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Abstract

The paper is a review of our theoretical analysis of uncertainty
processing in a broad class of truth-functional expert systems similar
to MYCIN and PROSPECTOR, main attention being paid to parallel
combination of rules. Algebraic and probabilistic aspects are stressed.
The role of Dempster-Shafer theory is investigated.
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1 Introduction

(E)YMYCIN and PROSPECTOR have been recognized as prototypes of first-
generation rule-based expert systems, are mentioned and explained in mono-
graphs on uncertainty in expert systems [Pearl,1988, Neapolitan, 1990, Kruse-
Schwecke-Heimsohn, 1991, Lopez de Mantaras, 1990], [Puppe 1993], but seem
not to be further a matter of broad theoretical interest. Nevertheless, sys-
tems of this kind - let us call them MY CIN-like - are still offered, particularly
as a component of various expert systems shells. In this note, we are going
to survey the results of our long-term study of MYCIN-like systems and its
relation to theoretical work of others. Our analysis seems to be more or
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less finished and is presented in full detail in Chap. VI - IX of the mono-
graph [Hajek, Havranek, Jirousek 1992]; here we summarize and review the
main results in a condensed and hopefully transparent form. The paper is
organized as follows: Section I contains main definitions, making our notion
of MYCIN like systems precise (and distinguishing it from systems based
on fuzzy logic). Section II presents an algebraic analysis based on the no-
tion of an ordered Abelian groups; the main result says that the group of
PROSPECTOR (or, equivalently, of EMYCIN) is universal in a very general
sense. In Section III, we summarize a probabilistic analysis; here the main
results says that the methods of local computation in general probabilistic
models (as developed by Pearl, Lauritzen, Speigelhalter and others) may be
applied to give a method of guarded use of MY CIN-like systems guaranteeing
(partially and for a particular kind of these systems) a sort of probabilistic
soundness. In Section IV we show that both the algebraic and the proba-
bilistic investigations generalize to systems in which uncertainty is expressed
using belief functions of Dempster-Shafer theory.

Various authors have investigated the inference mechanism of MYCIN-
like systems; besides the basic monograph [Buchanan-Shortliffe, 1984], the
papers [Heckerman, 1986], [Horvitz-Heckerman, 1986], [Johnson, 1986],
[Cheng-Kyashap, 1989], [Prade, 1985], [Dubois-Prade, 1985] are of main rele-
vance. [Zhang 1992] is a relevant recent paper; in Sect. 3 the author appears
to rediscover some old results of [Hajek 1985] (and also presents several new
results; no reference is given to our work). Our approach shows not to be
covered by any of the mentioned works.

Our algebraic analysis (which is a joint work of the present authors) shows
that MYCIN-like systems form a rather homogenous class; this is pleasing
but does not answer the question, which intuitive notion of uncertainty un-
derlies them. The presented probabilistic analysis (which is due to P. Hajek)
shows, in way different from that of Heckerman and others, how far one can
go in trying to understand the results of the system as conditional probabil-
ities. Our final answer to the question “What can one do with MY CIN-like
systems?” is: “Not too much but still more than you would believe.”
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Section I. What are MYCIN-like systems

1.1. We assume the following formal structure: We have a finite set Prop
of propositional variables (briefly propositions); a rule is a propositional for-
mula of the form F = H where H is a proposition and £ is a formula
not containing H. For simplicity we shall assume that F is an elementary
conjunction , i.e. a conjunction of propositions and negated propositions in
which each proposition occurs at most once. F is the antecedent and H the
succedent of the rule. (Example: propositions 1,2,...10,rules 1& — 2 =
4, 1& — 2&3 = 4, = 4 [empty antecedent]). A weighted rule consists of a
rule and its weight w € G where (G is a linearly ordered set of weights. A
rule pattern is an acyclic set of rules, i.e. a set B of rules such that there is
no sequence Ry...R, of rules in B such that the succedent of each R; oc-
curs in the antecedent of R, (¢ < n) and the succedent of R, occurs in Ry.
(Example of a cycle: 1&2 = 4, —4&5 = 6,6 = 1). We shall assume that
each proposition occurs in at least one rule. Observe that a rule pattern de-
composes all propositions occuring in its rules into three disjoint sets: Ques
- the set of questions, i.e. propositions occuring in no succedent, Goal - the
set of all goals, i.e. propositions occuring no antecedent, and intermediate
propositions. A weighting over B is a mapping & : B — (i associating to each
rule its weight. A rule base is a pair © = (B, k) where B is a rulle pattern
and £ is a weighting. O(H|F) = w means that the rule £ = H is in B and
k(E = H) =w. A questionnaire is a mapping ¢ : Ques — (G assigning to
each question its weight.

The following operations are assumed on the set of weights: truth-func-
tional interpretations of logical connectives (generalized truth-tables, NEG
and CONJ, say), a binary operation CTR computing the contribution of a
rule (this is often called the function evaluating modus ponens) and a binary
operation @ for parallel combination of contributions of rules with the same
succedent.

1.2. The global weight of a formula H is given a questionnaire ¢ and the
contribution of a rule R given ¢ (determined by the rule base © and the
structure of weights) defined as follows.

(1) Wog(H|q) = q(H) if H is a question,
(2) Wo,a(A&Blq) = CONJ (We (Alq), (We,c(Blq)),
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(3) Weoa(—Alg) = NEG (We a(Alq)),

(4) Woa(Hlg) = Vou(Rilg) & ... B Vog(Rulq) if Ry,..., R, are all the
rules in B whose succedent is H;

(5) Voo(E = H)= CTR(We c(FEl|q),s(E = H)).

In words: the global weight of a question is given by the questoinaire,
composed formulas are evaluated using truth tables, the global weight of a
proposition H which is intermediate or a goal is the &-sum of contributions
of all rules leading to H; the contribution of a rule is computed from the
weight x(R) of the rule and the global weight of its antecedent using CTR.
Note that in (5) a fixed order on the set of rules and a fixed bracketting is
assumed; see also below.

1.3 It should be clearly stated that a questionnaire is understood as the sys-
tem of the beliefs assigned by the user to the questions; second, the quantity
Weo.:(H|q) is understood as the global belief on H given the knowledge O,
data ¢ and inference mechanism (. Note that we have left open what the
weights of rules are; we speak just of contributions.

Until now, we have not made any assumptions on the operations on the
set G of weights; we shall do it now and this will complete our specification

of MYCIN like systems.

1.4 Assumptions on the structure of weights: Recall that G is assumed to
bear a linear order <. We assume (i to have a greatest element T (true), least
element L (false) and at least one more element o (no preference) weights
w > o are positive, w < o are negative. Since we are interested in §, we
shall make the simplest possible assumptions on the other operations: NEG
is antimonotone, NEG(o) = o, NEG(NEG(z)) = x; CONJ and CTR are
definable from < (e.g. CONJ(z,y) = min(a,y), CTR(a,w) = o if a < o,
CTR(a,w) = min(a,w) if a > 0,w > o, CTR(a,w)=NEG(max(NEG(a), w))
if a > o0,w < o).

T and L are extremal elements; THw =wd T =Tforw# 1L, 1L Hw =
wd L =1forw=#T;TdL LSBT may either remain undefined or one
choses a definition reflecting the work of an evaluating algorithm for We
(T L =T, LT = 1). Non-extremal elements are closed under &
(uncertainties cannot give certainty) and the following are the assumptions
on the behaviour of & on non-extremals: associativity, commutativity (i.e.
in (4) above, the order of summands and bracketting are immaterial), o is
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a neutral element (0 + w = w), NEG(z) is the inverse (w & NEG(w) = o),
monotonicity: @ <y implies & z < y & z. This means (as observed first in
[Hajek, 1982, 1985], that non-extremals form an ordered Abelian group (oag)
cf [Fuchs, 1963]). Adding T and L behaving as above we get an extended
oayg.

1.5. Definition. A MYCIN-like system is given by a set Prop of propo-
sitions, an extended ordered Abelian group G of weights and a rule base
O = (B, k), where B is a rule patterns and & a weighting.

1.6. Caution. This differs from truth-functional systems based on fuzzy
logic, as investigated e.g. by [Bonissone] and [Dubois-Prade 1991]; there L
is a neutral element and @ is a conorm, thus v ® v > u, v is always satisfied.
Here u@® v > wu,v if u,v are positive but u G v < u,v if v, v are negative; and
u<upv<vifu<o<wv. This corresponds to the understanding of & as
the operation combining contributions - both positive and negative - to the
global weight of a proposition.

Section II. Algebraic foundations

Here we sumarize main results of [Hajek, 1985], [Valdes, 1987], and
[Hajek-Valdes 1990]. The canonical example of an ordered Abelian group
(oag) is the additive group of reals Re with the usual ordering. An isomor-
phic copy of this group is the multiplicative oag Pos of positive reals: the
mapping f(x) = €” is clearly an isomorphism of Re to Pos, i.e. preserves
ordering and satisfies f(z +y) = f(z)- f(y). In PROSPECTOR (see [Duda
et al., 1976]), one works with odds and the combining function is multiplica-
tion. Odds vary over positive reals and are related to probabilities p (from
the interval (0,1)) by the formula o = p/(1 — p). The formula allows us to
find an operation & on (0, 1) such that the mapping ¢g(z) = (1 — ) becomes
an isomorphism of PP= ((0,1), &, <) to Pos; the result is

ry
vy +(1—2)(1—y)
PP is called PROSPECTOR’s group on (0,1). ( The reader may find an

isomorphic operation on (—1,1). Clearly, PP is isomorphic to Re. We claim

T Dy =
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that PP is universal for MYCIN-like systems over any oag (. The rest of
the section is mainly devoted to various formulations of this result. To this
end we need the notion of an Achimedean oag.

An oag G with the neutral element o is Archimedean if for any a,b such
that 0 < @ < b then is a natural number n such that b < a & ... $a. (n
summands).

Clearly, Re (and hence PP) is Archimedean. A natural example of a
non-Archimedean oag is the group RexRe of pairs of reals for which & is
defined coordinatewise (x,y) & (u,v) H = (¢ + u,y + w) and < is defined
lexicographically: (z,y) < (u,v) if either © < w or [ = v and y < v].

Now we shall present this formulation of universality of PP.

Theorem. Let G be an oag. (1) If G acts on the real interval (0,1) with the
usual ordering then G is isomorphic to PP. (0,1) may be replaced by any
other real interval (a,b) for a <b.

(2) If G is Archimedean then G is isomorphic to an ordered subgroup of
PP.

(3) If G is an arbitrary oag (Archimedean or not) and D is a finite
subset of G then there is a finite subset D' of PP such that (D,®q <g) is
isomorphic to (D', &pp,<pp), i.e. there is a one-one mapping f of D onto
D’ preserving the order and such that, for any x,y,z € D [x Gy = 2z iff

fz) ®pp fly) = f(2)].

For (1) and (2) see e.g. [Fuchs, 1963] ((2) is called Holder’s theorem);
(3) is proved in our paper [Hajek-Valdes , 1990] but appears to be known to
specialists on oag’s.

A trivial corollary of (1), observed already in [Héajek 85] is the fact that
the oag of certainty factors of MY CIN is isomorphic to PROSPECTOR’s oag
PP. This fact has found some interest of researches in the domain of uncer-
tainty; but, unfortunately, this appears to be the only lucky fact. Further
considerations that we made have remained rather unnoticed. But especially
(3) has an immense importance for MY CIN-like systems; we formulate the
basic fact as the corollary below. First two definitions.

Let B be a knowledge pattern, let G be an oag and let D C G. A
weighting x (questionnaire ¢) for B is over D if its range is included in D i.e.
weights of rules (answers to questions) belong to D. D can be thought on as
the finite set of weights accessible to the user (e.g. two-decimal-digit-numbers
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from (0, 1) or so).

The comparative result of a run (B, k,q,G) is the linear (quasi)order of
all propositions according to the global weight, i.e. the ordering = defined
as

i =g iff We . alilq) < Waealile)-

We write CR(B, k,q,G) for the ordering <. It does not tell us precise
weights assigned to propositions but only tells, for each pair of propositions,
which of them is more believed (or that their beliefs are equal).

Corollary. Let B be a knowledge pattern, G on oag and D a finite subset of
G. Then there is an one-one mapping of D onto finite subset D' of PP such
that, for each weighting k and questionnaire ¢, both over D, the comparative
result of (B,k,q,G) is the same as the comparative result of (B,x',q ,PP).
(Here £'(r) = f(k(R)),q'(t) = f(q(7)), i.e. & and ¢ results from k,q by
replacing the values in D by the corresponding value in PP ).

We may express this briefly by saying that for each rule pattern B, oag
G and a finite D CQG, there is a D’ CPP such that G,D is comparatively
equivalent to PP, D’ for the rule pattern B: weightings and questoinnaire
D, processed using G, give the same comparative results as corresponding
weightins and questoinnaires over D', processed using PP.

There are several other results in [Hajek-Valdes, 1990] not reproduced
here; the last corollary seems to be the most important. Note that investiga-
tions of [Heckerman-Horvitz, 1988] and [Cheng, Kyashap, 1989] are related
to the point (1) of the above theorem: they show that, under some conditions
(like continuity), all possible combining functions are isomorphic to real ad-
dition (or multiplication of positive reals). But they assume throughout that
weights are reals and do not use algebraic considerations. Our last result
seems not to have any analogies in the literature.

Section III. Probabilistic foundations

We survey main result of [Hajek, 1988, 1989]. The usual naive use of
MY CIN-like systems in governed by the following two simple assumptions.

(i) Weights of rules are conditional beliefs (conditional probabilities, odds,
likehood ratios etc.).



52 P. Hdjek & J. Valdés

(ii) Global conditional beliefs W(H|q) are computed using combining
functions.

It was soon observed that the conjunction of (i) and (ii) is unrealistic
and not tenable; cf. [Johnson, 1986], [Heckerman, 1988]. Clearly, one can
give up (ii) - this leads to strictly probabilistic systems as those described in
[Lauritzen-Spiegelhalter, 1988], [Shachter, 1986] and others. The possibility
of giving up (i) and keeping (ii) was not much investigated; but let us mention
the fact that [Heckerman-Horvitz, 1988] studies weights of makes as belief
updates, changes of belief. Our approach systematically develops this last
idea.

We make the following restricting assumptions: (a) Weights are reals
from the unit interval (0,1) and the group operation is PROSPECTOR’s
@ (as described above). (b) There are no intermediate propositions (we
have only two levels: questions and goals). (c) We consider only three-
valued questoinnaires with range included in {0,1/2,1}; these questionnaires
are in the obvious one-one correspondence with elementary conjunctions of
questions (e.g. if 1,2,3,4,5 are questions then 1& — 3&5 represents the
questionnaire ¢ such that ¢(1) = ¢(5) = 1,¢4(3) = 0,¢(2) = ¢(4) = 1/2). If
B = (R,k) is a rule base (R is a rule pattern and « is a weighting) then
B(H|E) = w means that the rule £ = H isin R and & assigns the weight w
to this rule. We need two more definitions:

Two rule bases 3, 3" (with the same questions and goals) are compatible
if p(H|F) = [(H|E) whenever both sides are defined. A rule base (3 is
probabilistically sound if there is a joint probability P on propositions such

that B(H|E) = P(H|FE) whenever both sides are defined.

3.1 Distinguishing a knowledge base from MYCIN’s rule base.

It a rule base § is understood as a knowledge base, i.e. a system of
expert’s conditional beliefs then it cannot be directly processed by a MY CIN-
like inference engine: this leads to well-known defects. Indeed, in general,
the global belief (Ws(H|E) will be distinct from S(H|E). Exercise: let H
be 1 & 2 and let B contain rules 1 = H,2 = H,1 & 2 = H with some
weights. What is W;(H|E)?) But assuming 5 to be probabilistically sound
we can always change the weights in such a way that the new rule base 3
will reproduce expert’s beliefs as global conditional weights:

Theorem (cf.[Hdajek, 1984]). If 3 = (R, k) is probabilistically sound then
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there is a weighting &' for R such that, for each E, H, such that S(H|E) is
defined, we have

Wiy (H|E) = B(H]E).

The new rule base @ = (R, x’) is called Médbius transform of (R, k) and
denoted by M(3). Observe that for rule bases of the form studied the global
weight satisfies

Wo(H|E) = &{O(H|E")|E' C E}

(the global weight of H given E is the group-theoretic sum of weights of all
rules whose succedent is H and whose antecedent is a subconjunction of E).
This yields a method of direct computations of the new weights.

3.2. The problem of extrapolation. In the preceeding paragraph we
started with a probabilistically sound rule base § and constructed a new
rule base © with the same rule pattern such that Wg is compatible with 3,
in other words, the rule base O reproduces beliefs 5 as global weights We.
But We is total: We(H|F) is defined for each H, E. Is Wg probabilistically
sound? Unfortunately, not in general. (This is unfortunate since We(H|FE)
is the advice of the expert system concerning H, if user’s data are F; the
system of advices should be as much probabilistically sound as possible).
The reason is, roughly, that # may contain too little information on the
background probability. This leads us to the following task:

Find a method of improving (extending) the starting knowledge base /3
to a reasonably richer B such that for some probability P and for © = M(B),

We(H|E) = P(H|FE)

for most arguments H, E (if not for all).
We shall present such a method below. First we have to make a digression.

3.3 Graphical probabilistic models. One can take a lesson from proba-
bilistic expert systems and their methods of local computations and factor-
ization of probabilities. We confine ourselves to the descriptions of a certain
algorithm (in 3.4); to prove its properties one needs facts on factorizations
of probabilities over cliques of a graphs, log-linear probabilistic models and
collapsibility.
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Basic notions concerning graphs are supposed to be known; we recall
some of them using simple examples. Fig.1 contain three undirected graphs
G, Go, G all having four vertices a, b, ¢, d.

a b a b a b
c d c d C d
Fig.1

(7 and G5 and G5 are connected, (75 is not. No of G, G4, G5 is complete,
Gy and G5 are triangulated, Gy is not. Cliques of Gy : {a, b}, {a, c}{b, d}{c,d}.
Cliques of Gy : {a},{c,d},{b,d}. Cliques of G5 : {a,b,d}, {a,c,d}.

A graph G collapses to a set A C G of vertices of the following condition
holds: whenever two distinct elements a,b of A can be connected in GG by a
path

G =Ty, — T4 — . — Tp1— Ty = b

whose interior {xy,...,x,_1} is disjoint from A then (a,b) is an edge in
G. For example, G5 collapses to {a,b,d} but not to {b,¢,d}.

Last definition: the closure of an element ¢ € G consists of ¢ and of all
elements h such that (g,h) is an edge in . For example, in Gy, cl(a) =
{a,b,c}; in G, cl(a) = {a,b, ¢, d}.

3.4. The method of guarded use of the MYCIN-like inference.

A probabilistically sound rule base § = (R, k) (knowledge base) is as-
sumed to be given.

(a) Construct the graph G(j): for each rule r in R, join each pair of
propositions occuring in r by an edge; thus the set of all propositions occuring
in r becomes a complete subgraph. For example, if 1 & —2 = Tisin R then
we get undirected edges (1,2),(1,7),(2,7).)

(b) Improve G(3): by adding (possibly few) edges among questions, pro-
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duce a graph é(ﬂ) such that, for each goal H, ¢l(H) is triangulated and G’(ﬂ)
collapses to cl(H ).

(c) Using G’(ﬂ), improve 3: for each rule r not in R, if the propositions
occuring in r from a complete subgraph of é(ﬂ) then add r to R and define
its weight. The resulting rule base is 3 = (]%, ];)

(d) The final rule base is §* = M(B) (Mobius).

Theorem. If 3* results from 3 by the above construction then there is a
probability P on propositions such that, for each goal H and each elementary
conjunction F satisfying prop(E) C ¢l(H):

if ( collapses to prop(2) U {H} then Wy (H|E) = P(H|E).

(Clearly, prop(FE) is the set of all propositions occuring in F.)

The moral of this theorem reads: If you guard the construction of the
rule base to be processed by the MYCIN-like inference engine then you can
guard its use: you gain control over the probabilistic soundness of the results.
After a run of the engine you can look at the graph (¢ and either say “the
result in the conditional probability P(H|FE)” or say “I cannot be sure on
the probabilistic meaning of the result; you have to give definite meaning of
the result; you have to give definite answer to more questions (or disregard
some answered given).”

An implementation of the method of guarded use is a part of the in-
tegrated environment for uncertainty management using graphical models

described in [Valdes 92].

Section IV. Relations to Dempster-Shafer theory of
evidence

The present section is based on [Hajek-Valdes 87], [Hajek-Valdes 91] and
[Hajek 91]. Dempster-Shafer theory of evidence (briefly, DS-theory) was
created by Dempster [Dempster 67, 68] and Shafer [Shafer 78] and originally
was not related to Al; a milestone for its application in rule-based systems
was the paper [Gordon and Shortliffe 84] and presently there exists a huge
literature in DS-theory and its applications in expert systems. The reader is
recommended to consult survey papers [Smets 88] and [Hajek-Harmanec 92].
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It must be stressed that the application of DS-theory in expert systems are
by no means restricted to MYCIN-like systems (see e.g. [Shenoy-Shafer] for
local computations in DS-theory); here we resctrict ourselves to the meaning
of DS-theory for these systems.

The first thing to note on DS-theory is that it deals with belief functions;

there are some functions assigning beliefs bel(A) to propositions A; bel(A)
is a real from the interval [0,1] and bel(A) + bel(=A) is always < 1 but not
necessarily equal to 1. We briefly recall basic definitions but have to omit
discussion on motivation.
4.1. Let V # () be a finite set called frame of discernment. A basic belief
assignment (bba), over V is a mapping m associating to each A C V a real
m(A) € [0,1] such that > 4cy m(A) = 1 and m(@) = 0. The belief function
given by m is bel(A) = Y gcam(B).

Dempster’s rule of combination associates to each pair mq,my of bba’s
over V its combination m satisfying

_ > Bno=am(B)
> Bnozs m(B)

assuming that the nominator is non-zero.

I = (@ ) (),

m(A) ()

The corresponding belief function bel = bel; & bely satisfies

_ 2Bnoca m(B).m(C)
Y pncge (B).m(C)

4.2. For the particular case V = {0,1} = {false,true} a bba m is given by
two numbers @ = m({1}) and b = m({0}) (since m() = 0 and m({0,1}) =
1 —a —b). The pair (a,b) satisfies a,b,> 0 and a + b < 1. (a is the belief
assigned to “yes”, b the belief assigned to “no”.) Fach pair satisfying this is
called a Dempster pair (or d-pair); D is the set of all d-pairs.

bel(A)

Dempster rule for bba’s gives the following rule for d-pairs:

(1 —a)(1—2¢) (1 —=0)(1—-4d)

(a,6) & (e, d) = (1 = 1 —(ad+be)’ B 1 — (ad + bc) )

This is defined always except one of the summands is (1,0) and the other is
(0,1); these two d-pairs are extremal and correspond to “cetainly yes” and
“certainly no”.
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4.3. Allgebraically, D — {(0,1),(1,0)} with & is a commutative semigroup
(6 is commutative and associative), (0,0) is a neutral element, i.e. (0,0) &
(a,b) = (a,b); this means that (0,0) is complete ignorance: no belief is
assigned to “yes”, no belief to “no”. We extend & to extremal elements as
we did with oag’s. A d-pair is Bayesian if a +b = 1; d-pairs form a subgroup
G of D isomorphic to PP (PROSPECTOR’s oag); 1ts zero is (.5,.5) = 0. For
each d-pair v, 780’ is Bayesian; the mapping h(7y) = y$0’ is a homomorphism
of D onto G.

S is the set of all d-pairs (a,a) (0 < a < .5); S with & is a subsemigroup
S of D. The mapping f associating with each d-pair v = (a,b) the d-pair
v & —v = (a,b) B (b,a) is a homomorphism of D onto S. For each d-pair ~,
the pair (h(¥), f(v)) determines ~ uniquely; h(y) is called the certainty and
f(7) the erispness of 4.

Define (a,b) < (¢,d) if [h(a,b) < h(e,d) (in the group ordering of ¢) or
h(a,b) = h(e,d) and a < ¢]. This makes D — {(0,1),(1,0)} to an ordered

semigroup, i.e. for non-extremal «, 3,7 are have

a<fB—(ady<Bd7).

4.4. The above suggest an obvious generalization of the MYCIN-like infer-
ence machine: put

NEG(a) = —a
CONJ(a,3) = min(a,f)

(where for a = (a,b) we set —a = (b,a), and min concerns the ordering <

just defined),

CTR(a,y) = (0,0)if o <(0,0),
= min(a v)if @ > (0,0) and v > (0,0),
if a

> (0,0) and v > (0,0).

Allow weights of rules and answers in a questionnaire to be d-pairs and
define the global weight Wo (P, q) (of a proposition P given a rule base © and
questionnaire q) and contribution Vo(R, q) (of a rule R given O, ¢) as above.
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It h is the homomophism of D to PP described above, © is a rule base
over D and ¢ a questionnaire over D then we way define h(0) to be the
rule base resulting from © by replacing in each rule A — S(v) its weight
v by h(); and define h(q) to be the questionnaire ¢’ over PP such that
q'(¢) = h(q(7)) for each question .

4.5. Homorphism theorem. Under the above notation,

hWe(P,q)) = Wiy (P, h(q)) and h(Ve(R, q)) = Vie) (R, h(q));

thus running the consultation over D and then projecting the result to PP
is the same as first projecting the rule base and the questionnaire to PP nd
then running the consultation. Hence the work over D is a refinement of the
work over PP.

4.6. Remark. An expert system shell called EQUANT-PC implementing
the inference machine for rule base and qustionnaires over D and stress-
ing comparative results has been proposed and implemented (see e.g. [H&-
jek, Hajkova 1990]). The system intends to be an enfant terrible among
MYCIN-like systems and to encover (and partially overcome) weaknesses of
the MYCIN-like approach. Another shell based on our investigations was
implemented in Cuba.

4.7. In an analogy to PP (PROSPECTOR’s oag) as a distinguisted member
of the class of all ordered abelian groups we may understand Dempster’s semi-
group as a distinguisted member of a class of algebras called dempsteroids.
A dempsteroid is an algebra (E, &, —,0,0’, <) such that

(i) (F,®,<,0) is an ordered commutative semigroup with the neutral
element 0,

(ii) =(—2z) =z and —(x B y) = —a G —y for all z,y € F,

(iii)0 < 0/,

(iv) foreach x € E,0 <2 <0 iff e 0 =0 iff 2 = —x; let S be the set
of all # such that © = —z.

(v) For each @,y € S such that @ <y there is a z such that « & z = y.

This class of algebras was investigated in [Valdes 87] and [Hajek, Valdes
91]; one can show that in each dempsteroid E there are homomophisms &
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and f, h projecting E to the subgroup of all elements x such that = @ 0" =
x (h(z) = & 0') and projecting £ to S (f(x) = © & —x). Some natural
subclasses of the class of all dempsteroids are studied, in dependence of the
properties of S (prominent cases:S — {0’} is the non-negative part of on oag,
e.g. D,or S is an MV-algebra an the sense of [Chang, 1959]). The definition
of a rule base and questionnaire over a dempsteroid and of the corresponding
global weight is evident.

We call the reader’s attention to the paper [Daniel 1994] where all iso-
morphisms of Dempster’s semigroup are presented.

4.8. The algebraic analysis presented up to now has been complemented by
a probabilistic analysis using local computations and graphical models (see
[Hajek, Havranek, Jirousek 1992] Chap.9 Sect.3). We shall not go into any
details but we only state that are the investigations of Section III. above
naturally generalize to rule bases with d-pairs as weights and we obtain a
variant of the method of guarded use provided we are willing to replace
Dempster’s rule of combination by another rule of pointwise product: put

c=1—a—bf=1—d—e, then
ad be )
ad + be +cf ad + be + cf

The reason for the change of the operation is technical: Dempster’s rule is
too little invertible, which makes Mobius transform impossible. This should
not be understood as a serious criticism of Dempster’ rule; just for this

(avb) b (dv e) = (

particular method it is not suitable.

4.9. On the other hand, the question remains how to interpret d-pairs as
weights. It is tempting but unjustified to understand a d-pair as an interval
probability (saying: the probability of “yes” is > a and the probability of
“no” is > b), since neither Dempster’s rule nor the modified rule admits this
interpretation. A possible interpretation is suggested in the connection with
the above-mentioned notion of d-soundness; we refer to [Hajek 1991] and

[Hajek, Havranek, Jirousek 1992] for details.
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Conclusion.

One possible explanation of the apparent ability of MY CIN-like systems
to produce reasonable results, inspite of all their weaknesses, might be the
possibility of tuning them, by adding and deleting rules and by changing
weights of rules, together with the emphasis to comparative rather than
quantitative (numerical) results.The theory surveyed in the present paper
offers systematic foundations and a mathematical model of such a tuning:
the more or less heuristic and ad hoc process of incrementally improving
and testing the rule base can be seen as an intuitive approximation of an
ideal procedure of guarded conctruction of a rule base. And the algebraic
insight shows the richness of possibilities one has and the central position of
PROSPECTOR’s group - with respect to comparative results. To close let us
stress explicitly that our aim has been to understand MY CIN-like systems,
not to advocate them.
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