Mathware & Soft Computing 1 (1994) 5-29

A Lukasiewicz Logic Based Prolog

Frank Klawonn & Rudolf Kruse
Department of Computer Science
University of Braunschweig
Braunschweig, Germany

Abstract

Prolog is a programming language based on a restricted subset of
classical first order predicate logic. In order to overcome some prob-
lems of classical logic to handle imperfect human knowledge, we pro-
vide a formal framework for a Lukasiewicz logic based Prolog system.
The use of Lukasiewicz logic with its connection to Ulam games en-
ables us to deal with partial inconsistencies by interpreting the truth
values as relative distance to contradiction.

We also present the software tool LULOG which is based on the
theoretical results of this paper and can be seen as a Prolog system
for many—valued logic. Applications of LULOG to an Ulam game and
an example of reasoning with imperfect knowledge are also discussed.

1 Introduction

Classical logic provides a framework for the formulation and implementation
of knowledge based systems. The programming language Prolog [6, 7] is
based on a subset of first order predicate logic and thus a considerable num-
ber of artificial intelligence applications is implemented in Prolog. Neither
Prolog nor classical logic are intended to cope with incomplete, contradictory,
uncertain, or vague knowledge. But these phenomena are often encountered
when knowledge based systems have to be designed.

Various theories for the treatment of one of these phenomena of imper-
fect knowledge have already been developed. Default logic [4] deals with

6 F. Klawonn & R. Kruse

incomplete information. Uncertainty can be handled by probabilistic [2] or
possibilistic logic [10], whereas fuzzy logic [12, 17] is connected to vagueness.
All these approaches to approximate reasoning are based on logical calculi,
that will also provide the basis for the treatment of partially inconsistent
knowledge for which the approach presented in this paper is suitable. Nu-
merical approaches to approximate reasoning [11, 18] are not considered here.
An overview on logical approaches to approximate reasoning can be found in
8, 29].

The idea to extend Prolog to be able to carry out approximate reasoning is
proposed by many authors [3, 13, 19, 21, 22, 31]. Most of these approaches are
developed on a heuristic basis from an operational point of view. The use of
cut—off values as in [19] or the mixture of different concepts like for instance
in [3] rejects the rigorous foundations and concepts of logic programming
[20]. Semantical aspects and interpretations for the truth values in the unit
interval are not considered. The generalization of the resolution principle to
the non—truth—functional possibilistic logic [9] can be seen as an exception
in this line.

In opposition to heuristic approaches, we emphasize to develop Prolog ex-
tensions to many—valued logics on the basis of a rigorous logical framework.
For two—valued logic it is sufficient to consider the set of true or provable
propositions. In many—valued logic it is necessary to keep track of the truth
values assigned to the propositions. Generally, instead of the exact truth
value associated with a formula only lower bounds for this truth value are
considered. Generalizations of classical logic to [0, 1]-valued or fuzzy logic
using this idea can be found in [24, 25, 26]. Although soundness and com-
pleteness results are obtained for these logical systems, the price for this is the
addition of new axioms and inference rules involving constants for the truth
values from the unit interval. This leads to the, from a practical viewpoint
undesired, effect that there is no efficient proof procedure. Each proof has to
be valuated according to the specified truth values and therefore the ‘best’
proof has to be found, which does in general not exist. Thus completeness
can only be obtained by an infinite number of proof steps which can of course
only be carried out theoretically. In fact, we will show that it is impossible
to obtain completeness for a [0, 1]-valued logic without the notion of infinite
proofs under very general assumptions. Note that completeness is here not
understood as only being able to infer all tautologies, since the propositional
calculus of [0, 1]-valued Lukasiewicz logic is complete in this sense [5, 27]. We

A Lukasiewicz Logic Based Prolog 7

require also to be able to derive propositions from a given set of additional
axioms (a knowledge base) and to compute the corresponding truth values
for the derived propositions.

In order to provide a logical system suitable for computer implementation,
we consider only finitely many truth values, which does not impose severe
restrictions for practical applications. In any case, no expert working with
a rule based system can be expected to handle a large or even an infinite
number of truth values reasonably. Besides this technical restriction we also
stress to give an interpretation for the truth values. This problem is often
ignored in other approaches. In order to have such an interpretation we chose
n—valued Lukasiewicz logic for which a meaning for the truth values can be
established on the basis of Ulam games [23]. On this basis, we are able to
handle partially contradictory information.

The paper is organized as follows. Section 2 provides the formal frame-
work for a Lukasiewicz logic based Prolog system from a purely mathematical
viewpoint without giving a concrete meaning to the truth values. We obtain
soundness and completeness results. Section 3 is devoted to the interpreta-
tion of the truth values as relative distance to contradiction motivated by the
connection between Ulam games and Lukasiewicz logic [23]. The theoretical
results of section 2 are implemented in a software tool called LULOG, which
is described in section 4. Examples of the application of the software tool to
an Ulam game and a typical example for rule based systems with imperfect
knowledge are discussed in section 5.

2 A Language for Approximate Reasoning
Based on n—Valued Lukasiewicz Logic

This section is devoted to the formal and technical background of the logical
system developed in this paper from a purely mathematical point of view.
A possible interpretation for the set of truth values will be discussed in the
following section.

To avoid the introduction of additional axioms and inference rules, we
separate the logical language from the truth values and do therefore not

integrate the truth values as special logical symbols into the language as it
is proposed in [24, 25, 26].

3 F. Klawonn & R. Kruse

We assume L to be a first order logical language containing the logical
connectives —, a set @ = {®y,..., D} of binary connectives, the unary
connective = (negation), and the universal quantifier V. Well formed formulae
are defined in the usual way.

For this logical language we consider a finite set 7 of truth values. Since
we will mainly concentrate on (n + 1)-valued Lukasiewicz logic, we define
without loss of generality

T = {o,i,...," L

n

With each logical connective we associate a truth function. — is assumed to
be the Lukasiewicz implication, i.e. we associate the truth function

val : T xT =7, (s,t)—min{l —s+11}

with —. For the connectives in @ we require the corresponding truth func-
tions to be non—decreasing in both arguments. Typically, these connectives
will be interpreted as AND or OR operators. Throughout this paper we will
mainly concentrate on the following two generalizations of the logical AND.

vala : T xT — T, (s,t) — min{s,t}

and

val. : T xT — 7T, (s,t)— max{s+t—1,0}.

The notion of a 7—valued interpretation of L is defined as in classical logic
(compare for instance [20], p. 12), except that the set of truth values is 7
instead of {0,1}. The truth value assigned by a 7-valued interpretation [to
a formulae ¢ is denoted by /¢/r, or shortly /¢/ when it is obvious to which
interpretation we refer. For the universal quantifier we define /(Va)(p(2))/ =
inf, {/io(2)/}.

Before we can define the notion of a model, we have to generalize the
concept of a set of axioms. Instead of a crisp set of axioms which is used in
classical logic to characterize a theory, we consider a ‘7 —tuzzy set’ of axioms,
i.e. a mapping a : [— 7. In classical logic, where 7 = {0,1}, a corresponds
to the characteristic function of the set of axioms. Note that if we use this
characteristic function in classical logic instead of the corresponding set of
axioms, the assignment of the value 0 to a formula ¢ by a does not mean

A Lukasiewicz Logic Based Prolog 9

that is false in the theory given by a, since it might be possible to derive ¢
from the axioms. Therefore, the value a(¢) should be understood as a lower
bound for the truth value of ¢. This leads to the following definition of a
model.

Definition 2.1 Let a : L — T. A T —valued interpretation I of L is called
a model of a if [¢/; > a(v) holds for all ¢ € L.

Th™ : L — T denotes the infimum over all T —valued interpretations of
L that are models of a.

We say that a implies ¢ € L to a truth degree of at least a, denoted by

a):a@v

if Th'®(¢) > o holds.

Now that we have defined the semantical part of our logical system we
can turn to the syntactical part by providing a proof procedure. But before
we do this, we elucidate why it is impossible to define a sound finite proof
method which leads to completeness with respect to the notion of a model
given in definition 2.1 if we allow 7 = [0, 1].

Example 2.2 Let us for the moment assume 7 = [0,1]. We consider the
propositional language [which contains only one propositional variable ;.
The logical connectives in L are —,*, and = where /—¢/ =1 — /¢/. Let us
abbreviate

Yk ..k
—_—
m times
by ¢™. Let
A = {(~¢1) = (¢1)" | m € N and m > 2}
and let

a: L —[0,1], cpl—>{(1) ifp€A

otherwise.

It is easy to verify that this implies Th(a)(c,ol) = 1. For any finite subset
of B C A there exists an my € IN such that for all m > mg we have

10 F. Klawonn & R. Kruse

(mp1) — (¢1)™ € B. 1t is easy to check that the interpretation induced by

[¢1/ = 2% is a model of

b L — 0.1, @H{é ifecB

otherwise.

Thus Th(b)(c,ol) < holds. Any proof procedure which is allowed to
carry out a finite number of steps to derive the truth value for ¢ from «
or A, respectively, can only make use of a finite subset B of formulae in A
(except if there is something like an infinite inference rule). But if this proof
procedure would yield the value 1 for ¢y, it would assign this value already
to 1 even if B is assumed to be the set of axioms. This would imply that

the proof procedure is not sound.

Let us now continue with a definition of a proof procedure for our log-
ical system with a finite set 7 of truth values. Since we are heading for
a generalization of a Prolog like language and in order to obtain a simple
proof procedure we will restrict ourselves from now on to Horn clause like
expressions. What this means is stated in the following two definitions.

Definition 2.3 An implication clause is a closed well formed formula of the
form

(Var) . (Var) (o —) (1)

(Var) o (Vg) (), (2)

where 1 s an atomic formula with no other free variables than x1,...,xp. ¢
is a formula containing only connectives belonging to @ and no quantifiers.

Implication clauses do not allow existential quantifiers, which is of course
a restriction. We do not consider existential quantifiers here, in order to ob-
tain a logical systems that can be used for implementation and can therefore
not avoid some restrictions. In principal, the problem of ruling out existential
quantifiers could be overcome by skolemization.

As “fuzzy’ Prolog programs we accept only ‘fuzzy’ sets of axioms a : [—
T that restrict to implication clauses.

A Lukasiewicz Logic Based Prolog 11

Definition 2.4 A mapping a : L — T is called a T-L—Prolog program if
only implication clauses belong to the support of a, i.e. a(p) > 0 implies that
@ 1s an implication clause.

The classical deduction schemata modus ponens and substitution can
be easily incorporated into our logical system. Of course, we have to keep
track of the corresponding lower bounds for the truth values. In part (i)
of the following definition the calculation of greatest lower bound for the
corresponding truth values based on the truth function — is incorporated
into the deduction schemata modus ponens and substitution.

Definition 2.5 Let a,b: L — T be a T -L—Prolog program.
(i) b is directly derivable from a if

(a) there exists an implication clause (VY1) ... (Vag)(p — @) in L such
that

(al) If g is an implication clause with free variables xq, ..., x, and

o # 1, then a((Vaq) ... (Y,) (vo)) = b(Vaq) ... (Va,) (o).
(a2)

b((Vay)...(Vag)(¥)) = max{ [(Vxy)...(Vag)(e)/a
Fa((Ver)... (Vag)(p —)
—1,
a((Var) ... (Vap)(¥)) } (3)

where the value [(Vxy) ... (VYag)(p)/, is obtained by consider-
ing the Herbrand universe of L and valuating atomic formulae
according to a,

holds or

(b) there exists an implication clause (Yay)...(Vag)(x) and terms
tivoooostin (11,1, € {1,...,k}) without free variables such that
for the formula ', which is obtained by substituting x;, (j =
L,...,r) by t;; in x and quantifying over the remaining free vari-
ables,

b(x') = max{a((Va1) ... (Vo) (x)), a(xX)}- (4)
is satisfied.

12 F. Klawonn & R. Kruse

(i) b is derivable from a, abbreviated by a < b, if there is a sequence
agy ... 0, : L — T of T-L-Prolog programs where ajyq is directly
derivable from ayp for each k € {0,...,n — 1} and b < a, holds.

(iii) The mapping th(® . [— T is given by

th(a)(c,o) = of the form (2)

sup{b(p) | a < b} if ¢ is an implication clause
0 otherwise.

(iv) An implication clause @ € L of the form of the form (2) is derivable
from a with a truth degree of at least o € T, abbreviated by

akt, e,
if th () > a holds.

The application of modus ponens and the substitution of free variables
by other terms is formalized in (i)(a) and (i)(b), respectively, in the above
definition. (ii) describes the application of a finite number of deduction
steps of the form introduced in (i). Since we assume 7 to be the finite
chain {0,1/n,...,(n —1)/n,1} the supremum in (iii) is in fact a maximum.
Thus, for all implication clauses ¢ of the form (2), there exists a 7-L—Prolog
program b, derivable from a such that b,(¢) = th'® ().

Example 2.6 Consider the following three logical formulae and a 7-L-
Prolog program a, where 7 = {0,0.1,...,0.9,1}, that assigns the indicated
values to these formulae.

(Va)(P(x) A Q(z) — R(x)) 0.9
P(Xo) 0.8
Q(Xo) 0.7

where P, (), and R are symbols for predicates and X is an individual con-
stant. To all other formulae ¢ the value zero is assigned by a. Applying part
(i)(b) of Definition 2.5 to first formula, we can derive

P(Xo) A Q(Xo) — R(Xo) 0.9. (5)

A Lukasiewicz Logic Based Prolog 13

Technically speaking, we can derive from a the 7—-1—Prolog program b that
assigns the same values to formulae as a, except for the formula P(X;) A
Q(Xo) — R(Xo) to which b assigns the value 0.9.

Assuming that /o A ¢/ = max{/¢/ + /¢/ — 1,0} is the truth function
associated with the conjunction A, part (i)(a2) of Definition 2.5 applied to
equation (5) yields

R(Xy) 0.4 = max { max{0.8 +0.7—1,0} +0.9—1,0}

when we take the values assigned to P(Xj) and Q(Xj) into account. Thus
we have shown th(a)(R(Xo)) > 0.4. In fact, we have even th(a)(R(Xo)) =04,
since the proof is the one which gives the greatest value for R(X,). We may
also write

a l_oz R(Xo)
for any a € {0,0.1,...,0.4}.

Theorem 2.7 Let a : L — T be a T-1L.—Prolog program and let ¢ be an
implication clause of the form (2). Then

th(® () < Th® ()
holds.

Proof. We have to prove that , if I is a model of a 7-L—Prolog program
then [is also a model for any 7-1L—Prolog program directly derivable from
the given 7-L-Prolog program. Let [be a model of a and let b be directly
derivable from a.

Case 1. b is obtained from « by applying (3).

Since [is a model of a and according to the monotonicity of the truth
functions in €, we derive

J(Var) . (Vo) (@)/ = max{ [(Var)... (Ver)(p)/
+/(Var) . (Var) (e = ¢)/a — 1,
[(Var) ... (Vap)(¥)/ }

max{ [(Vx1)...(Yei)(p)/a
+/(Va1) ... (Var) (e — ¥) /o — 1,
[(Va1) ... (Var)(¥) /o }

= (V1) ... (Vap)(v)).

v

14 F. Klawonn & R. Kruse

Case 2. b is obtained from « by applying (4).
For the same reasons as in case 1, we obtain

) = max{/(Vay) ... (Ve)0/ NS}
> max{a((Ve1) ... (Var) (1), a(x')}.

Corollary 2.8 (Soundness) Let a : L — T be a T -L-Prolog program, let
@ be an implication clause of the form (2), and let « € T. Then

aF,o = ak.p

holds.

Theorem 2.9 Let a : L — T be a T-L—-Prolog program and let ¢ be an
implication clause of the form (2). Then

th®(p) > Th@(p).
holds.

Proof. Let U be the Herbrand universe of L. We show that the Herbrand
interpretation [induced by th(® is compatible with a. For implication clauses
x of the form (2) the definition of th(® vields

/x/ = a(y).

Thus, we only have to consider implication clauses like (Vay)... (Vag)(p —

1) of the form (1) where
J(Var) . (Vo) (o =)/ < a((Ver) ... (Var)(p —).
There exists a tuple u = (uy,...,u;) € U* such that

[e(u) = ¢(u)) < a((Var) ... (Vap)(p =) (6)

holds where (u) and ¥(u) are obtained by substitution of xq,...,x; by
Uy, ... U in @ and ¢, respectively. By applying part (i)(b) of Definition 2.5

A Lukasiewicz Logic Based Prolog 15

to the formula (V) ... (Vag)(¢ —) by substituting xy, ...,z by uy, ..., uy
we derive b: L — 7T directly from a. Then we have

b(p(u) — o(u))

a((Vay) ... (Veg)(p — 1))

[e(u) — P(u)/

min{l — /o(u)/ + /(u)/, 1}

= 1= Jp(u)] + [u)]. (M

1

AR VARV,

(7) implies

[e(u)] + blo(u) = p(u)) = 1> [(u)/.
According to the remark after definition 2.5, there is a 7—L—Prolog program
a’ derivable from @ such that /o(u)/ = a'(¢(u)). Obviously, the 7-L—Prolog

program b = max{a’, b} is also derivable from a. For i we have
b(p(u)) + 0 (p(u) = (u)) — 1> [ib(u)/.

From ' we can directly derive the T-L-Prolog program b with

b(v(u) = b (p(u)) + ¥(p(u) = (u)) = 1> [i(u)/.

By definition b is also derivable from a. But this leads to the contradiction

[(w)) = th® (W () > b(wb(u)) > [v(u)/.

Corollary 2.10 (Completeness) Let a : L. — T be a T-L-Prolog pro-
gram, let @ be an implication clause of the form (2), and let o« € T. Then

abE.p = al,p

holds.

Corollaries 2.8 and 2.10, respectively Theorems 2.7 and 2.9, guarantee
soundness and completeness for the proof procedure described in Definition
2.5 with respect to the semantics of definition 2.1. For 7—-L—Prolog program

16 F. Klawonn & R. Kruse

it is obviously sufficient to restrict to implication clauses of the form (2) for
soundness and completeness. How we can make use of these results for an
implementation is shown in section 4.

The same soundness and completeness results can be obtained for the
infinite valued logic with 7 = [0, 1] [14] for the price that the value th'” (i)
cannot be obtained by a finite number of direct derivations. In [14] also the
(Godel implication is considered as a possible truth function for the implica-
tion. A Prolog system based on this implication and the set of truth values
7 = [0,1] can be shown to be equivalent to Prolog based on possibilistic
logic [16]. For such [0, 1]-valued logical system a probabilistic semantics can
be provided and the use of the Lukasiewicz implication then corresponds to
a possibly overcautious application of deduction [15].

3 Interpretation of the Truth Values

The previous section approached the definition of a Lukasiewicz logic based
Prolog from a purely formal point of view by generalizing concepts from
classical logic to many—valued logic. The truth values are considered as
abstract symbols and no interpretation for intermediate truth values between
0 and 1 is provided. In this section we address this problem of interpreting
truth values, for which pick up Mundici’ idea to consider truth values in
Lukasiewicz logic as distance from contradiction motivated by Ulam games.
Let us briefly recall Mundici’s argumentation [23].

Mundici considers an Ulam game [30], which is a simple ‘guess a number
from the set S = {1,...,p} by asking questions to be answered by yes or
no’, except that the person who provides the answers to the questions is
allowed to lie (at most) ¢ times. In section 5 an example of an Ulam game is

discussed.
Let us assume that the questions @)y,...,Q), were asked and the given
answers where Aq,..., A,. We fix a number s € S from the set of possible

numbers for the moment and try to represent our knowledge induced by the
given answers with respect to this number s. If false(s) denotes the number
of lies in the answers A,,..., A,, given s would be the number to be guessed,
then we can represent our state of knowledge by the rational number

| min{false(s),(4+ 1} 0 1 1 |
(+1 41T+

kay,..a,(s) =

A Lukasiewicz Logic Based Prolog 17

ka,..,a,(s) = d/({ + 1) means that ({ +1 — d), or in the case of d = 0
more than £, lies are among the answers Ay,..., A,. Thus kA17...7Aq(5) can be
viewed as the relative distance, measured in units (14 ¢), from contradiction,
i.e. from falsifying too many answers assumed s is the number to be guessed.

It we consider only a single answer A;, there are two possibilities for
the value ky,(s). In the case that s falsifies A;, we obtain ky,(s) = ¢/({ +
1), otherwise we have ky,(s) = 1. Now it easy to check that kg, 4,(s) =
max{k4, (s)+ ka,(s) — 1,0} holds, or more generally

kay,oa,(s) = max{ka, . a,(5)+kap,..a,(5)—1,0}. (8)

Equation (8) shows that our state of knowledge can be computed by the
Lukasiewicz conjunction

[ex) =max{/p/+ [/ —1,0}

in an (¢ 4+ 2)-valued logic. Note that this implies /o * ¢/ < [¢/ except for
[/ € {0,1}. This phenomenon is according to the effect that in an Ulam
game with lies the repetition of a question leads to more information than
the same question asked only once.

Of course, we have not developed the Lukasiewicz logic based Prolog just
for the sake of Ulam games. The above given interpretation from Mundici
for Lukasiewicz logic should be understood as a motivation to a possible
interpretation of truth values in terms of relative distance to contradiction.
Abstracting from Ulam games we can interpret the truth values in the follow-
ing way. The person who specifies the truth values has an understanding of
the ‘real world” which contains partial contradictions or incoherencies. Due
to this incoherence the real world is associated with an inconsistent set of (not
necessarily explicitly specified) statements. These statements play the role
of the questions and answers in the Ulam game. It is assumed that, although
the statements might be contradictory, a maximum of ¢ of these statements
can be falsified. The person then evaluates each logical proposition ¢ with
respect to the statements about the world and assigns, as in the Ulam game,
the truth value d/(¢ + 1) if o falsifies (¢ + 1 — d) of the statements.

This yields immediately an interpretation of the Lukasiewicz conjunction
* as a logical and, since [* ¢/ = max{/p/ + [/¢b/ — 1,0} is the distance of
the proposition (¢ and 1) in the pessimistic case that the sets of statements
about the real world falsified by ¢ and ¢ are disjoint, at least if /p*/ > 0.

18 F. Klawonn & R. Kruse

The optimistic case, i.e. the set of statements falsified by ¢ is contained in
the set of statements falsified by ¢ or vice versa, would lead to the minimum
as the truth function for the logical and.

In order to find a truth function for the implication, we have to explain
how we treat propositions with an implication. Since we are interested in
the truth value as the relative distance from contradiction, we think of impli-
cation in the following way. In classical logic the validity of the implication
@ — 1 allows us to assume @ instead of ¢ without making an additional
mistake, i.e. if we would have to bet on ¢ or ¥, we would be better off to bet
on . In the same way, a truth value of 1 for the implication ¢ — % in our
interpretation of truth values should guarantee that ¢ does not falsifty more
statements than . If ¥ does falsify more statements than ¢ the implication
is ‘closer’ to contradiction and its truth value should tell us how near it is to
contradiction. This leads to the Lukasiewicz implication as the truth func-
tion for —, i.e. if ¢ and ¢ falsify m, and m, statements, respectively, and if
we assume that m, < my, < /{, then we assign the truth value

ﬁ—l—l—(md,—mw)
41

to the implication ¢ — .

It is of course possible to motivate other logical connectives in this frame-
work for handling distance from contradiction. But for our purposes the
above mentioned logical operators and as Lukasiewicz conjunction or mini-
mum, and implication as Lukasiewicz implication are sufficient.

It should be emphasized that the above mentioned interpretation of the
truth values. There are of course others which are intended to model differ-
ent phenomena. Various examples of applications of many—valued logics in
expert systems can be found in [1].

4 LULOG — An Implementation

The theoretical results provided in section 2 lead to an implementation
of a software tool which we call LULOG. LULOG is an interpreter for a
Lukasiewicz logic based Prolog. LULOG itself is written in CommonLISP.
The basic syntax of LULOG in a Backus—Naur-like form is shown in table

A Lukasiewicz Logic Based Prolog 19

LULOG expression ::= query | entry

query ::= expression | connective expression

entry ::= (, ASSERT!, {data | rule},)

rule ::= (, RULE, expression, {expression | con-
nective expression}, truth value

connective expression ::= (, {AND | AND*}, {expression | connec-

tive expression}, {expression | connec-
tive expression }*,)

truth value x=0]1]...n

data = a LISP list (of symbols for predicates
and individuals) whose last element is
a truth value

expression = a LISP list (of symbols for predicates
and individuals)

Table 1: The syntax of LULOG.

1. Since ‘(" and ‘)" are symbols in the LULOG language, we have used { and
} for grouping expressions, deviating from the standard Backus—Naur form.
In LULOG the set of truth values {0,1/n,...,(n—1)/n,1} used in section
2 is replaced by the set {0,1,...,(n —1),n} so that only integer arithmetic
is needed in the program leading to a faster execution.
Examples for entries in the knowledge base are

(ASSERT! (ANIMAL TWEETY 5))

(ASSERT! (HAS-FEATHERS TWEETY 6))

(ASSERT! (RULE (BIRD 7X) (AND (ANIMAL 7X) (HAS-FEATHERS
7X)) 4)).

The last rule states that for any x, we can derive that x is a bird if x is an
animal and has feathers (taking the corresponding truth values into account).
Variables are marked by a question mark as the first letter.

Typical queries are

(HAS-FEATHERS TWEETY)
(AND* (ANIMAL 7X) (HAS-FEATHERS 7X)).
(?WHAT TWEETY)

20 F. Klawonn & R. Kruse

The answer to the first query yields the truth value with which the predicate
has—feathers holds for tweety, whereas the second query lists all individuals,
to which the two predicates animal and has—feathers apply, and computes
for each individual the Lukasiewicz conjunction of the corresponding truth
values. The last query yields all predicates with the corresponding truth
values which can be applied to tweety. More examples for entries in the
knowledge base and queries can be found in section 5.

The basic inference mechanism of LULOG is modus ponens. Besides
modus ponens substitution of variables is necessary. A proof for a query is
found by backward chaining, i.e. if we want to prove ¢(x,y,...,z), we look
for facts containing ¢, yielding directly a truth value, or for rules with ¢ in
the head, and then unify the body of the rule correspondingly and continue
with the unified predicates in the body of the rule in the same way until
we reach a fact again. If a proof is found by this procedure, the backward
chaining has to be retraced in the opposite direction in order to compute the
corresponding truth value. Note that we have to find the proof yielding the
maximal truth value, so that we can stop the search procedure only, when
we have found a proof that gives the maximal truth value n appearing in the
set of truth values, or when all proofs are examined.

It it is not necessary to find the greatest derivable truth value for a query,
one may also interrupt the program LULOG in order to get the value of
the best proof found until the time of interruption. In order to increase
the chances for finding good proofs in an early state of the search, LULOG
chooses the rule to which the highest truth value is assigned, when there is
more than one possible rule for the backward chaining procedure.

5 Application Examples

In this section we discuss the application of our Lukasiewicz logic based
Prolog system to two examples. For those readers who are familiar with the
programming languages Prolog and Lisp, we have also written down parts of
the dialog with the machine.

Example 5.1 The first example is very simple and does not involve any
chained inference. We try to solve an Ulam game with S = {1,2,3,4,5}
as the set from which the number to be guessed is chosen and a permission

A Lukasiewicz Logic Based Prolog 21

Question Answer
Q1 The number to be guessed is a prime. no
Q- The number to be guessed is even. yes
Qs The number to be guessed is even. no
Q4 The number to be guessed is 1 or 5. no
Qs The number to be guessed is a square. yes
Qs The number to be guessed is less than 4. no

Table 2: An Ulam game.

of a maximum of two lies. Therefore, as explained in section 3, we have to
choose a 4-valued logic. As mentioned in section 4, we take the set {0,1,2,3}
as truth values instead of {0,1/3,2/3,1}. The interpretation of these truth

values is
0: more than two lies
1: two lies
2: one lie
3: no lies.

Table 2 shows a protocol of an Ulam game. In order to make use of our
Lukasiewicz logic based Prolog system, we introduce six predicates answer 1,

.., answer_6. Starting from an empty knowledge base, we add for each
i € {l,...,6} and each s € S = {1,...,5} the fact answer_i(s) with truth
value 2 (lie) if the number s would make the answer to question @); a lie, and
with truth value 3 (no lie) if the answer to question @); is correct, assumed
that s is the number to be guessed. As an example the corresponding entries
in the knowledge base for ¢); and ()5 are shown in table 3.

In order to see, how many lies are under the answers for each s €
{1,...,5}, we simply have to compute the Lukasiewicz conjunction for each
s. This is done automatically by the Lukasiewicz logic based Prolog when
we ask for the truth value of the Lukasiewicz conjunction of the predicates
answer_i for a non—specified variable. The truth value 3,2,1, and 0 corre-
spond to no lie, one lie, two lies, more than three lies. Table 4 shows the

22 F. Klawonn & R. Kruse

| Q1 | Qs |
(ASSERT! (ANSWER1 ONE 3)) (ASSERT! (ANSWER5 ONE 3))
(ASSERT! (ANSWER1 TWO 2)) (ASSERT! (ANSWER5 TWO 2))
(ASSERT! (ANSWER1 THREE 2)) | (ASSERT! (ANSWER5 THREE 2))
(ASSERT! (ANSWER1 FOUR 3)) (ASSERT! (ANSWER5 FOUR 3))
(ASSERT! (ANSWER1 FIVE 3)) (ASSERT! (ANSWER5 FIVE 2))

Y H=| W[N | @«

Table 3: Entries in the knowledge base for ()1 and @)s.

?X =1= FIVE ?X =0= FIVE
?X =2= FOUR ?X =2= FOUR
?X =1= THREE | 7X =0= THREE
7?X =1= TWO ?X =0= TWO
?X =2= 0ONE 7?X =0= ONE

Table 4: The state of knowledge after the first 3 (left) and 6 (right) answers.

results after the first three answers and after all six answers, respectively.
The corresponding results are obtained by the LULOG commands

o (AND* (ANSWER1 7X) (ANSWER2 7X) (ANSWER3 7X)) and

o (AND* (ANSWER1 7X) (ANSWER 7X) (ANSWER3 7X)
(ANSWER4 7X) (ANSWER5 7X) (ANSWER6 7X)),

respectively.

From table 4 we can see that after the first three answers still all numbers
are possible, but after six answers we know that the correct guess must be 4
(corresponding to one lie only).

Example 5.2 In this example we discuss a shortened version of the test—
example examined in [29]. The following statements have to be integrated
into the knowledge base.

A Lukasiewicz Logic Based Prolog 23

sl) Students are young.

s2) Young people are single.

s4) Cohabitants are young.

(s1)
(s2)
(s3) Students who have children are married or cohabitants.
(s4)
(s5)

Single, married, and cohabitant are mutually exclusive.

In order to describe these statements in a formal language, the unary
predicates sdnt(x), yng(x), sng(x), pnt(x), mrd(x), and chbt(x) are intro-
duced, meaning that x is respectively student, young, single, parent (having
one or more children), married, and cohabitant. In addition we use the
proposition cntr for representing a contradiction.

Only (sh) is understood as a proposition in classical logic, the other state-
ments are true in most, but not in all cases. The statements, for instance
(s1), can be written in Prolog—like style in the form

yng(x) « sdnt(x).

Since we cannot be sure that (s1) always holds, we have to assign an appro-
priate truth value to this rule, indicating the relative distance from contra-
diction. We choose a 7-valued logic with the truth values 0,...,6. The truth
values assigned to the statements (s1), (s2), and (s4) are 5, 4, and 4, respec-
tively. (s3) cannot be represented directly in the language LULOG, since
in the head of a rule no conjunctions or disjunctions are admitted. In this
case, we can make use of the fact that married and cohabitant are mutually
exclusive, splitting (s3) into the two rules

(s3a) Students who have children are married.
(s3b) Students who have children are cohabitants.

We assign to each rule the truth value 3 so that the Lukasiewicz conjunc-
tion of ‘married’ and ‘cohabitant’ obtained from these rules, when we are
dealing with a student with children, always yields the value 0.

(s5) is expressed by the following three rules, again written in Prolog—like
style, which are always valid and are therefore assigned the truth value 6.

24 F. Klawonn & R. Kruse

‘ ‘ Entry in the knowledge base ‘

(s1) | (ASSERT! (RULE (YNG 7X) (SDTN 7X) 5))

(s2) | (ASSERT! (RULE (SNG 7X) (YNG 7X) 4))

(s3a) | (ASSERT! (RULE (MRD ?X) (AND (SDTN 7X) (PNT ?X)) 3))
(s3b) | (ASSERT! (RULE (CHBT 7X) (AND (SDTN ?X) (PNT ?7X)) 3))
(s4) | (ASSERT! (RULE (YNG 7X) (CHBT 7X) 4))

(s5a) | (ASSERT! (RULE (CNTR) (AND* (SNG ?X) (MRD ?7X)) 6))
(s5b) | (ASSERT! (RULE (CNTR) (AND* (SNG ?X) (CHBT 7X)) 6))
(s5c) | (ASSERT! (RULE (CNTR) (AND* (MRD 7X) (CHBT 7X)) 6))

Table 5: The knowledge base for example 5.2.

(sBa) cntr « sng(x) * mrd(x)
(s5b) cntr « sng(x) * chbt(x)

(s5¢) cntr «— mrd(x) * chbt(x)

The use of the Lukasiewicz conjunction for (sba)—(sbc) admits the pos-
sibility that a person might be a assigned non—zero truth values for all the
three predicates sng, mrd, and chbt, but still having the truth value 0 for cntr.
This holds as long as the sum of the truth values of two of these predicates
is always less than 6. It means that we are accepting a partial contradiction.

The complete knowledge base in LULOG is shown in table 5.

Now let us assume that we know that Lea is a student and that she is
possibly a mother, since we saw her with a child resembling her face on the
campus. So we add to the knowledge the two facts sdnt(lea) and pnt(lea)
with truth value 6 and 5, respectively. Asking the question who is single, we
obtain the answer that sng(lea) is satisfied with truth value 3 (and no more
individuals are listed, since sng cannot be applied to someone else included
in the knowledge base at the moment). Asking for cohabitants or married
persons we get that chbt(lea) or mrd(lea) both hold with truth value 2.
Although single, cohabitant, and married are mutually exclusive, we obtain
that cntr (contradiction) holds with truth value 0. This is due to the low truth
value for chbt and mrd, so that we still can accept this partial contradiction.
Table 6 shows a LULOG protocol of the corresponding questions and answers.

A Lukasiewicz Logic Based Prolog 25

‘ Additional entries for the knowledge base ‘

(ASSERT! (SDNT LEA 6))
(ASSERT! (PNT LEA 5))
‘ Question ‘ Answer ‘
(SNG 7X) ?X =3= LEA

(MRD 7X) ?X =2= LEA

(CHBT 7X) | ?X =2= LEA

(CNTR) Valid with value 0

Table 6: The LULOG dialogue concerning Lea.

‘ Additional entries for the knowledge base ‘
(ASSERT! (SDNT PAUL 6))
(ASSERT! (CHBT PAUL 6))
(ASSERT! (CHBT LEA 6))

‘ Question ‘ Answer

(SNG ?7X) | 7X =3= LEA

?X =3= PAUL

(CNTR) Valid with value 3

Table 7: The LULOG dialogue concerning Lea and Paul.

Let us finally assume that we learn that Paul who is also a student is
Lea’s cohabitant. So we add the facts sdtn(paul), chbt(paul), and chbt(lea)
with truth value 6 to the knowledge base. When we now ask for single
people we obtain that the predicate sng holds with truth value 3 for Lea
as well as for Paul. Together with the knowledge that Lea and Paul are
cohabitants, this leads to a value of 3 for cntr (contradiction). The protocol
of the corresponding LULOG dialogue is shown in table 7.

26 F. Klawonn & R. Kruse

6 Conclusions

We have provided a formal framework for a Lukasiewicz logic based Prolog
and have discussed a software tool which was developed on this theoretical
basis. In principal it is possible to drop the restriction to a finite set of
truth values, especially since in practice we always have to deal with a finite
knowledge base. But the introduction of real numbers from the unit interval
as truth values would enforce us to give up the simple integer operations for
the finite—valued case. This is a severe disadvantage since, in opposition to
ordinary Prolog, we have to look for the proof yielding the greatest truth
value. This means that we have to search through the whole proof tree in
all cases, which is of course much more complex than breaking up after the
first proof is found as it is done in Prolog.

We have used the Lukasiewicz implication for semantical reasons, in order
to be able to apply the interpretation of the truth values of Lukasiewicz logic
introduced by Mundici [23]. The theoretical results of section 2 are still
valid for other implication operators like the Godel implication. Of course,
equation (3) in definition 2.5 has to be modified accordingly. To adapt the
modification for the software tool LULOG, only this formula used in the
valuation of proofs has to be redefined.

As ordinary Prolog the LULOG system is only based on a restricted subset
of first order logic, mainly by avoiding negation. An extension to the full
calculus of first order Lukasiewicz logic would lead to the same complexity
and undecidability problems that appear already for classical logic, since
classical logic is included in LULOG simply by choosing {0,1} as the set of
truth values. And in contrast to classical logic, we are in the bad situation
that first order Lukasiewicz logic is not complete [28].

Nevertheless, LULOG can cope with various problems connected to rea-
soning with partially inconsistent knowledge. In many other fuzzy Prolog
systems often only the proof procedure of Prolog is fuzzified so that it is im-
possible to describe suitable semantics for such systems. LULOG is based on
a pure logical approach where syntax and semantics are strictly separated,
guaranteeing for a clear interpretation of the system.

A Lukasiewicz Logic Based Prolog 27

References

1]

[10]

[11]

[12]
[13]

B.M. Ayyub, M.M. Gupta, L.N. Kanal (eds.), Analysis and Management
of Uncertainty: Theory and Applications. North—Holland, Amsterdam
(1992).

F. Bacchus, Representing and Reasoning with Probabilistic Knowledge.
MIT Press, Cambridge, Massachusetts (1990).

J.F. Baldwin, Fast Operations on Fuzzy Sets in the Abstract FRIL Ma-
chine. Proc. IEEE Intern. Conf. on Fuzzy Systems, San Diego (1992),
803-809.

P. Besnard, Default Logic. Springer—Verlag, Berlin (1989).

C.C. Chang, Algebraic Analysis of Many—Valued Logics. Trans. Ameri-
can Mathematical Society 88 (1958), 467-490.

W.F. Clocksin, C.S. Mellish, Programming in Logic (2nd ed.). Springer—
Verlag, Berlin (1984).

R. Cordes, R. Kruse, H. Langendérfer, H. Rust, Prolog (3rd ed.) (in
German). Vieweg, Braunschweig (1992).

D. Dubois, J. Lang, H. Prade, Fuzzy Sets in Approximate Reasoning,
Part 2: Logical Approaches. Fuzzy Sets and Systems 40 (1991), 203-244.

D. Dubois, H. Prade, Resolution Principles in Possibilistic Logic. Intern.
Journ. Approximate Reasoning 4 (1990), 1-21.

D. Dubois, H. Prade, Epistemic Entrenchment and Possibilistic Logic.
Artificial Intelligence 50 (1991), 223-239.

D. Dubois, H. Prade, Fuzzy Sets in Approximate Reasoning, Part 1: In-
ference with Possibility Distributions. Fuzzy Sets and Systems 40 (1991),
143-202.

S. Gottwald, Fuzzy Sets and Fuzzy Logic. Vieweg, Wiesbaden (1993).

M. Ishizuka, N. Kaisai, Prolog-ELF Incorporating Fuzzy Logic. Proc.
9th IJCAIL Los Angeles (1985), 701-703.

28

[14]

[15]

[16]

[19]

[20]

[21]

F. Klawonn & R. Kruse

F. Klawonn, Prolog Extensions to Many—Valued Logics. In: U. Hohle,
E.P. Klement (eds.), Proc. 14th Linz Seminar on Fuzzy Set Theory:
Non—Classical Logics and their Applications. Johannes Kepler Univer-
sitat, Linz (1992), 42-45.

F. Klawonn, J. Gebhardt, R. Kruse, Logical Approaches to Uncertainty
and Vagueness in the View of the Context Model. Proc. IEEE Inter-
national Conference on Fuzzy Systems 1992, IEEE, San Diego (1992),
1375-1382.

F. Klawonn, J. Gebhardt, R. Kruse, The Context Model from the View-
point of Logic. In: K.-W. Hansmann, A. Bachem, M. Jarke, W.E.
Katzenberger, A. Marusev, Operations Research Proceedings 1992.
Springer—Verlag, Berlin (1993), 288-295.

R. Kruse, J. Gebhardt, F. Klawonn, Foundations of Fuzzy Systems.
Wiley, Chichester (1994).

R. Kruse, E. Schwecke, J. Heinsohn, Uncertainty and Vagueness in
Knowledge Based Systems: Numerical Methods. Springer—Verlag, Berlin
(1991).

R.C.T. Lee, Fuzzy Logic and the Resolution Principle. Journ. of the
Association for Computing Machinery 19 (1972), 109-119.

J.W. Lloyd, Foundations of Logic Programming (2nd ed.). Springer—
Verlag, Berlin (1987).

T.P. Martin, J.F. Baldwin, B.W. Pilsworth, The Implementation of
FPrROLOG — A Fuzzy Prolog Interpreter. Fuzzy Sets and Systems 23
(1987), 119-129.

M. Mukaidono, Z.L. Shen, L. Ding, Fundamentals of Fuzzy Prolog. In-
tern. Journ. Approximate Reasoning 3 (1989), 179-193.

D. Mundici, Ulam Games, Lukasiewicz Logic, and AF C*—Algebras.
Fundamenta Informaticae 18 (1993), 151-161.

V. Novéak, On the Syntactica—Semantical Completeness of First Order
Fuzzy Logic, Part I: Syntax and Semantics. Kybernetica 26 (1990), 47—
66.

A Lukasiewicz Logic Based Prolog 29

[25]

[26]

[27]

28]

V. Novak, On the Syntactica—Semantical Completeness of First Order
Fuzzy Logic, Part II: Main Results. Kybernetica 26 (1990), 134-154.

J. Pavelka, On Fuzzy Logic I, II, III. Zeitschr. Math. Logik Grundl.
Math. 25 (1979), 45-52, 119-134, 447-464.

A. Rose, J.B. Rosser, Fragments of Many—Valued Statement Calculi.
Trans. American Mathematical Society 87 (1958), 1-53.

B. Scarpellini, Die Nichtaxiomatisierbarkeit des unendlichwertigen
Pradikatenkalkiils von Lukasiewicz. Journal of Symbolic Logic 27 (1962),
159-170.

L. Sombé, Reasoning under Incomplete Information in Artificial Intelli-

gence. Wiley, New York (1990).

S.M. Ulam, Adventures of a Mathematician. Scribner’s, New York
(1976).

M. Umano, Fuzzy Set Prolog. Proc. 2nd IFSA Congress, Tokyo (1987),
750-753.

