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Abstract. We study the law of functionals whose prototype isR +1
0

e
B(�)
s dW

(�)
s , where B(�),W (�) are independent Brownian motions

with drift. These functionals appear naturally in risk theory as well as in

the study of invariant di�usions on the hyperbolic half-plane. Emphasis

is put on the fact that the results are obtained in two independent, very

di�erent fashions (invariant di�usions on the hyperbolic half-plane and

Bessel processes).

1. Introduction.

LetWt; Bt be two independent one-dimensional Brownian motions,

and set

W
(�)
t =Wt � � t ; B

(�)
t = Bt � � t ;

where � > 0 and � 2 R. In this paper we prove some results concerning

the distribution of the random variable.

(1.1)

Z +1

0

e
B(�)
s dW

(�)
s :

587
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First we prove that it has a density given by

(1.2) f(x) = c�;�
e
�2� arctan x

(1 + x2)�+1=2
;

which belongs to the type IV family of Pearson distributions. The

functional (1.1) has been much studied because it appears in risk theory.

The density (1.2) was derived in [P, Example 3.1], with a proof for

� > 1 only; easy derivations for � > 0 in the particular case � = 0

can be found in [BCF, Remark 4.1] (if, in addition, � is a half integer

see also [AG, p. 32]). Interestingly, random variables as in (1.1) also

appear in connection with invariant di�usions on the hyperbolic half-

plane � = fz 2 C : Im z > 0g.
On � consider the di�usion process associated to the in�nitesimal

generator

L =
y
2

2
�� � y

@

@x
�
�
� �

1

2

�
y
@

@y
;

where the real coe�cients � and ��1=2 measure the horizontal, respec-

tively vertical component of the drift (positive for leftward and down-

ward drift, negative for rightward and upward drift). The di�erential

operator L is invariant under the orientation-preserving isometries of

� that �x the point at in�nity 1, that is, under the real a�ne trans-

formations z 7�! a z + b with a > 0 and b 2 R. The di�usion process

associated to L corresponds to the stochastic di�erential equation

(1.3)

8<:
dXt = Yt dWt � �Yt dt ;

dYt = Yt dBt �
�
� �

1

2

�
Yt dt ;

where, as before, Wt, Bt are independent one-dimensional Brownian

motions. The solution of (1.3) with starting point i y = (0; y) is

(1.4)

8><>:
Yt = y e

B
(�)
t ;

Xt =

Z t

0

y e
B(�)
s dW

(�)
s :

Consider the hitting distribution of the di�usion associated to L and

starting at x+ i y on any horizontal line Ha = fIm z = ag with 0 � a <

y. For a = 0 the line Ha is the boundary portion @�nf1g (in this case

the expression \hitting distribution" is a slight abuse of terminology),
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while for a > 0 it is a horocycle through1. Thus the law of the random

variable (1.1) is the hitting distribution of the di�usion associated to L

in H0 and starting at i. If a > 0 the hitting distribution is given by the

law of the random variableZ �a

0

y e
B(�)
s dW

(�)
s ;

where �a = inf ft � 0 : Yt = ag is the hitting time on Ha.

In this paper we prove (1.2) and compute the characteristic func-

tion of f in two di�erent fashions.

One is based on a computation of the Poisson kernel of the in�nites-

imal generator associated to the process. Exploiting the invariance, this

kernel can be written in terms of a single function of one real variable

that satis�es a second-order linear ordinary di�erential equation and

is determined explicitly. Conjugating by the inverse Fourier transform

another second-order linear ordinary di�erential equation is obtained

whose solution is a conuent hypergeometric function and the char-

acteristic function of the hitting distribution. This is done in Section

2.

The second method uses probabilistic techniques (mostly classical

properties of Bessel processes) and is the object of Section 4. It is based

on the representation formulae (1.3), (1.4), and uncovers interesting re-

lations between Brownian exponential functionals and previous work of

Ph. Biane, J. Pitman, and the fourth-named author on Bessel processes

(see [PY1], [PY2], and the references therein).

In Section 3 we discuss an alternate derivation of the ordinary

di�erential equation satis�ed by the characteristic function, by means

of the Feynman-Kac formula.

In Section 5 we prove that, as the parameters �; � as well as the co-

ordinates of the starting point of the process take their admissible values

(namely � 2 R, � > 0 and Im z > 0), the corresponding hitting distribu-

tions belong to the domain of attraction (extended domain of attraction

for � = 1) of nearly all stable laws with exponent � = min f2; 2 �g, for
0 < � � 2.

Finally, Section 6 is devoted to the study of the hitting distribution

on Ha for y > a > 0. Using the invariance properties of the di�usion

process and the strong Markov property it is possible to derive an ex-

pression for the characteristic function of this distribution, and to prove

that it still belongs to the domain of attraction of a stable law with ex-

ponent � = 2 �. However, in this case we are not able to give an explicit

expression for the density.
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2. The hitting distribution on H0 and its characteristic func-

tion.

We perform computations both on the hyperbolic half-plane � and

the Poincar�e disk D. They are isomorphic via the Cayley map z =

i (1 � w)=(1 + w) (where z 2 � and w 2 D), which corresponds to

� = tan (�=2) on the boundaries, with � 2 R [ f1g = @� and fei� :

�� < � � �g = @D.

The density P (�; z) at � of the hitting distribution on R of the

process associated to the operator L and starting at z 2 � is called

the Poisson kernel of L in the domain �, and satis�es the following

conditions:

1) Lx;yP (�; x+ i y) � 0 for all � 2 R;

2) P (�; z) > 0 for all � 2 R and z 2 �;

3)
R
R
P (�; z) d� = 1 for all z 2 �;

4) limy!0+ P (�; x+ i y) = 0 if � 6= x and �; x 2 R.

Since L is invariant under the maps z 7�! a z + b, then so is the

measure P (�; z) d� on R for the diagonal action of the same maps, that

is, P (�; z) = aP (a � + b; a z + b). Setting f(x) = P (x; i), we therefore

have

(2.1) P (�; x+ i y) =
1

y
P

�
� � x

y
; i

�
=

1

y
f

�
� � x

y

�
:

In other words, the hitting distribution with arbitrary starting point is

obtained, by a simple rescaling, from the one starting at i.

The di�erential operator on D corresponding to L is invariant un-

der the maps w 7�! ((1 + a + i b)w + (1 � a + i b))=((1� a � i b)w +

(1 + a� i b)). Its Poisson kernel Q satis�es

Q(�;w) =
a

�
1 + tan2

�

2

�
1 +

�
a tan

�

2
+ b

�2
�Q
�
2 arctan

�
a tan

�

2
+ b

�
;
(1 + a+ i b)w + (1� a+ i b)

(1� a� i b)w + (1 + a� i b)

�
;

so that, if g(�) = Q(�; 0), then

Q(�;w) =
1� jwj2

jei� � wj2
g

�
2 arctan

j1 + wj2 tan
�

2
� 2 Imw

1� jwj2
�
:
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Furthermore f(x) = 2 g(2 arctanx)=(1 + x
2).

Condition 1) can be translated for f using (2.1), then setting � = 0

(since L is autonomous in x this may also be done beforehand) and y =

1. The result is the second-order linear ordinary di�erential equation

Mf = 0, with

(2.2)

Mf(x) =
1 + x

2

2
f
00(x) +

�
�+

�
� +

3

2

�
x

�
f
0(x) +

�
� +

1

2

�
f(x)

=
d

dx

�
d

dx

�1 + x
2

2
f(x)

�
+
�
�+

�
� �

1

2

�
x

�
f(x)

�
;

proportional to

d

d�

��
g
0(�) +

�
�+

�
� �

1

2

�
tan

�

2

�
g(�)

�
cos2

�

2

�
if � = 2arctanx. The �rst-order linear equation obtained by equating

the expression in square brackets to a constant multiple of cos�2 (�=2)

is solved by

g(�) =
�
c

2
+k

Z �

0

e
�� cos�2��1

�

2
d�

�
e
��� cos2��1

�

2
; with c; k 2 R :

Since P , whence f;Q; g, must be positive by condition 2) and since for

� 2 (��; �) the above integral takes arbitrarily large values of either

sign because � > 0, then k = 0 and f is given by (1.2).

Since
R �
��

g = 1 as a consequence of condition 3), then by [GR,

3.892.2 and 8.384.1] and the basic properties of the Euler Gamma func-

tion we have

(2.3)

c = c�;�

= 2
�Z �

��

e
��� cos2��1

�

2
d�

�
�1

=
22��1

�����1
2
+ � � i �

����2
� �(2 �)

:

In particular, by [GR, 8.332.2{3]

c�;1=2 =
�

sinh��
; c�;1 =

1

2
+ 2�2

cosh��
;
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and, more generally,

c�;� =

8>>>>><>>>>>:

22��1

(2� � 1)!� sinh��

��1=2Y
j=0

(j2 + �
2) ; if �=

1

2
;
3

2
;
5

2
; : : : ,

22��1

(2� � 1)! cosh��

��1Y
j=0

��
j +

1

2

�2
+ �

2
�
; if �=1; 2; 3; : : : ;

as can also be checked by elementary means from the integral expression

of c�;� . On the other hand, for � = 0 from [GR, 8.335.1] we have

c0;� =
�
�1
2
+ �

�
p
� �(�)

:

We now compute the characteristic function of the hitting distribution.

Again by invariance, the expression for an arbitrary starting point x+

i y 2 � can be derived from the special case of starting point i. Indeed,

if u = F�1
f is the inverse Fourier transform of f , then by (2.1) the

required characteristic function is F�1
P ( � ; x+ i y) = e

i�x
u(� y).

We have u(��) = u(�) because f is real-valued, and u(0) = 1

by condition 3). Moreover, for k = 0; 1; 2 the function x
k
f
(k)(x) is

integrable, whence �ku(k)(�) (exists and) is continuous, and vanishes

at in�nity; in particular, u is continuous on R and twice continuously

di�erentiable outside 0, and vanishes at in�nity. Thus u is in the kernel

of the operator N = F�1
MF , given by

(2.4) Nu(�) =
�
2

2
u
00(�)�

�
� �

1

2

�
�u

0(�)�
�
�
2

2
+ i � �

�
u(�) :

With the change of variables v(w) = e
w=2

u(w=2) the equation Nu = 0

becomes

(2.5)

w v
00(w) + (b� w) v0(w)� a v(w) = 0 ;

where

(
a =

1

2
� � + i �;

b = 1� 2 � :

This is a conuent hypergeometric equation in one of its standard forms

[EMOT, Chapter VI], [T], and its solutions are called conuent hyper-

geometric functions. One solution for w > 0 is the Tricomi 	-function,

de�ned as in [EMOT, 6.11.(13)] by

	(a; b;w)=
21�b �(1� a) ew=2

�

Z �=2

0

cos
�
w

2
tan �+(2 a�b) �

�
cos�b � d� :
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For this formula to hold it is required that Re b < 1 and a is not

a positive integer, both of which hold for a; b given in (2.5). Since

	(a; b;w) has a �nite non-zero limit for w ! 0+ and since

lim
w!+1

e
�w=2	(a; b;w) = 0

[EMOT, 6.13.(1)], then the solution of Nu = 0 we are looking for is, for

� > 0, a multiple of e��	(a; b; 2�). After some obvious manipulations

(2.3) gives

1

2 c�;�
=

Z �=2

0

cos (2 i � �) cos2��1 � d� ;

so that

	
�1
2
� � + i �; 1� 2 �; 0

�

=
22� �

�1
2
+ � � i �

�
�

Z �=2

0

cos (2 i � �) cos2��1 � d�

=
1

2 c�;� �
22� �

�1
2
+ � � i �

�
=

�(2 �)

�
�1
2
+ � + i �

� :

We summarize the results of this section:

Proposition 2.1. For every � > 0 and � 2 R, as t �! +1 the dis-

tribution of Xt with starting point i converges to the probability de�ned

by the density (1.2). Its characteristic function is

(2.6)
�
�1
2
+ � + i �

�
�(2 �)

e
��	

�1
2
� � + i �; 1� 2 �; 2�

�
;

where 	 is the Tricomi 	-function.
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3. Use of the Feynman-Kac formula.

We now prove in a di�erent way that the characteristic function u

of X1 with starting point (X0; Y0) = (0; 1), i.e., thanks to (1.1), the

function

u(�) = E0;1[e
i�X1 ] = E

h
exp

�
i �

Z
1

0

e
B(�)
s dW

(�)
s

�i
;

is in the kernel of the ordinary di�erential operator (2.4). Hence-

forth we denote by Px;y the law of the di�usion with starting point

(X0; Y0) = (x; y) and by Ex;y the corresponding expectation. Since the

Y -component is independent from W , then

u(�) = E0;1

h
exp

�
i �

Z
1

0

Ys dWs � i � �

Z
1

0

Ys ds

�i
= E0;1

h
exp

�
�
�
2

2

Z
1

0

Y
2
s ds� i � �

Z
1

0

Ys ds

�i
= E

h
exp

Z
1

0

�
� (� eB(�)

s )2

2
+ i � � e

B(�)
s

�
ds

i
= E0;�

h
exp

Z
1

0

G(Ys) ds
i
;

where G(y) = �y2=2� i � y.

Proposition 3.1. Let N be given by (2.4), and let u(�) be a solution

for � > 0 of Nu = 0 such that

lim
�!0+

u(�) = 1 ;

lim
�!1

u(�) = 0 :

Extend u to the negative half-line by setting u(�) = u(��) for � < 0.

Then u(�) = E0;1[e
i�X1 ].

(Unlike in the previous section, we require lim�!1 �
k
u(�) = 0

only for k = 0.)
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Proof. For 0 < a < 1 let

�a = inf
n
t � 0 : Yt = a or Yt =

1

a

o
be the exit time of Yt from the interval (a; 1=a). Then the Feynman-Kac

formula gives

u(�) = E0;�

h
u(Y�a) exp

Z �a

0

G(Ys) ds
i
:

As a �! 0 we have �a �! +1 and u(Y�a) �! u(0) = 1 almost surely.

4. A probabilistic computation of the hitting distribution.

We shall now compute again the law of
R
1

0
e
B(�)
s dW

(�)
s , as a con-

sequence of the following three simple observations.

1) For a �xed real number x (the starting point), consider the two

processes

X
(�;�)
t = e

B
(�)
t x+

Z t

0

e
B(�)
s dW

(�)
s ;

eX(�;�)
t = e

B
(�)
t

�
x+

Z t

0

e
�B(�)

s dW
(�)
s

�
:

Then X
(�;�)
t ; eX(�;�)

t have the same law for every �xed t (although the

two processes do not have the same law). More generally this holds

whenever B;W are independent L�evy processes [CPY, Lemma 2.3].

2) The process ( eX(�;�)
t ; t � 0) is a di�usion process with generator

M
� =

1 + x
2

2

d
2

dx2
�
�
�+

�
� �

1

2

�
x

�
d

dx
;

the adjoint of the operator M given in (2.2).

3) The distribution at time t of this di�usion process converges to

the invariant distribution, whose density f(x) is given in (1.2).
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Proof of 2). By Itô's formula

d eX(�;�)
t = eX(�;�)

t

�
dB

(�)
t +

dt

2

�
+ e

B
(�)
t e

�B
(�)
t dW

(�)
t

= eX(�;�)
t dBt + dWt �

�
�+

�
� �

1

2

� eX(�;�)
t

�
dt ;

from which one derives easily that eX(�;�) is a di�usion process with a

generator as stated.

Proof of 3). From 1), eX(�;�)
t converges in law as t �! +1, sinceeX(�;�)

t

law
' X

(�;�)
t , and X

(�;�)
t �! X

(�;�)
1 . It is easy to see that the

limit distribution is invariant, that is, it is annihilated by M , whence it

necessarily coincides with f .

As remarked in Section 3, the hitting distribution on H0 under P0;y

is the law of the random variable
R
1

0
y e

B(�)
s dW

(�)
s . If we set

A
(�)
1

=

Z
1

0

e
2B(�)

s ds ; A
(�;1)
1

=

Z
1

0

e
B(�)
s ds ;

then X1 can be written in the form of a subordinated perpetuity as

X1 = 
A
(�)
1

� �A
(�;1)
1

;

where  is a Brownian motion independent of B;W . It is thus clear

that the law of X1 is the same as that of

Z

q
A
(�)
1 � �A

(�;1)
1

;

where Z is an N(0; 1) random variable, independent of B;W . If h is

any bounded Borel function on R, then

E[h(X1)] = E
h
h

�
Z

q
A
(�)
1 � �A

(�;1)
1

�i
=

Z
R

e
�z2=2

p
2�

E
h
h

�
z

q
A
(�)
1 � �A

(�;1)
1

�i
dz

= E
hZ
R

h(x)q
2�A

(�)
1

e
�(x+�A(�;1)

1
)2=(2A(�)

1
)
dx

i
:
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Since h is arbitrary, this yields a representation formula for the density

f of X1 :

Theorem 4.1. We have

f(x) = E
h 1q

2�A
(�)
1

e
�(x+�A(�;1)

1
)2=(2A(�)

1
)
i
:

Next comes a representation formula of the density f in terms of Bessel

processes. The main tool is Lamperti's representation formula for the

geometric Brownian motion [RY, Exercise 11.1.28], which states that

(4.1) e
B(�)
s = R

(��)

A
(�)
s

;

where R(��) is a Bessel process with index ��. Taking s �! +1 in

this relation, since the left-hand side tends to 0 one has R
(��)

A
(�)
1

= 0, so

that A
(�)
1 coincides with the �rst passage time T0(R

(��)) of R(��) by

0. Moreover one can write

A
(�;1)
1

=

Z
1

0

e
B(�)
s ds =

Z
1

0

dA
(�)
s

eB
(�)
s

=

Z
1

0

dA
(�)
s

R
(��)

A
(�)
s

=

Z T0(R
(��)

)

0

du

R
(��)
u

:

This can be summarized by stating that

(4.2) (A(�)
1
; A

(�;1)
1

)
law
'
�
T0(R

(��));

Z T0(R
(��))

0

du

R
(��)
u

�
:

Theorem 4.2. Denote by P (�) the law of the transient Bessel process

(R
(�)
u ; u � 0) with dimension d = 2 (� + 1) starting at 0, and de�ne

Hs =

Z s

0

du

R
(�)
u

:

Then

f(x) =

r
2

�
E(�)

h
�

R
(�)
1

e
�(xR

(�)
1 +�H1)

2=2
i
:

In the particular case � = 1=2 we have that (R
(�)
u ; u � 0) is the

3-dimensional Bessel process starting at 0.
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Proof. Recall D. Williams' time reversal result, which states that

(R
(��)

T0(R(��))�u
; u � T0(R

(��)))
law
' (R(�)

u ; u � L1(R
(�))) ;

where the right-hand side denotes the Bessel process with index � start-

ing from 0, and L1 its last passage time by 1. Thus (4.2) may be written

(A(�)
1
; A

(�;1)
1

)
law
'
�
L1(R

(�));

Z L1(R
(�))

0

du

R
(�)
u

�
:

It is now su�cient to use a result of absolute continuity between the

laws of �R(�)
uL1p
L1

; u � 1
�

and of (R
(�)
u ; u � 1), a transient Bessel process starting at 0 [BLY,

Th�eor�eme 3], [Y, sections 2 and 4].

Techniques based on Bessel processes give also an alternative proof

of expression (2.6) for the characteristic function of the hitting distri-

bution.

We assume y = 1. Lamperti's representation formula (4.1) implies

also that A
(�)
�x = Tx(R

(��)), where we denote by �x the hitting time in x

of Yt = e
B
(�)
t and Tx(R

(��)) the hitting time in x of the Bessel process

R
(��). The same arguments leading to (4.2) give

(A(�)
�x
; A

(�;1)
�x

)
law
'
�
Tx(R

(��));

Z Tx(R
(��))

0

du

R
(��)
u

�
:

Thus for � 2 R, using [PY1, Proposition 12.2, p. 363] (see [PY2] for

more information) and the expression of the density of the law of a

Bessel process with index �� with respect to the law of a Bessel process

with index 0 (see, e.g., [RY, Exercise 11.1.18]), we have

E[ei�X�x ] = E
h
exp

�
i �

Z �x

0

e
B(�)
s ds � i � �

Z �x

0

e
B(�)
s ds

�i
= E

h
exp

�
�
�
2

2

Z �x

0

e
2B(�)

s ds� i � �

Z �x

0

e
B(�)
s ds

�i
= E

(��)
1

h
exp

�
�
�
2

2
Tx(R

(��))� i � �

Z Tx(R
(��))

0

du

R
(��)
u

�i
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= x
��+1=2 W�i�;�(2 �)

W�i�;�(2 � x)
;

where W � ; � denotes the Whittaker functions. This gives the character-

istic function of the hitting distribution on Hx. Recalling the relation

between the Whittaker and Tricomi 	-functions [T, 2.4.(5)]

Wk;�(z) = z
�+1=2

e
�z=2	

�1
2
+ � � k; 1 + 2�; z

�
and a functional property of the 	 function [T, 2.3.(9)]

	(a� c+ 1; 2� c; z) = z
c�1	(a; c; z) ;

we get

W�i�;�(2 �) = (2 �)�+1=2 e�� 	
�1
2
+ � + i �; 1 + 2 �; 2 �

�
= (2 �)��+1=2 e�� 	

�1
2
� � + i �; 1� 2 �; 2 �

�
;

so that

E[ei�X�x ] = x
��+1=2

(2 �)��+1=2 e�� 	
�1
2
� � + i �; 1� 2 �; 2 �

�
(2 � x)��+1=2 e��x	

�1
2
� � + i �; 1� 2 �; 2 � x

�

=
e
�� 	

�1
2
� � + i �; 1� 2 �; 2 �

�
e��x	

�1
2
� � + i �; 1� 2 �; 2 � x

� :
This gives the characteristic function of the hitting distribution on the

horocycle Hx. Taking x �! 0+ one gets easily

E[ei�X1 ] =
e
�� 	

�1
2
� � + i �; 1� 2 �; 2 �

�
	
�1
2
� � + i �; 1� 2 �; 0

� ;

which is consistent with Proposition 2.1.



600 P. Baldi, E. Casadio Tarabusi, A. Fig�a-Talamanca and M. Yor

5. Hitting distributions and stable laws.

The de�nitions and the theorem below are taken from [H, sec-

tions 5.18 and 5.25].

De�nition 5.1. A probability distribution is stable if and only if its

characteristic function � is of the following form S(z; c; �; )

�(t) =

8>>>>><>>>>>:

exp
�
i z t+ c jtj�

�
1 + i  sgn(t) tan

��

2

��
;

if 0 < � � 2 and � 6= 1 ,

exp
�
i z t+ c jtj�

�
1 + i  sgn(t)

2

�
log jtj

��
;

if � = 1 ,

where c > 0, 1 �  � 1, and z 2 R.

De�nition 5.2. A probability law m0 is said to belong to the domain of

attraction of a stable law m if there exist two sequences of real numbers

fangn, fbngn such that

X1 + � � �+Xn � bn

an

law�! m; as n �!1 ,

where fXngn is a sequence of independent and identically distributed

random variables with common law equal to m0.

De�ne

C(�) =

8><>:
��(��) cos

��

2
; if 0 < � < 2 and � 6= 1 ,

�

2
; if � = 1 .

Note that C(�) > 0 whenever 0 < � < 2.

Theorem 5.3. Let fXngn be a sequence of independent and identically

distributed random variables and assume that

lim
x!1

x
�
P (X1 > x) = a ; lim

x!1

x
�
P (X1 < �x) = b ;
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where 0 < � < 2, and a; b � 0 with a+ b > 0. Set

mn =

8>>><>>>:
0 ; if 0 < � < 1 ,

nE
h
sin
� 1
n
X1

�i
; if � = 1 ,

E[X1] ; if 1 < � < 2 ,

c = � (a+ b)C(�) ;

 =
b� a

b+ a
:

Then
X1 + � � �+Xn � nmn

n1=�

law�! m; as n �!1 ,

where m is S(0; c; �; ).

We have determined in the previous sections that the density f

of the random variable X1 is given by (1.2) if the starting point is

i = (0; 1). If the starting point is (0; y), then the hitting distribution is

the same as the law of yZ where Z is distributed according to f . We

now check that such a distribution belongs to the domain of attraction

of a stable law, of which we determine the parameters.

Assume �rst that 0 < � < 1. We have

lim
x!1

x
2�
P (Z > x) =

c�;�

2�
e
���

; lim
x!1

x
2�
P (Z < �x) =

c�;�

2�
e
��
;

so that, if the starting point is i y = (0; y), then

a = lim
x!1

x
2�
P0;y(X1 > x) =

c�;�y
2�

2�
e
���

;

b = lim
x!1

x
2�
P0;y(X1 < �x) =

c�;�y
2�

2�
e
��

:

Thus the assumption of Theorem 5.3 is satis�ed and this density belongs

to the domain of attraction of the stable law S(0; c; 2 �; ).

Let us investigate the possible values of the parameters c; . Clearly

c = 2 c�;� y
2�
C(2 �) cosh�� ;  = tanh (���) :

Thus the parameter  can take all the values in the range (�1; 1), that
is, all possible values except the extremal ones �1. Finally, by tuning

the value of y, one can make c take any positive value.



602 P. Baldi, E. Casadio Tarabusi, A. Fig�a-Talamanca and M. Yor

It is clear that if � > 1 then the hitting distribution, having a

�nite second order moment, belongs to the domain of attraction of a

Gaussian law. If � = 1 then a �nite second moment does not exist, but

it is known [GK, Theorem 35.1] that a probability law � belongs to the

extended domain of attraction of a Gaussian distribution if and only if

lim
x!+1

x
2
�
1�

Z x

�x

�(dy)
�

Z x

�x

y
2
�(dy)

= 0 :

It is immediate to check that the above condition is satis�ed for the

density (1.2) with � = 1. This means that there exist two sequences

fangn, fbngn of real numbers, with an > 0, such that if fXngn is a

sequence of independent, identically distributed random variables with

density (1.2) for � = 1, then

X1 + � � �+Xn

an
� bn

law�! N(0; 1)

(although an is not necessarily equal to n1=�).

6. The case a > 0.

Recall that we denote by �a the �rst hitting time of the di�usion

associated to L on the horocycle Ha, with a > 0. We now show how

the characteristic function of the hitting distribution on Ha can be

derived from that of X1. This will allow us to prove that the hitting

distribution on Ha is still in the domain of attraction of a stable law

with exponent 2 �, but we are not able to give its density. Denote by

K the Fourier transform of the hitting distribution on H0 with starting

point i, that is, with the notation of Section 5, the distribution of X1

under P0;1. Then the characteristic function with starting point i y is

t �! K(y t). By conditioning with respect to the �-algebra F�a and

using the strong Markov property, for a < y one has

K(y t) = E
h
exp

�
i t

Z +1

0

y e
B(�)
s dW

(�)
s

�i
= E0;y

h
exp

�
i t

Z +1

0

Ys dW
(�)
s

�i
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= E0;y

h
exp

�
i t

Z �a

0

Ys dW
(�)
s

�i
E0;a

h
exp

�
i t

Z +1

0

Ys dW
(�)
s

�i

= E
h
exp

�
i t

Z �a

0

y e
B(�)
s dW

(�)
s

�i
E
h
exp

�
i t

Z +1

0

a e
B(�)
s dW

(�)
s

�i

= E
h
exp

�
i t

Z �a

0

y e
B(�)
s dW

(�)
s

�i
K(a t) :

Thus, if we denote by Ka;y the characteristic function of the hitting

distribution on Ha, starting at i y, then

Ka;y(t) =
K(y t)

K(a t)
:

We already know that there exist sequences fangn, fbngn of real num-

bers, with an > 0, such that

e
�ibntK

�
t

an

�n
�!
n!1

�(t) ;

where � is the characteristic function of a stable law, as described at

the beginning of Section 5. Thus we have

e
�i(y�a)bntKa;y

�
t

an

�n
=

e
�ibnytK

�
y t

an

�n
e�ibnatK

�
a t

an

�n �! �(y t)

�(a t)
:

It is easy to check now that, if � is the characteristic function of a stable

law S(z; c; �; ), then t �! �(y t)=�(a t) is the characteristic function

of a stable law�
S(z (y � a); c (y� � a

�); �; ) ; if � 6= 1 ,

S(z (y � a) + c  (y log jyj � a log jaj); c(y� a); 1; ) ; if � = 1 .

Thus the law of X�a is still in the domain of attraction of a stable law

with exponent � = 2 �. More precisely, if � < 1, if fXngn is a sequence

of independent, identically distributed random variables with the same

law as X�a , and if mn is de�ned as in Theorem 5.3, then

X1 + � � �+Xn � nmn

n1=�

law�! m; as n �!1 ,



604 P. Baldi, E. Casadio Tarabusi, A. Fig�a-Talamanca and M. Yor

where m is a stable law S(0; c; �; ) with

� = min f2; 2 �g ;

c = 2 c�;�(y
2� � a

2�)C(2 �) cosh�� ;

 = tanh (���) :

We omit the, otherwise obvious, statement for � = 1.

References.

[AG] Alili, L., Gruet, J.-C., An explanation of a generalized Bougerol's iden-

tity in terms of hyperbolic Brownian motion. Exponential function-

als and principal values related to Brownian motion. Ed. M. Yor.

Biblioteca de la Revista Mat. Iberoamericana (1997), 15-33.

[BCF] Baldi, P., Casadio Tarabusi, E., Fig�a-Talamanca, A., Stable laws arising

from hitting distributions of processes on homogeneous trees and the

hyperbolic half-plane. Paci�c J. Math. 197 (2001), 257-273.

[BLY] Biane, Ph., Le Gall, J.-F., Yor, M., Un processus qui ressemble au pont

brownien. S�eminaire de Probabilit�es XXI. Eds J. Az�ema, P.-A. Meyer,

M. Yor. Lecture Notes in Math. 1247 (1987), 270-275.

[CPY] Carmona, Ph., Petit, F., Yor, M., On the distribution and asymptotic

results for exponential functionals of L�evy processes. Exponential func-

tionals and principal values related to Brownian motion. Ed M. Yor.

Biblioteca de la Revista Mat. Iberoamericana (1997), 73-130.

[EMOT] Erd�elyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher

transcendental functions Vol. I. Reprint of the 1953 original. Krieger,

1981.

[GR] Gradshteyn, I. S., Ryzhik, I. M., Table of integrals, series, and products.

Academic Press, 1994.

[GK] Gnedenko, B. V., Kolmogorov, A. N., Limit distributions for sums of

independent random variables. Addison-Wesley Math. Ser., 1968.

[H] Ho�mann-J�rgensen, J., Probability with a view toward statistics, I.

Chapman & Hall Probability Series, 1994.

[N] Nagahara, Y., The PDF and CF of Pearson type IV distributions and

the ML estimation of the parameters. Statist. Probab. Lett. 43 (1999),

251-264.

[P] Paulsen, J., Risk theory in a stochastic economic environment. Stochas-

tic Process. Appl. 46 (1993), 327-361.



Non-symmetric hitting distributions on the hyperbolic half-plane 605

[PY1] Pitman, J. W., Yor, M., Bessel processes and in�nitely divisible laws.

Stochastic integrals (Durham 1980). Ed D. Williams. Lecture Notes in

Math. 851 Springer (1981), 285-370.

[PY2] Pitman, J. W., Yor, M., Quelques identit�es en loi pour les processus de

Bessel. Hommage �a P. A. Meyer et J. Neveu. Ast�erisque 236 (1996),

249-276.

[RY] Revuz, D., Yor, M., Continuous martingales and Brownian motion.

Grundlehren Math. Wiss. 293 Springer, 1999.

[T] Tricomi, F. G., Funzioni ipergeometriche conuenti. Monogr. Mat. 1

Cremonese, 1954.

[Y] Yor, M., Random Brownian scaling and some absolute continuity rela-

tionships. Seminar on Stochastic Analysis, Random Fields and Appli-

cations. Ascona, 1993. Eds E. Bolthausen, M. Dozzi, F. Russo. Progr.

Probab. 36 Birkh�auser, 1995, 243-252.

Recibido: 29 de febrero de 2.000

Paolo Baldi

Dipartimento di Matematica

Universit�a di Roma Tor Vergata

Via della Ricerca Scienti�ca

00133 Roma, ITALY

baldi@mat.uniroma2.it

Enrico Cassadio Tarabusi, Alessandro Fig�a-Talamanca

Dipartimento di Matematica \G. Castelnuovo"

Universit�a di Roma \La Sapienza"

Piazzale A. Moro 2

00185 Roma, ITALY

casadio@science.unitn.it

sandroft@mat.uniroma1.it

Marc Yor

Laboratoire de Probabilit�es, Universit�e P. et M. Curie

Tour 56, 4 Place Jussieu

75252 Paris, FRANCE

deaproba@proba.jussieu.fr

Partially supported by research funds of the Italian MURST, \Processi stocastici

1999".


