Mathware and Soft Computing 1 (1994) 139-161

An Effective Way to Generate Neural
Network Structures for Function
Approximation

Andreas Bastian
Lab. for Int. Fuzzy Engineering Research
Siber Hegner Bldg. 4. Fl., 89-1 Yamashita-cho,
Naka-ku, Yokohama, 231 JAPAN

Submatted by L.T. Koezy

Abstract

One still open question in the area of research of multi-layer
feedforward neural networks is concerning the number of neu-
rons in its hidden layer(s). Especially in real life applications,
this problem is often solved by heuristic methods. In this work
an effective way to dynamically determine the number of hidden
units in a three-layer feedforward neural network for function
approximation is proposed.

1 Introduction

Multi-layer feedforward neural networks are enjoying a rising popular-
ity and their applications range from medical applications [1], hand-
writing recognition [2], the game of backgammon [3], currency ex-
change rate prediction [4], control and identification of nonlinear dy-
namically systems [5], to pig carcase grading in slaughterhouses [6].
Despite this obvious success, one frequent asked fundamental ques-
tion is about the size of the hidden layer(s). Especially in industrial
applications where compact networks which require a minimal amount

139

140 A. Bastian

of storage memory and computing time are needed, the so-called “right
size” of a hidden layer is a very important issue. If the network is too
small, a good representation of the training data might not be possi-
ble. On the other hand, an oversized network, besides requiring long
computational time, might loose its generalization ability.

It has been shown in [7] —by applying the Stone-Weierstrass Theo-
rem— that a feedforward neural net with only one hidden layer using
arbitrary squashing functions is capable to approximate any Borel mea-
surable function from one finite dimension space to another. Thus, this
kind of network can be regarded as an universal approximate. However,
this theorem does not provides the number of hidden units necessary
for approximating a function.

Although there exist a number of approaches to determine the num-
ber of hidden units, e.g. [8-10], most of them are too complicated for
a fast application, or are only suitable for some specialized applica-
tion. Furthermore, all approaches do not distinguish between the task
of pattern learning and function approximation. Yet, it is well-known
that those two tasks are very different: pattern learning requires the
memorizing power of the network, while in function approximation the
generalizing ability of a network is needed.

In this work, we will mainly deal with the problem of finding the
optimal network structure for function approximation. In [11-12] the
bounds on the number of hidden units in multi-layer feedforward net-
works needed to approximate a function with any desired accuracy
were given. In this study, those theoretical results are derived to a
simple and more practical approach to find the optimal number of
hidden units. It will be shown, that given a modeling method that
converges to the output, it is possible to find the minimum number of
hidden units sufficient to represent the output by dynamically adding
or deleting hidden units.

The initial size of a network is also of major importance when deter-
mining its optimal structure. Thus, the usage of feature extraction of
the data is proposed to determine the initial number of hidden units.
For this purpose, the well-known Fuzzy C-Means (FCM) clustering
algorithm [21] is employed.

Although any learning method applicable for feedforward neural
networks can be applied, in this study the backpropaga-

An Effective Way to Generate Neural Network... 141

tion-learning algorithm [13] is used, since this algorithm is by now quite
well understood as there exist a number of publications concerning its
learning parameters [14-15], weights [16], improved learning algorithms
[17], and optimum shape of the sigmoid function [18]. Furthermore,
this learning algorithm is the probably most often applied one.

This paper is organized as follows: to make this study self-contained,
in the next section some preliminary definitions are provided, followed
by the introduction of the proposed method in Section 3. To demon-
strate the effectiveness of this method, in Section 4 it is applied to
several polynomial functions and one real life example, namely the
modeling of a human operator of a chemical plant. Finally, conclu-
sions and outlook are given.

2 Preliminary discussion

2.1 The backpropagation algorithm

Let’s consider a multi-layer network of continuous-valued neurons. When
a pattern is presented to the network, the general activation of each
neuron in the network (except the input units whose activation is
clamped by the input vector) is given by using a sigmoidal function
such that:

(1)

1
Opj =

1+ exp (— [Z W;0pi + Gj])

where o,; is the activation of the neuron j due to the presentation of
pattern p, and w;; is the weight from neuron ¢ to neuron j. O; is the
bias for the neuron j.

Without any loss of generality, in this work we will use the backpro-
pagation-learning algorithm. This algorithm can be considered as a
generalization of the least-square method used for approximating func-
tions through polynomials. The network learns to map a set of inputs
to a set of outputs by iteratively adjusting the weights w of the network
by:

Awji(t +1) = néy;0p; + alw;i(t) (2)

where ¢, n, 0,;, @ and wj; are the presentation number, the learning

79

142 A. Bastian

rate, the error signal for neuron j, the activation of neuron 2 as a
result of the input pattern p, the momentum factor and the weight
from neuron ¢ to neuron j, respectively.

The error signal for an output neuron is calculated as follows:

bpj = (targetpj - Opj) 0p; (1 — 0y) (3)

where target is the desired target value. This error is then backprop-
agated to the previous layer and the error signal for a hidden layer
neuron is calculated as follows:

bpi = 0p; (1 — 0) Z Opk Wy (4)
k

Although it is understood that the settings of the learning param-
eters in this work and shape of the sigmoidal function may not yield
fast convergence, the parameters of the networks are kept constant to
ensure a fair comparison between several network structures.

2.2 Bounds on the number of hidden units

In a multi-layer feedforward neural network every hidden unit con-
structs a hyperplane decision surface in the input space. In [12] it
has been shown that any arbitrary training set with p training pat-
terns can be mapped by a multi-layer feedforward neural network with
one hidden layer and p — 1 hidden units. The following theorem was
proofed:

Theorem 1 [12]: Let S be a k-element of E" where k > 1 is an
integer, and let f be an arbitrary real-valued function defined on S,
ie., f:5 —= FE. An multi-layer perceptron with k — 1 hidden units is
capable of realizing f.

This theorem provides the number of hidden units needed for a
correct representation of the k& elements. Yet, it is obvious that the
number of the hidden units can be reduced if similar training patterns
are presented to the network. Therefore one may say that Theorem 1
gives us the sufficient number of neurons needed for the representation
of the k£ elements.

An Effective Way to Generate Neural Network... 143

Corollary 1 The sufficient number of hidden units of a multi-layer
perceptron with one hidden layer needed to represent a k element finite

set S is k—1.

The proof of this corollary follows directly from Theorem 1. Since
Theorem 1 was already proven in [12], the reader is referred to that
publication.

The minimum number of hidden units needed to represent a k el-
ement finite set S can not be deduced theoretically, since it depends
very much on the data and the kind of application. However, a mini-
mum number of hidden units exists for a multi-layer perceptron with
one hidden layer, as it will be shown in the following.

Let X = (Xy,...,X,) be a vector of n input variables with « =
(1,...,2,) being an instance of this vector, and let Y be the output
variable with y being an instance of it. According to Theorem 1, a
multi-layer perceptron with one hidden layer, consisting of £—1 hidden
units, is able to represent k£ instances of the input vector. One may
say that, given a bounded subset Y of the one dimensional Euclidean
space and a bounded subset X of the n-dimensional Euclidean space,
there exists a function f:R" — R with ¥ = f(X).

If r units are removed from the hidden layer, then given a bounded
subset Y of the one dimensional Euclidean space and a bounded subset
X of the n- dimensional Euclidean space, there exists a function f :
R" — R with Y, = f(X). The index r denotes the number of removed
hidden units. Given a criterion to determine the representation error,
the influence of removing r hidden units can be defined as:

Definition 1 The loss of information due to a removal of r hidden
units is given as

Li= [y =y, dx, (5)

where the index v indicates the number of removed hidden units.

Let’s now consider a finite set of pattern to be represented. This
is the problem of approximating a bounded function f : A C R* —
R, from a bounded subset A of n-dimensional FEuclidean space to a
bounded subset f(A) of one dimensional Euclidean space, by means of

144 A. Bastian

examples (z',yY), (z%,9%), ..., (2%, y*) where y* = f(2*). The loss of
information for the discrete case is defined as:

Definition 2 Given a finite set of input/output data, the loss of in-
formation due to the removal of r hidden units is defined by:

k
LI =Y |y —yi| dX, (6)

=0

where the index v indicates the number of removed hidden units.

This loss of information for the finite case can be used to observe
the influence of the removal of hidden units, thus providing a possibility
to determine the optimum structure of a network to represent a given
input-output relation.

Theorem 2 Given an input-output data set with ¥ vectors generated
randomly from A in accordance with a fived probability density function
p(x) (p is assumed to be 0 outside A), and given a modeling method that
converges to the output Y and a method to judge the representation of
the network, then it is possible to find the minimum number of hidden
units sufficient to model the output.

Proof.

Since LI indicates the loss of information, the k training patterns
can be represented by using a three-layered feedforward neural network
with & — 1 hidden units. In the following, one hidden unit after the
other is removed while watching the corresponding LI values.

e] > 0 indicates that the lower bound of minimal number of
hidden units is already exceeded.

o L] = 0 indicates that there still exist enough remaining hidden
units to represent the training pattern.

End of proof.

An Effective Way to Generate Neural Network... 145

For practical applications, Theorem 2 has to be relaxed by intro-
ducing a threshold value ¢ such that while LI< ¢, hidden units can
still be removed. Another relaxation is to allow the existence of local
minima. However, using several networks with different initial weights
will likely lead us to the best possible solution, although it can not be
guaranteed that the global minimum is found. Nevertheless, from the
applicational point of view there is no need to find the right network
size for the local minimum, if the global minimum is very hard to find.
Such cases are not unusual. In fact, until 1988 it was not even known
for certain whether backpropagation error surfaces have local minima,
when Mclnerney and co-workers [19] discovered a local minimum after
a 12-hour run on a Cray-2 super computer.

It is obvious, that removing one hidden unit after the other from
a network with an initial size of k¥ — 1 hidden units will require long
computing times in most cases. It is therefore better to start with
a smaller initial network. Yet, since there now exists the possibility
that the selected network is too small, the influence of adding hidden
neurons must also be observed.

Definition 3 Given a finite set of input/output data, the gain of in-
formation due to adding a hidden units is defined by:

, (7)

where the index g indicates the number of added hidden units.

k

Gr=%

=0

dX

v =y

Given this criteria to observe the influence of adding hidden neu-
rons, Theorem 2 is still valid even if the initial amount of hidden units
is less than k£ — 1, since hidden units can be added while watching the
gain of information.

e (GI > 0 indicates that the lower bound of minimal number of
hidden units is not yet exceeded, since additional hidden units
improve the representation capability of the network.

e (I = 0 indicates that there already exists enough hidden units
to represent the training pattern.

Like in the case of removing hidden units, a threshold value £ can
be introduced for practical applications.

146 A. Bastian

2.3 Generalization

In the previous section a methodology to determine the number of
hidden units was given. However, it was assumed that a correct learn-
ing scheme is provided. Since in this study we mainly deal with the
problem of finding an optimal network structure for function approx-
imation, the generalization ability of a network must be ensured, by
which the ability of a network to generalize patterns outside the train-
ing set is meant. In other words: if an input vector lies between or
close to training set examples, the net should produce outputs which
are reasonable related to the outputs of those training sets. Moreover,
during the learning phase the network should disregard noise and out-
liers.

Generally speaking, generalization depends on three parameters:
the complexity of the training data, the number of training data, and
the network size. As mentioned in the introduction, an oversized net-
work will loose its generalization ability and memorizes the training
data instead, including its noise and outliers. It has been pointed out
in [20] that a network which simply memorizes the training patterns
may fail when presented with similar but slightly different patterns.

One issue of memorization is the so-called overfitting of the data.
This phenomenon usually occurs if the training set contains noise and
outliers. As illustrated in Figure 1, a curve fitted too good to the data
set might be very poor for interpolation and extrapolation.

Overfitting is basically related to the structure of the network and
the training time. Since in this work only feedforward networks with
one hidden layer are considered, the structure of the network is directly
related to the number of neurons in the hidden layer. One may view
the number of the hidden units as the available degrees of freedom a net
has in order to represent a certain input-output relation. The second
big influence on overfitting is the training time, that is, the number of
times a pattern is presented to the network during the training. In this
case, overfitting might be explained as the attempt of the network to
fit all training patterns, even after a good approximation of the input-
output relation is achieved. This is often addressed as overtraining.

One approach to avoid overtraining is to stop the training when a

An Effective Way to Generate Neural Network... 147

Figure 1: Good fit Overfitting

good generalization ability is achieved. A simple method to estimate
the generalization ability is to check the network using an unknown
data set. Thus, the existing data are divided into a training and a
validation set. The training set is used to adjust the weights of the
net during the training, while the validation set is used to estimate the
generalization ability of the trained net. The training is terminated
when the error on the validation set begins to rise. Figure 2 shows
this situation schematically. At first, the error of both training and
validation set decreases with the training time. After a certain period,
the error on the validation set stops to decrease and rises again, while
the error on the training set continues to decrease. At this point the
training should be stopped.

In this work, this method is used to avoid overtraining. It is under-
stood, that this method might be not very practical if only a small data
set is available. Yet, as it will be shown latter, good results can still
be achieved if a network with a small number of hidden units is used,
which is still capable to represent the desired input-output relation.

148 A. Bastian

Figure 2: One method to prevent overtraining.

3 Determining the structure of the net-
work

3.1 Basic idea

In the last section the framework for determining the optimal structure
of a network for function approximation was provided. Since Theorem
1 provides the number of hidden units needed for a representation, we
could actually determine the optimal structure by recursively remov-
ing one of hidden unit, train the network with the existing data, and
compare its performance with the previous structure. This cycle could
be repeated as long as no significant change in the representation abil-
ity of the net occurs. Even bound to result in a good structure, this
method requires too much computing time.

On the other hand it was shown, that we can actually start with a
very small network structure and increase the number of hidden units
one by one while watching its performance. Again, also this method
may require much computing time if the final structure contains many
hidden units.

Therefore, a good initial net structure should be provided. Since
the number of hidden units depends strongly on the complexity of the
mapping task, it seems reasonable that a methodology to determine

An Effective Way to Generate Neural Network... 149

the complexity of the input-output relation could be helpful. Recall
that if an input vector lies between or close to training set examples,
the network should produce outputs which are reasonable related to
the outputs of that training sets. This means that data with similar
features should also have similar outputs. To some extend one may say,
that the number of features of a pattern is related with its complexity.

In the field of pattern recognition, cluster analysis is an very im-
portant tool for solving many problems. One widely used clustering
algorithm for feature extraction is the Fuzzy C-Means (FCM) algo-
rithm proposed by Bezdek [21]. In this work, this algorithm is applied
to detect similarities between the data.

3.2 Clustering algorithm and validity criteria

Fuzzy clustering is best understood by comparing it with the more
common hard clustering method. Let X = {X7, X5,..., X,,} be a set
of n vectors in R?, representing the data. For an integer ¢ > 2, a hard
clustering of X into ¢ clusters will result in ¢ disjoint subsets S, of X.
The clusters are defined using functions. For ¢« = 1,... ¢ we define
u; + X — {0,1} by w(2) = 1if X € S; and u;(x) =0if X & 5, for
all z € X. These functions are called membership functions since they
are describing to which cluster each data point belongs.

However, it seems to be quite natural, that the degree of mem-
bership u; is allowed to take values between 0 and 1, thus allowing a
data point to belong to more than one cluster at the same time. This
is actually the idea of fuzzy sets as introduced by Zadeh [22]. In the
following, the fuzzy degree of membership of the kth data belonging
to the ith cluster is denoted by p;x.

The FCM-algorithm is executed in the following steps [21]:

1) Set the number of clusters ¢ = 2, and initialize cluster centers V'
arbitrarily. Choose a scalar ¢ > 0, the weight m[1.5, 3], and set
qg=1.

2) Initialize memberships g of X} such that

Z,Uz’k =1 forallk (8)
i=1

150 A. Bastian

3) Compute the center v; of the fuzzy cluster by

vi= 3 (ua)"wn/ 3o ()", 1<i<e (9)

4) Update the fuzzy degree of membership

IR
Wik = 1/ Z (d;k) , for dy >0, Vi, k, (10)
7=1

where the Euclidean distance between the kth data to the center
of the ith cluster is given by

diyy = |lxx — vil]- (11)

5) It
[V — v < (12)

then terminate the algorithm, otherwise set ¢ = ¢+ 1 and return
to step 2.

Having determined the number of clusters, one still faces the ques-
tion how well has the algorithm identified the structure present in the
data. This is the so-called cluster validity problem. The choice of the
cluster validity function is depending on the desired clustering. In this
work the cluster validity function used in [23] is applied:

S = " (lew — vl — e —=lF). (13)

k=1:=1

where n is the number of data, ¢ the number of clusters and ¥ is the
average of x. The number of clusters ¢ is determined so that S(x)
reaches a local minimum. As one can see in (13) the first term of the
right hand side of the equation is the variance of the data in a cluster,
and the second term is that of the clusters themselves.

An Effective Way to Generate Neural Network... 151

3.3

Finding the optimal number of hidden units

Having found the number of features of the data, this number is used to

determine the number of hidden units of the initial network structure.
The complete algorithm is as follows:

1)

Determine the number of features f by clustering the output of
all available data using the FCM-algorithm. Use the validation
function given in Eq. (13) to stop the clustering procedure.

Divide the data into training and validation set.

Generate a three-layer network with ¢ = f neurons in its hidden
layer.

Train the network using the training data. The training is ter-
minated if the error on the validation set begins to rise or 50000
training cycles have been completed.

Calculate the mean square error E(g¢) on the training set

Blg) =Y (v =)/, (14)

where k is the number of data, y; is the desired output, y?<* is
the output of the net, and ¢ the number of neurons in the hidden
layer as optimal solution.

Add one hiden unit, initialize the network and repeat the steps
4 and 5. If
Elg) - E(g+1)

E(q)

then set ¢ = ¢ + 1, and repeat step 6.
Else go to step 7.

> 0.01 (15)

It g = f go to step 8. Else terminate the algorithm with ¢ neurons
in the hidden layer.

152 A. Bastian

8) Remove one neuron from the hidden layer, initialize the network
and repeat the steps 4 and 5. If

E(g+1) - E(q)
E(q)

<0.01 (16)

then set ¢ = ¢ — 1, and repeat step 8.
Else terminate the algorithm with ¢ neurons in the hidden layer
as optimal solution.

4 Results

In this section, the practical applicability of the proposed algorithm is
examined using several examples. In all examples feedforward neural
networks with one hidden layer and the backpropagation learning al-
gorithm are used. The learning factor n and the momentum factor «
are set to 0.6 and 0.5, respectively. This constant setting enables a fair
comparison of the tasks.

4.1 Polynomial functions of different orders

The algorithm is applied to approximate polynomial functions of dif-
ferent order of the form

z=a"4y" wye[-2,2] (17)

The training and validation sets are each containing 250 data vec-
tors. The maximum number of iterations was set to 50000.

Example 1. Approximating z = 2? + y.

In step 1 of the algorithm, all data of a polynomial function of the
second order were used to determine the optimal number of clusters.
As shown in Table 1, according to the cluster validity function given
in Eq. (13), the optimal number of clusters is 11. For the readers
convenience, the results of the cluster validity function for 2 until 14
clusters are also listed in Table 1.

An Effective Way to Generate Neural Network...

clusters / number of Cluster MSE
hidden units validity
2 ~73.517 0.01728
3 -3772.108 | 0.000171
4 =-5877.071 | 0.001728
5 -6192.468 | 0.000159
6 -6801.010 | 0.000142
7 -6991.644 | 0.000162
8 -7128.981 | 0.000179
9 -7783.212 | 0.000147
10 -7883.291 | 0.000169
11 ~-8412.938 | 0.000139
12 -8378.291 | 0.000104
13 -8292.963 | 0.000120
14 -8333.124 | 0.000130

153

Table 1. Results for the polynomial function z = 2? + y2.

In the following step 2, the data were divided into training and
validation data sets. In step 3 a network with one hidden layer con-
taining 11 hidden units was initialized and trained. After the training
phase was terminated, according to Eq. (14) a mean squared error
(MSE)=0.0000139 was calculated. The result can be found in the
right column of Table 1.

In the steps 4 and 5, a net with one additional hidden unit was ini-
tialized and trained. Since the resulting MSE is 0.0000104 and there-
fore much smaller than the previous computed value (0.000139), step
4 and 5 of the algorithm were repeated. This time, the resulting MSE
after the training was much bigger than the previous one, thus the
algorithm was terminated with 12 hidden units as optimal solution.

For the readers convenience, the MSEs for all networks with 2 until
14 hidden units are also displayed in Table 1. As one can see, the net-
work size found by the proposed algorithm is indeed the best solution.

Example 2. Approximating z = 2 + y°.
Since the procedure of finding the optimum structure of the network
is always the same, a detailed description is left out.

154 A. Bastian

Notice that in this example the number of clusters is identical with
the final solution of the algorithm. However, if the clustering algorithm
is continued, another minimum can be found for 13 clusters. The
corresponding MSE to that network size (13 hidden units) was indeed
smaller than the one with 11 hidden units, as shown in table 2. This
results indicates, that the clustering algorithm should be continued
even if a minimum is reached. The cause of this lies in the fact, that
the validation function only finds local minimum. However, the first
minimum found also leads to a good representation.

clusters / number of Cluster MSE
hidden units validity
2 -1203.991 | 0.002185
3 -1529.123 | 0.001542
4 -2115.547 | 0.001121
5 —2537.083 | 0.000038
6 -2674.592 | 0.000027
7 —-2717.522 | 0.000027
8 -3621.382 | 0.000025
9 -4600.322 | 0.000025
10 -4723.944 | 0.000025
11 —4752.003 | 0.000019
12 -4721.030 | 0.000025
13 —4782.269 | 0.000015
14 -4752.302 | 0.000025

Table 2. Results for the polynomial function z = 23 + 3°.

Example 3. Approximating z = z* + y*.

The results for approximating the fourth order polynomial function
also indicate that the search for the optimum number of clusters should
be continued for several steps. As shown in Table 3 the cluster validity
funciton reached a minimum for 8 clusters, and in this case, the network
structure identification algorithm terminated with 9 hidden units as the
optimal solution.

However, the clustering procedure was continued and the validity
function reached another minimum at 14 clusters, here the algorithm

An Effective Way to Generate Neural Network...

155

terminated with 14 hidden units as the optimal solution. Note that in

this case a smaller MSE was achieved, as shown in Table 3.

clusters / number of Cluster MSE
hidden units validity
2 -47.430 0.014685
3 —-603.453 0.002632
4 -1031.382 | 0.001712
5 -1610.574 | 0.002310
6 -1740.545 | 0.000120
7 -1960.001 | 0.000111
8 -1974.007 | 0.000168
9 -1960.532 | 0.000083
10 -1942.900 | 0.000095
11 -1921.112 | 0.000085
12 -1904.732 | 0.000080
13 -1905.232 | 0.000075
14 —2012.583 | 0.000060
15 -1992.241 | 0.000068

Table 3. Results for the polynomial function z = z* + y*.

Example 4. Approximating z = 2° + y°.

Finally, the algorithm was applied on data from a fifth order poly-

nomial function. In this case there exists only one minimum for the

validation function, as shown in Table 4. The optimal number of clus-
ter was 7, which also turned out to be the optimal number of hidden

units.

156

A. Bastian

clusters / number of Cluster MSE
hidden units validity
2 -719.201 0.001983
3 -1720.214 | 0.000872
4 -2414.241 | 0.000026
5 -3212.231 | 0.000020
6 -3444.954 | 0.000021
7 —-3721.328 | 0.000019
8 -3671.293 | 0.000020
9 -3674.293 | 0.000020
10 -3420.203 | 0.000020
11 -3523.023 | 0.000020
12 -3600.343 | 0.000020
13 -3670.324 | 0.000020
14 -3669.342 | 0.000020

Table 4. Results for the polynomial function z = 2* + 3°.

4.2 Human operation of a chemical plant

In the last example the proposed algorithm is tested using data of a
human operator’s control of a chemical plant producing a polymer by
the polymerization of some monomers [23]. The operator determines
the set point for the monomer flow rate and passes this information to a
PID controller, which calculates the actual monomer flow rate input for

the plant. There are 70 data sets available with each set consisting of

five inputs (monomer concentration, change of monomer concentration,
monomer flow rate, temperature 1 and temperature 2 inside the plant)
and one single output, namely the set point for monomer flow rate.

Here, the initial network contained 6 hidden units. The algorithm
terminated with 8 hidden units (see Table 5).

An Effective Way to Generate Neural Network...

Figure 3: Result of the modeling.

number of hidden units MSE
6 0.000035
7 0.000032
8 0.000030
9 0.000032

Table 5. Result for the chemical plant.

157

The normalized modeling result of the network with 5 inputs, 8
hidden units and one output is compared with the actual handling data
of the human operator in Figure 3. An overall good fit between the
real data and the model can be observed. Note that the biggest error
occur when abrupt changes of the operator’s control actions happen,

158 A. Bastian

e.g. at the very early beginning of the process.

5 Conclusions

In this study a simple algorithm to dynamically determine the number
of hidden units of a three-layer neural network was proposed. This
algorithm starts by clustering the output data. The number of clusters
is the initial number of hidden units of the network. In the following,
the hidden layer of the network grows or shrinks in size, depending on
the result of the generate-and-evaluate procedure.

The results in section 4 indicate, that the application of the FCM-
algorithm to determine an initial network structure is very useful. In
all cases the clustering result was close to the final result of the algo-
rithm, and therefore saved much computational time. Yet, one should
always keep in mind that the FCM-algorithm may get stuck in a local
minimum, as it has been shown in some of the presented examples.
The clustering procedure should therefore be continued for at least an-
other three clustering steps after the validation function found a first
minimum.

Although the proposed algorithm is mainly thought to be used for
function approximation, it can also be used to some extend for pattern
learning. In this case, all input and output data should be clustered.

The algorithm was developed for potential control and modeling
design applications. Current and future work is therefore directed in
that way.

Acknowledgments

The author would like to thank Prof. T. Terano, the director of LIFE,
Prof. L.T. Kéczy, who endows the LIFE chair of fuzzy theory at the
Tokyo Institute of Technology, and especially the reviewers for their
kind help and valuable suggestions.

An Effective Way to Generate Neural Network... 159

References

1]

[10]

Saito, K., Nakano, R., Medical diagnostic expert System based
on PDP model, Proc. Int. Joint Conf. on Neural Networks, pp.
255-262, San Diego, 1988.

Le Cun, Y., Boser, B., Denker, J.5., Henderson, D., Howard, R.E.,
Hubard, W., Jackel, L..D., Backpropagation applied to Handwrit-
ten ZIP code Recognition, Neural Computation, Vol. 1, pp. 541-
551, 1989.

Tesauro, G., Neurogammon Wins Computer Olympiad, Neural
Computation, Vol. 1, pp. 321-323, 1990.

Refenes, A.N., Azema-Barac, M., Chen, L., Karoussos, S.A.,
Currency Exchange Rate Prediction and Neural Network Design
Strategies, Neural Comput. & Applic., Vol. 1 (1), pp. 46-58, 1993.

Narendra, K.S., Parthasarathy, K., Identification and Control of
Dynamical Systems Using Neural Networks, IEEE Trans. on NN,
Vol. 1, N. 1, March, 1990.

Thodberg, H.H, Neural Information Processing System for Pig
Carcase Grading in Danish Slaughterhouses, Neural Comput. &
Applic., Vol. 1 (4), pp. 248-255, 1993.

Hornik, K., Stinchcomb, M., White, H., Multilayer feedforward
networks are universal approximators, Neural Networks 2, pp. 359-

366, 1989.

Sietsma, J., Dow, R.J.F., Neural net pruning - why and how,
Proc. IEEE Int. Joint Conf. Neural Networks, pp. 1325-1333, San
Diego, 1988.

Karnin, E.D., A Simple Procedure for Pruning Back-Propagation
Trained Neural Networks, IEEFE Trans. on Neural Networks, Vol.
1(2), June 1990.

Noda, I., Learning Method by Overload, Proc. IJCNN’93, pp.
1357-1360. Nagoya, 1993.

160

[11]

[12]

[18]

[19]

[20]

A. Bastian

Sartori, A.S., Antsaklis, P.J., A simple method to derive bounds
on the size and train multilayer neural networks, IEEE Trans. on

Neural Nets, letter, Vol. 2 (4), pp. 467-471, 1991.

Huang, S.C., Huang, Y.F., Bounds on Number of Hidden Units
in Multilayer Perceptrons, IEFEE Trans. Neural Networks, Vol. 2
(1), pp. 47-55, 1991.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning repe-
sentation by back-propagating errors, Nature, 232, pp. 533-536,
1986.

Ochiai, K., Usui, S., Improved Kick Out Learning Algorithm with
Delta-Bar-Delta-Bar Rule, Proc. IEEFE Int. Conf. on NN 93, vol.
1, pp- 269-274, San Francisco, 1993.

Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Alkon, D.L.,
Accelerating the convergence of the Back-Propagation Method,
Biol. Cybern. 59, pp. 257-263, 1988.

Pirez, Y.M., Sarkar, D., Back-Propagation with controlled Oscil-
lation of Weights, Proc. IEEFE Int. Conf. on NN 93, vol. 1, p.
21-26, San Francisco, 1993.

van Qoyen, A., Nienhuis, B., Improving the Convergence of the
Back-Propagation Algorithm, Neural Networks, Vol. 5, p. 465-471,
1992.

Yamada, T., Yabuta, T., Neural Network Controller Using Au-
totuning Method for Nonlinear Functions, IEEE Trans. on NN,
Vol. 3, N. 4, July 1992.

Mclnerney, J.M, Haines, K.G., Biafore, 5., Hecht-Nielsen, R.,
Can backpropagation error surfaces have non-global minima?,

LJONN'89, 11, 627, 1989.

Sietsma, J., Dow, R.F.J.; Creating Artificial Neural Networks
That Generalize, Neural Networks, vol. 4, pp. 67-79, 1991.

An Effective Way to Generate Neural Network... 161

[21] Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function
Algorithm, New York: Plenum Press, 1981.

[22] Zadeh, L.A., Fuzzy Sets, Inform. Contr., Vol. 8, pp. 338-353, 1965.

[23] Sugeno, M., Yasukawa, T., A fuzzy-Logic-Based Approach to
Qualitative Modeling, IEEE Trans. on Fuzzy Systems, 1 (1), 1993.

