yh # k x5 = py.

Proposition 9.2 Vz,,x3 € X such that x5 # *:
1) {zans} N {51 = 0;

2) if {apy = * then {zop5}° U {xakﬁ}c = {z2,}°.
Proof. Let us denote z,1s by zs and T ok by ..

1) xgs # * thus x4 € {0,1}; if we suppose that xz3 = 0, then
zrs = 0 and xp = 1; it follows that {z 15} N {xakﬁ}c = 0.
The same happens if z;3 = 1.

2) in this case Vh # k xp, = & = xp,, and xy, = *; thus z, < T.p
and o < 2,5 it follows that {z.rs}” U {2,519 € {2}, The
inverse inclusion follows directly by considering that for every
z¢ € {worp}” and if xpe = 1, then z¢ € {xakﬁ}c (if 253 = 0)

Corollary 9.1 {xakg}c = {2} \{zars }¢-

Lemma 9.1 Vz,,23 € X such that x5 > z,, ﬂk:xka#kﬁ{xakﬁ}C =

{25}

Proof. Let be d =card {k : x1, # x1s}; note that if xp, # ks, in the
hypothesis that 3 > z,, then ,, = * and ;5 € {0,1}.
We proceed by induction on d.
If d)1 i.e. 3k such that x4, # 43, when we replace xy, by x5, we
obtain xg, in that Vh # k 21, = x15.
It follows that
{zarp} = {25}".
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Let us suppose the theorem is true for d = n — 1.
By ordering set {k : @4, # 23} we can put

(Vfrasal® = ) aas)® (ians)®

from which, by inductive hypothsesis:

M A{wars}” = {25} N 2ans} .

k=1
Since by the hypothesis that zggeqz,, it follows directly that x5 > 2,4,
that is

{xﬁ}c - {xanﬁ}cv

{26} {2ans}® = {2} Le. Mim{zans}® = {25}
Definition 9.3 Vz,, x5 € X such that x3 > x, we define

{za\est = U Azaip)):

kzpoFTrs

Lemma 9.2 Vz,, 25 € X such that xg > v, {x,\v5} = {2, }\{25}°.

Proof.

{xa\xﬁ}c = ( U {xakﬁ}) = U {l’akﬁ}cz

k:rga#rrp k:rga#rrp
= U (@) ears}) = {23\ U {zars}” =
k:rga#rrp k:rga#rrp

= {za}\Mas}

Definition 9.4 VA, B € P(X) A = U;_{an} and B = Ui_{bx} we
define:
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Theorem 9.1 VA, B € P(X) A=U;_{an} and B=Uj_{bx}:
(AV B)Y = A“N BY

(T ( _U {Clh \% bk})) == ( _U {Clh \% bk}) ==

= U {anvb}© = _U {an}? N {br}° =

h=1,...,r h cey
k=1,...,p k=1,...,p

Proof.

(AV B)“

r

= (hL_J {ah})c n (;Q {bk})c = A“ N B°.
Definition 9.5 vs_; P(X) S = L];l;l{xi}
pis) = M Vi)
Theorem 9.2 VS € P(X) S = U;;:{xi}, D(S)¢ = X0\ 5¢ = 57,

Proof. Let S; = {x.\x;}:

by Theorem 7.14 D(S)Y = (VL Si)c and by Theorem 9.5
(Viey S0 = Uiy Sies

by Lemma 9.4 S;c = X°\{x;1 so that, by the De Morgan’s laws:

D(S)° = (_]1 XO\{2,}¢ = XO\Q{%}C = 5.
Theorem 9.3 VS € P(X) D(S) = A(5).
Proof. By Theorem 8.2 M(D(S)) = A(D(S)), but M(D(S)) = D(S),
being D(S) and M-abstraction; thus
D(S) = A(D(5)) = A(D(S)7) = A(S).

The D-operator can constitute a basis to make up an algorithm
yielding the abstraction of the negation of one concept, starting from
one rough definition of this. By considering the way in which is such
an algorithm operates, this can be called decremental algorithm.
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Corollary 9.2 VT € [SY] it is easy to prove that:
1) D(T) =D(S)
2) D(SY) = D(9)

By the algorithms we introduced (see Section 7 and 9) and in con-
sideration of the results these yield, given S, T € P(X), the following
equalities are true:

1) A(S9) = D(S);
2) A(SCUTY) = A(SUT) = M(SUT) since (SUT)Y = SCUTY;

4) A(SCNT9) = ASCUT?) =D(SCUT) =D(D(S)UT).

These show that by means of the mentioned algorithms, it is pos-
sible to obtain directly the abstraction of any subset resulting from
operations on elements of P(X). We can put, for example,

1) ~ S =A(S9 =D(S);
2) SUT = AS“UTY) = M(SUT);
3) SNT = AS°NT) =D(D(S)UD(T)).

10 Conclusions

One of the relevant results obtained by the paper was determining the
structural characteristics of the conceptual universe =. These derive
from the relation existing among its elements —concepts. Such char-
acteristics are complementary to the reticular structure of =, earlier
evidenced. This derives from the linking that “<” operates on the
concepts forming = because of the possible relations among concepts,
subsuming one another: possibility by a concept of leading another
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into a more extended frame, i.e., having a more extended extensional
definition.

By considering the introduced algorithms and the results these
yield, we have achieved the possibility that given any two elements
of P(X), that is, two concepts, we can acquire knowledge of their
negation, union and possibly intersection. The outcoms still are con-
cepts and are given directly in abstract form. Thus, it is put the
basis for structuring elements that formalize concepts, as an algebra.
The abstract form of any considered concept is also useful to com-
pute conceptual parameters as well symbolic as numerical, thorough
its comparison with the one concrete.
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