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Morera type problems

in Cli�ord analysis

Emilio Marmolejo Olea

Abstract. The Pompeiu and the Morera problems have been stud-

ied in many contexts and generality. For example in di�erent spaces,

with di�erent groups, locally, without an invariant measure, etc. The

variations obtained exhibit the fascination of these problems.

In this paper we present a new aspect: we study the case in which

the functions have values over a Cli�ord Algebra. We show that in this

context it is completely natural to consider the Morera problem and its

variations. Speci�cally, we show the equivalence between the Morera

problem in Cli�ord analysis and Pompeiu problem for surfaces in Rn .

We also show an invariance theorem. The non-commutativity of the

Cli�ord algebras brings in some peculiarities.

Our main result is a theorem showing that the vanishing of the �rst

moments of a Cli�ord valued function implies Cli�ord analyticity. The

proof depends on results which show that a particular matrix system

of convolution equations admits spectral synthesis.

0. Introduction.

The framework provided by Cli�ord Algebras has proven to be

very useful to generalize many aspects of one variable complex analysis

to Rn . The subject has come to be known as Cli�ord Analysis. Un-

expected links to classical harmonic analysis, several complex variables

and representation theory have been discovered. Many books on the

subject have recently appeared [11], [15], [16], [23], [24] and it has grown
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to be an important area of research.

It is therefore completely natural to ask which aspects of the Mor-

era problem in the complex plane are valid in this context. Let us point

out that the non-commutativity of the Cli�ord Algebras brings many

peculiarities to Cli�ord Analysis. In particular many familiar proper-

ties are not valid in this context. Nevertheless we will show a positive

result for the Cli�ord Morera problem.

The plan of the paper is as follows. In the �rst section, we give

a short survey on the Pompeiu problem and on the Morera problem.

We include the results and examples that we will use later on. We also

comment a little about the methods involved to prove this results.

In the second section, we set up the framework of Cli�ord analysis.

We reproduce the most fundamental results for the Cli�ord holomor-

phic functions or regular functions. This includes the corresponding

versions of the Stokes formula, the Cauchy representation formula and

the Morera theorem. The Vahlen-Ahlfors representation of Moebius

transformations in Rn is also presented.

After these two preliminary sections we start our study properly. In

the third section we present �rst the equivalence of the Morera problem

and the Pompeiu problem for surfaces in Rn . Although this is an easy

fact to prove it has many consequences. We discuss these consequences

in a sequence of corollaries. Then we show a non-invariant version of

the Morera problem.

Section Four, our main contribution, deals with the statement and

proof of a First Moments Theorem. Roughly speaking, this correspond

to proving that a matrix system of convolution equations admits spec-

tral synthesis. It turns out that the determinant minors of this matrix

satisfy the H�ormander condition and the theorem follows. We note

that in most Euclidean cases of the Pompeiu problem a reduction to

the fundamental theorem of mean periodic function is made. This is

not the case here.

Finally, in the last section, we discuss some problems for future

research. The advantage of being able to carry speci�c calculations was

important to prove the moments result but for generic surfaces we do

not know how to proceed. The easy proof for one complex variable

proof cannot be adapted to this context.
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1. Preliminaries about the Pompeiu and Morera problems.

1.1. Notation.

As usual, let E(Rn ) denote the space of all in�nitely di�erentiable

functions on Rn with the topology of uniform convergence of all deriva-

tives on compact subsets of Rn . Let E 0(Rn) be its dual space of distri-
butions with compact support.

Also let C(Rn) denote the space of all continuous functions on Rn
with the usual topology of uniform convergence on compact sets. We

will denote the Fourier transform of a function or a distribution f by bf
or by F(f).

Let us also recall that the algebra bE 0

(Rn) can be characterized

as the space of all holomorphic functions F : C n �! C satisfying the

Paley-Wiener estimates: for some constants C;A;N greater than zero

and all z in C n , z = Re z + i Im z

jF (z)j � C (1 + kzk)NeAjIm zj :

1.2. The Pompeiu problem.

A general version of the Pompeiu problem can be formulate as

follows [10]: Let X be a locally compact space, � a non-negative Radon

measure on X, fCigNi=1 a �nite family of compact subsets of X, and G

a topological group acting on X and keeping � invariant. The Pompeiu

map

P : C(X) �! (C(G))N

is de�ned by

(Pif)(g) :=

Z
gCi

f d� ;

where Pi is the ith component of P and we denote by gx the action of

the element g 2 G on the point x 2 X.

We say that the family fCig has the Pompeiu property if P is

injective. The Pompeiu problem consists of deciding as explicitly as

possible whether the family has the Pompeiu property. For a historical

introduction to these problems as well as their rami�cations, general-

izations, progress and a complete bibliography we refer to [31], [30], [5],
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[10], [28], [12]. In [10] a general method is explained and some theorems

are proved for symmetric spaces of real rank 1.

When G is a separable unimodular Lie group, the Pompeiu map

may be interpreted as a system of convolution equations on E 0(G), the
space of distributions of compact support on G. Further reduction

is made rewriting the problem as a problem of spectral analysis. We

illustrate this line of reasoning in the case when X = R
n , G = M(n),

and � = dx, where M(n) is the group of orientation preserving rigid

motions, that is, the group generated by all translations and by all

rotations in SO(n), and dx is Lebesgue measure.

A translation invariant subspace M of bE 0

(Rn ) is said to admit

spectral analysis ifM contains an exponential. If the exponential poly-

nomials belonging toM are dense inM we say thatM admits spectral

synthesis.

To decide whether the map P is injective one can assume by a

standard approximation argument that f is a smooth function. Now

for smooth f , we rewrite the conditions Pf = 0Z
gCi

f dx = 0 ; g 2M(n) ; i = 0; : : :N ;

where g(x) = � x + y with � 2 SO(n) and y 2 R
n ; as the (in�nite)

system of convolution equations in E 0(Rn )
��
�Ci

� f = 0 ; � 2 SO(n) ; i = 1; : : : ; N :

where �
C
denotes the characteristic function on the set C and �h(x) =

h(�x).
Consider the convolution ideal I in E 0(Rn) generated by the ��

�Ci

.

If I is dense in E 0(Rn ), then for any solution f 2 E(Rn) of the system
and a generic element in I,

P
g� � ���Ci

, we have�X
g� � ���Ci

�
� f =

X
g� � (���Ci

� f) = 0 ;

thus by the density

f = � � f = 0 :

A necessary condition for I to be dense is that the Fourier transformsb�
�Ci

have no common zeroes. Moreover if x0 is the common zero, then

f(x) = eix�x0 is a non-zero solution of the system since

��
�Ci

� f = f � b�
Ci

(x0) = 0 :
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In the real case (n = 1) the condition is also su�cient. This result

is a consequence of the Schwartz spectral synthesis theorem. Unfortu-

nately the theorem is not true in Rn ; n > 1, [17]. Nevertheless, under

certain symmetric conditions for the sets Ci, if their Fourier transformsb�
Ci

have no common zeroes, a reduction to the Schwartz theorem can

be made.

In the case of a single set C, the above discussion can be carried

further, [12], to prove that C has the Pompeiu property if and only ifb�
Ci

does not vanish identically on any of the analytic varieties

C� = fz 2 C n : z21 + z22 + � � �+ z2
n
= �g ; � 6= 0 :

Note that no ball has the Pompeiu property [28]. We now state some

of the known results [28], [30].

Theorem 1.1 (Two balls Theorem). Let Bi denote the closed ball

of radius ri. Then fB1; B2g has the Pompeiu property with respect to

Lebesgue measure if and only if r1=r2 =2 Zn = f�=� : �; � non zero

roots of the Bessel equation Jn=2(z) = 0g.

Theorem 1.2 (Two spheres Theorem). Let Si denote a sphere of radius

ri. Then fS1; S2g has the Pompeiu property with respect to surface

measure if and only if r1=r2 =2 Zn�2.

In the case when X is a irreducible symmetric space of rank 1,

there are analogues to the two balls and two spheres theorems above

[10].

In the case we discuss below, a link to overdetermined problems is

given in [27]. It has proven to be very important. When C = 
, for 


a bounded open set in Rn, if Cc is connected, then the failure of the

Pompeiu property for C is equivalent to the existence of an eigenvalue

for a overdetermined Neumann boundary value problem. Namely,

Theorem 1.3. Let C = 
 , where 
 is a bounded open set, Cc is

connected and @C is (at least) Lipschitz. Then C fails to have the

Pompeiu property if and only if there is an eigenvalue � and a function

u on 
 satisfying the overdetermined Neumann problem8<
:
4u+ �u = 0 ; in 
 ;

u = 1 ;
@u

@n
= 0 ; on @
 :



564 E. Marmolejo Olea

Theorem 1.4. Let 
 be as above. If @
 is Lipschitz but not real

analytic everywhere then 
 has the Pompeiu property.

1.3. The Morera problem.

There is already a discussion on Morera type theorems [6], but new

results and di�erent aspects keep appearing. We will mention only the

results that we will try to generalize.

Let � be a Jordan curve in C . We say that � has the Morera prop-

erty if each continuous complex valued function f on C which satis�es

Z
�(�)

f(z) dz = 0

for every rigid motion � of C is entire.

A similar de�nition holds for a family of Jordan curves f�ig. The
Morera problem is to decide as explicitly as possible whether the family

has this property. We can also consider the hyperbolic case in which the

function is de�ned only in the unit disk and the group is the Moebius

group.

The Morera and Pompeiu problems are equivalent in the following

situation [28], [12].

Theorem 1.5. Suppose that f�ig is a family of Jordan curves and


i = int (�i) is a family of Jordan domains. Then the family f
ig
has the Pompeiu property if and only if the family f�ig has the Morera

property.

This theorem follows from the following version of the Green for-

mula
d

d z
�


= �

@

;

taken in the distributional sense. Because of this equivalence and The-

orem 1.4, many classes of curves satisfy the Morera property.

As the example of the circle shows, one single curve is not in general

enough to solve the Morera problem. The following Theorem, [1], solves

the problem of giving necessary and su�cient conditions for a single

curve to determine holomorphycity.
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Theorem 1.6. (Moments Theorem). Let f 2 C(C ), and let � be a

piecewise smooth Jordan curve. Then f is entire if and only if

Z
�(�)

zkf(z) dz = 0 ; k = 0; 1; : : : ;

for every rigid transformation � of C .

Remark 1.7. 1. This result at �rst sight seem obvious, since for

every � the vanishing of the moment implies that the function can be

extended holomorphically inside the region bounded by �(�). But we

do not know that these extensions agree on overlaps.

2. The proof follows from an averaging argument and the argument

principle.

3. A similar result is true in the unit disk D .

4. The proof of 3 follows from the maximality of invariant algebras

of functions in D under Moebius transformations, [1].

5. Actually, it is enough to request that the moments do not grow

too fast [29].

In the case of a circle only 2 moments are required [29].

Theorem 1.8 (Two Moments Theorem). Let f 2 C(C ) and let r > 0,

n > 1 be �xed. Suppose thatZ
@B(z;r)

f(�) d� =

Z
@B(z;r)

(z � �)nf(�) d� = 0 ;

for all z 2 C . Then f is an entire function.

Remark 1.9. This result follows from rewriting the hypothesis as two

convolution equations and appealing to the Schwartz spectral synthesis

Theorem.

The last result is true if we consider functions de�ned in the unit

disk but it is interesting that the following variation of the Morera

Problems gives di�erent results. Suppose f 2 C(D ) satis�es

Z
�

f(�(z)) dz = 0
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for all Moebius transformation � in D . Is it true that f is holomorphic

in D ?

Observe that the measure dzj� is not invariant under the action of

the Moebius group M ' SU(1; 1) also note that now we are moving

the values of the function. The following Theorems [4] give the answer

to this problem in the circular case and in the general case.

Theorem 1.10 (Circular Morera Theorem). Let r > 0 and let f 2
C(D ) satisfy Z

@B(c;r)

f(�(z)) dz = 0

for every Moebius transformation � in D .

a) If c 6= 0 then f is holomorphic on D .

b) If c = 0 then f is not necessarily holomorphic on D (There are

counterexamples).

Theorem 1.11. Let 
 � D be a Jordan domain of class C2;" for some

" > 0 and suppose that the Jordan curve � = @
 is not real analytic.

Assume f 2 C(D ) satis�es

Z
�

f(�(z)) dz = 0

for every � 2 M. Then f is holomorphic on D .

2. Rudiments of Cli�ord analysis.

2.1. Basic results.

The goal of this section is to present the basic de�nitions in Cli�ord

Algebras and the basic concepts and results in Cli�ord Analysis as we

will need them later on. For a complete development of the subject we

refer to the books [11], [15], [24], [16].

We consider the real 2n dimensional Cli�ord algebra A n generated

out of Rn as follows: let e1; : : : ; en be an orthonormal basis for Rn .

Then A n is de�ned by the anti-commutation relationship

ei ej + ej ei = �2 �ij ;
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where �ij is the Kronecker delta function. Consequently, the algebra

A n has as basis elements

1; e1; : : : ; en; : : : ; ej1 : : : ejr ; : : : ; e1 : : : en ;

where j1 < � � � < jr and 1 � r � n. Hence for an element a 2 A n we

write

a =
X
�

a� e� ;

where a� 2 R and where we identify e� with ej1 ; : : : ; ejr for � =

fj1; : : : ; jrg and e? with 1.

Note that if x 2 Rn we have that x2 = �kxk2. It follows that every
non zero x 2 Rn is invertible with inverse x�1 = �x=kxk2: Observe that
A 1 = C , and A 2 = H , the quaternionic division algebra. For n � 3, A n
is no longer a division algebra.

We will use the following two involutions. First the anti-automor-

phism de�ned by

� : A n �! A n : ej1 � � � ejr �! ejr � � � ej1 :

For an element a 2 A n , we write �
a instead of � (a). Second the anti-

automorphism de�ned by

� : A n �! A n : ej1 � � � ejr �! (�1)r ejr � � � ej1 :

Again we write a for -(a). This anti-automorphism is a generalization

of complex conjugation.

The Cli�ord algebra A n becomes a Hilbert space and a Banach

Algebra when the inner product on A n is de�ned by putting for any

a; b 2 A n ,
ha; bi =

X
�

a� b� :

Note that for x; y vectors (i.e. x; y 2 R � R
n ), we have hx; yi =

(x y + y x)=2. In particular, kxk2 = xx and kx yk = kxk kyk, but for
general a; b 2 A n , kak2 6= a a and ka bk 6= kak kbk.

We will consider the space E(Rn ; A n) of smooth A n valued func-

tions, which is an A n module under pointwise multiplication. The topol-

ogy we will consider in E(Rn ; A n) is the one of uniform convergence of

all derivatives over compact subsets. Similar considerations are made

for the space of continuous A n valued functions C(Rn ; A n ).
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Two basic de�nitions are

i) The Dirac operator is the di�erential operator

D =

nX
i=1

ei
@

@xi
:

ii) Let f; g 2 C1(Rn ; A n) be di�erentiable functions. Then f is

called left regular if

Df =

nX
i=1

ei
@f

@xi
=

nX
i=1

X
�

ei e�
@f�

@xi
= 0 ;

and g is called right regular if

gD =

nX
i=1

@g

@xi
ei =

nX
i=1

X
�

e� ei
@g�

@xi
= 0 :

In the literature left regular, left monogenic or left Cli�ord holomorphic

are used indistinctly. Note that since
�

Df = �
�

fD, a function f is left

regular if and only if
�

f is right regular. Also note that if f(x) is a left

regular function then so is f(x) a for any a 2 A n but not in general for

af(x).

An important property is that D2 = �4, the Laplacian over Rn ,

hence, each component of a left or right regular function is harmonic.

The function

G(x) =
1

!n

�x
kxkn =

1

!n

x�1

kxkn+2 ;

where !n is the surface area of the unit sphere in Rn is left and right

regular. This function G(x) plays the role of the Cauchy kernel.

The Green Formula can be formulated in the framework of Cli�ord

algebra valued functions as follows [11], [15].

Theorem 2.1. Let f and g be Cli�ord algebra valued functions de�ned

in a domain U � Rn and letM be a bounded domain in U with Lipschitz

boundary. ThenZ
@M

g(x)n(x) f(x) dS(x) =

Z
M

((gD)(x)f(x) + g(x)(Df)(x)) dv(x) :



Morera type problems in Clifford analysis 569

Note that, here and in the following theorems, dS is the canonical sur-

face measure, n(x) stands for the outward unit normal to @M regarded

as a Cli�ord algebra-valued function, dv is the volumen element, and

the integrands are interpreted in the sense of Cli�ord algebra multipli-

cation.

The Borel-Pompeiu formula for Cli�ord valued functions is the

following.

Theorem 2.2. Let M be a bounded domain with Lipschitz boundary.

Then for f 2 C1(U; A n) and x 2M;

f(x) =

Z
@M

G(y � x)n(y) f(y) dS(y)�
Z
M

G(y � x)Df(y) dv(y) :

The Cauchy integral formula is given by the following theorem.

Theorem 2.3. Let M be a bounded domain in U with Lipschitz bound-

ary. If f is a left regular function on U; then for each x in M,

f(x) =

Z
@M

G(y � x)n(y) f(y) dS(y) :

We also have the Morera theorem.

Theorem 2.4. If f is a Cli�ord algebra valued continuous function on

the domain U such thatZ
@M

n(y) f(y) dS(y) = 0 ;

for every bounded domain M in U with Lipschitz boundary, then f is

left regular.

Of course there are similar versions of this theorems for right regu-

lar functions. Taylor series where the polynomial are regular functions

are also possible [11]. In this paper, we will use only the polynomials

Pi(x) = xi e1 + x1 ei ; i = 2; : : : ; n ;

which are a basis for both the right (left) module of homogeneous left

(right) regular polynomials of degree 1.
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2.2. Vahlen matrices.

We now introduce the Vahlen matrices. The collection of all prod-

ucts of non-zero vectors in Rn form a group A �
n
lying in A n . Let V(n)

be the set of 2� 2 matrices
�
a b

c d

�
such that

i) a; b; c; d 2 A �
n
.

ii) a
�
c, c

�

d, d
�

b and d
�
a 2 Rn .

iii) a
�

d � b
�
c = �1.

A matrix
�
a b

c d

� 2 V(n) is called a Vahlen matrix. The usefulness

of this concept is given by the following theorem [2].

Theorem 2.5. Let
�
a b

c d

� 2 V(n). Then the function �(x) = (a x +

b) (c x+ d)�1 de�nes a Moebius transformation over Rn [ f1g. More-

over this representation gives a surjective group homomorphism from

V(n) with matrix multiplication to the orientation preserving Moebius

group over Rn [ f1g with kernel �I.

A computation shows that the Jacobian of �(x) = (a x+ b) (c x+

d)�1 is given by

Jac (�(x)) =
1

kc x+ dk2n :

The following theorem can be seen as a change of variable for Cli�ord

valued functions under Moebius transformations [22].

Theorem 2.6. Suppose that y = �(x) = (a x + b) (c x + d)�1 is a

Moebius transformation and f and g are Cli�ord valued functions. If

S is a closed, bounded and oriented surface thenZ
S

g(y)n(y) f(y) dS(y)

=

Z
��1(S)

g(�(x))Ĵ(�; x)n(x) J(�; x) f(�(x)) dS(x) ;

where

J(�; x) =
ĉ x+ d

kc x+ dkn :
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The factor J(�; x) is called the covariance of �(x).

The Dirac operator and the covariance are intertwined as follows

(see for example [22]).

Theorem 2.7. Let f be a Cli�ord valued function and �(x) = (a x+

b) (c x+ d)�1 a Moebius transformation. Then

DJ(�; x)f(�(x)) = J�1(�; x)Df(�(x)) ;

where

J�1(�; x) =
ĉ x+ d

kc x+ dkn+2 :

As the composition or product of regular functions is not regular,

the following theorem provides a kind of substitute [22].

Theorem 2.8. Let y = �(x) be a Moebius transformation and f(y)

a Cli�ord valued function. Then f(y) is left regular if and only if

J(�; x)f(�(x)) is left regular.

Finally note that

�

J�1(�; x)J(�; x) = Jac (�(x)) :

This end our summary on the basic facts in Cli�ord Analysis. We are

now ready to start our study properly.

3. First results.

3.1. Equivalence of Morera and Pompeiu.

In this section we give the results which are easy to prove and

similar to the complex case.

By a Jordan surface S we be will mean a Lipschitz embedding of

the (n� 1)-sphere in Rn (i.e. S is homeomorphic to the (n� 1)-sphere

by a Lipschitz function). Let M = intS. We say that a Jordan surface

S in Rn (or a collection of them fSjg), has the Morera property if any

f 2 C(Rn ; A n) satisfying

(1)

Z
�S

n(x) f(x) dS(x) = 0 ;
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for every rigid motion � 2 M(n) is left regular. Note that here as in

the rest of the section, the integrals and product are considered in the

Cli�ord analysis setting.

The Morera problem consist of deciding as explicitly as possible

whether a surface (or a family of them) has the Morera property.

More generally we can state the Morera problem on a di�erent

space or with a di�erent group or with a more general surface. For

example we can take the space as the unit ball in Rn and the group as

the group of Moebius transformation of the ball.

Remark 3.1. The Morera problem is stated for the case in which

the function is continuous but it is equivalent to the case in which the

function is smooth. This follows from a standard smoothing argument.

We reproduce it in here for the sake of completeness.

Suppose that f 2 E(Rn ; A n ), satisfying (1) implies that f is left

regular. Let g 2 C(Rn ; A n) satis�es (1). Let � be a (real value) ap-

proximate identify of compact support. Then g � � 2 E(Rn ; A n) and
satis�es (1). Therefore g � � is left regular. Now since

g � �"n �! g

uniformly on compact sets as "n �! 0, we conclude that g is left regular.

Therefore, we will assume from now on that the function is smooth.

Let fSjg be a collection of Jordan surfaces and let Mj = intSj .

As in the complex case we have:

Theorem 3.2. fSjg has the Morera property in A n if and only if fMjg
has the Pompeiu property in Rn .

Proof. Let g 2 C1(Rn ;R): Then there is a Cli�ord valued function

f such that f solves the Dirac equation Df = g ([11, Theorem 19.2]).

Then by the Green formula (Section 2, Theorem 2.1), for every rigid

motion � 2M(n), we haveZ
�(M)

g(x) dv(x) =

Z
int(�(M))

n(x) f(x) dS(x) =

Z
�(S)

n(x) f(x) dS(x) :

Hence, if S satisfy 3.1 then M has the Pompeiu property.

Conversely if f 2 E(Rn ; A n ), then by Stokes Theorem and the

Pompeiu property for M we have that Df � 0, so f is left regular and

S has the Morera property.
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This equivalence has several consequences. Using the results of

Section 2 we get at once the following corollaries.

Corollary 3.3.

1. No sphere has the Morera property.

2. Two spheres have the Morera property if and only if their radii

r1; r2 satisfy the condition in Theorem 1:1 of Section 1, namely r1=r2 =2
Zn = f�=� : �; � non zero roots of the Bessel equation Jn=2(z) = 0g.

3. We have a condition for the Morera property in terms of the

Fourier transform of the characteristic function of M .

Note the di�erence with the two spheres Theorem of Section 1.

Among the concrete examples for which the Morera property holds

are ellipsoids, tori, and some surfaces of revolution, [13].

Corollary 3.4. If the Jordan surface S is Lipschitz but not real analytic

everywhere then S has the Morera property.

It follows that polygonal surfaces have the Morera property, e.g.

n-cubes, polyhedra, etc.

Another corollary to the equivalence of Morera and Pompeiu prob-

lem is the study of the local situation. This is what can we say if the

function is de�ned only on a domain D � R
n and the vanishing of

the integrals is required only when �S � D. It turns out that the

local Pompeiu problem is a harder question [7]. As before we get the

following corollary.

Corollary 3.5. Let r1; r2 > 0 be such r1=r2 =2 Zn, and let R > r1+ r2.

If f 2 C(B(R; 0); A n ) satis�esZ
@B(y;ri)

n(x) f(x) dS(x) = 0 ; i = 1; 2 ;

for all y 2 R
n such that @B(y; ri) � B(R; 0), then f is left regular.

Moreover the condition is sharp.
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3.2. Non-invariant measures.

We now study a non-invariant measure variant of the Morera prob-

lem. Using the result of section 2, we can state the problem as follows.

Let � 2 M, where M is the group of Mobius transformations of the

unit ball B in Rn. We know that �(x) = (a x + b) (c x + d)�1 with�
a b

c d

� 2 V(n) a Vahlen matrix. If f is a regular function de�ned in B ,

then J(�; x) f(�(x)) is also left regular in B . Therefore by the Cauchy

Theorem, Z
S

�

J(�; x)n(x) J(�; x) f(�(x)) dS(x) = 0 ;

for every surface S in B . The problem is to determine whether for a

�xed surface S and a continuous function f the above condition implies

that f is left regular.

The next proposition shows that the above problem could be re-

duced to the Pompeiu Problem for the unit ball and the Moebius group.

Proposition 3.6. Let f be a continuous Cli�ord valued function de-

�ned in the unit ball B in Rn and let S be a Jordan surface in B . IfZ
S

�

J(�; x)n(x) J(�; x) f(�(x)) dS(x) = 0 ;

for every � 2 M, where M is the group of Mobius transformations of

the ball, then f is left regular if and only if M = intS has the Pompeiu

property with respect to M.

Proof. By the Cli�ord algebra version of Stokes Theorem we have

thatZ
S

�

J(�; x)n(x) J(�; x) f(�(x) dS(x)

=

Z
M

�

J(�; x)D(J(�; x) f(�(x))) dv :

Now using Theorem 2.2 of Section 2 we get that the integral is equal toZ
M

�

J(�; x)J�1(�; x)Df(�(x)) dv :

By using that
�

J�1(�; x) J(�; x) = Jac (�(x)) we get that the last integral

is equal to Z
M

Jac (�(x)Df(�(x)) dv :
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Now by a change of variable this integral is equal toZ
��1(M)

Df(y) dv(y) :

Using that d� = dv=(1� kyk2)2 is the hyperbolic measure for the ball

the last integral is equal toZ
��1(M)

Df(y) (1� kyk2)2 d�(y) :

Hence that we get the Pompeiu problem for the function Df(y) (1 �
kyk2) in the ball B with the group M. The conclusion follows.

4. The moment condition for Cli�ord valued functions.

4.1. Introduction.

In this section we show that a sphere has the Morera property if

we add the �rst Cli�ord moments. Namely we show that a continu-

ous function in Rn with values in the Cli�ord Algebra A n , whose �rst

moments over all spheres of �xed radius r vanish is a regular function.

We prove this result by �rst reducing the problem to a overdetermined

matrix system of convolution equations in Rn . Then we need to see

than spectral synthesis holds for this kind of system.

It turns out that the determinants of the maximal minors of this

matrix of convolution operators satisfy the H�ormander conditions and

thus spectral synthesis holds.

4.2. Statement of the problem.

We saw in Section 3 than no sphere has the Morera property. The

natural question is to look for the extra conditions needed. In the

spirit of the Two Moment theorem of Section 1 we found the following

Theorem.

Theorem 4.1. Let f : Rn �! A n be a continuous function with

Cli�ord values. Let r > 0 be �xed. If for each x 2 Rn ,Z
@B(x;r)

n(y) f(y) dS(y) = 0 ;
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and Z
@B(x;r)

Pi(y � x)n(y) f(y) dS(y) = 0 ;

for

Pi(x) = e1 xi + ei x1 ; i = 2; : : : ; n ;

then f is a left regular function.

Of course the integrals are understood in the sense of Section 2.

Proof. As before we can assume that f is smooth. Applying the

Cli�ord version of the Green formula (2.1 in Section 2) and using that

Pi is right regular, we get thatZ
B(x;r)

Df(y) dV (y) = 0

and Z
B(x;r)

Pi(y � x)Df(y) dV (y) = 0 ;

for each x in Rn . Let g = Df . Then the above conditions can be

rewritten as

�
r
� �g = 0

and

Pi �r � �g = 0 ; i = 2; : : : ; n ;

where �
r
denotes the characteristic function on the ball of radius r and

the (Cli�ord) convolutions are understood in the natural way.

We have a system of convolution equations for Cli�ord valued func-

tions. We want to show that g = 0 is the only solution to the system. In

order to do that we �rst need to have a short discussion about general

systems of convolution equations and present some properties of Bessel

functions. We will do that in the next two sections, and then come

back to the system.

4.3. Spectral synthesis for modules.

Given an r-tuple of functions F1; : : : ; Fr 2 bE 0

(Rn), the H�ormander

condition, [18], gives a necessary and su�cient condition to guarantee



Morera type problems in Clifford analysis 577

that the r-tuple generate this algebra, i.e., that there exist G1; : : : ; Gr 2bE 0

(Rn) such that
P

Gi Fi = 1. Namely, there must exist "; L;B > 0,

such that all z 2 C n ,

(2) jF1(z)j+ � � �+ jFr(z)j � "
e�BjIm zj

(1 + kzk)L :

Given a matrix system of convolution equations

8>>>>><
>>>>>:

�11 � �f1 + �12 � �f2 + � � �+ �1N � �fN = 0 ;

�21 � �f1 + �22 � �f2 + � � �+ �2N � �fN = 0 ;

...
. . .

...

�m1 � �f1 + �m2 � �f2 + � � �+ �mN � �fN = 0 ;

where �j;i 2 E 0(Rn) and fi 2 E(Rn ), for i = 1; : : : ; N and j = 1; : : : ;m.

Let T = [�j;i] be the m�N matrix of convolution operators and f the

vector with components fi. We represent the above system as Tf = 0.

The representation of solutions of convolution equations is a very

deep, big and delicate subject as the survey [9] shows. Here we just

need a condition which guarantees that the only solution to the matrix

system is fi = 0. Under technical conditions, the solutions of convo-

lution equations have an integral Fourier representation. For us the

following particular case will be su�cient.

Suppose than we can solve the equation

RT = � I ;

where R and T are respectively N �m and m � N matrices with co-

e�cients in E 0(Rn ), i.e. R is a left inverse of T . Then clearly in this

case, the only solution to Tf = 0 is f identically zero.

The above equation becomes, via Fourier transform in each entry

of the matrices in the Bezout equation,

MF = In ;

where M and F are the matrices with coe�cient in bE 0

(Rn).

The existence of a solution to the Bezout equation is given by the

following theorem from [19] (cf. [8]).
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Theorem 4.2. Let F be a m �N matrix with coe�cients in the ringbE 0

(Rn). If the N �N minors of F generate bE 0

(Rn), then there exists

a solution M of the Bezout equation MF = IN.

4.4. Some lemmas about Bessel functions.

Here we collect some properties of the Bessel functions and its zeros

that will be used further on. Our references are [26], [14]. We assume

v > 1.

For the Bessel function Jv(z) of real order v, we consider its nor-

malized function jv(z) = Jv(z)=z
v. Note that jv(z) is an entire even

function and that z = 0 is not a zero of jv(z). For z 2 C n we write

z2 = z21 + z22 + � � �+ z2
n
.

Lemma 4.3. Let Q(x) be a homogeneous, harmonic polynomial of

degree k in R
n . Then the complexi�ed Fourier transform of Q�r is

given by

F(Q�r)(z) = � r2�Q(z) jn=2+k(r
p
z2 )) ;

where � is a constant depending only on k and n; and � = n=2 + k.

Proof. The proof follows from [25, Theorem 3.10, p. 158] and a simple

computation.

Remark 4.4.

1. The Macmahon's asymptotic development of the positive zeros

�k;v of Jv(z):

0 < �1;v < �2;v < � � � ;
is given by

�k;v = (2 k + 1)
�

2
+ (2 v + 1)

�

4
+ O

� 1
k

�
:

2. The positive zeros of Jv(z) are interlaced with those of Jv+1(z)

0 < �1;v < �1;v+1 < �2;v < �2;v+1 < � � � ;

The next lemma will estimate the growth of jv(z) away from its zeroes

Vv: Let d(z; V ) = min f1; dist (z; V )g.
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Lemma 4.5. Let " > 0 be given. If d(z; Vv) > " and jzj is big enough,

then

jjv(z)j � ejIm zj

8� e
p
2� jzjv+3=2 :

Proof. We use the following asymptotic development of the Bessel

function Jv(z) (see [14]),

���Jv(z)�
r

2

�z
cos
�
z � �

4
(2 v + 1)

���� � 3 e

8

r
�

2
(4 v2 � 1)

ejIm zj

jzj3=2

which is valid when jzj � (�=8) (4 v2�1). On the other hand, the cosine
satis�es the Lojasiewicz inequality

j cos zj � 1

�e
d(z; V ) ejIm zj ;

where V = f(2 l+ 1)�=2 : l 2 Zg.
It follows that if d(z; Vv) > ", then

���
r

2

�z
cos
�
z � �

4
(2 v + 1)

���� �
r

2

�

1

�e

" ejIm zj

jzj1=2 :

After subtracting the bounds above and taking jzj big enough, we get

the desired conclusion.

4.5. Proof of the Moments Theorem.

Let us recall that we want to solve the system

�
r
� �g = 0

and

Pi �r � �g = 0 ; i = 2; : : : ; n ;

where the Pi are the regular polynomials and g is a Cli�ord valued

function.

In order to do that �rst we consider A n as the matrix subalgebra of

M(2n�2n;R). In this way we will see the system of Cli�ord valued con-

volution equations as an overdetermined matrix system of convolution

equations.
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First we view A n as a matrix subalgebra ofM(2n�2n;R) as follows
[20], [15]. Consider the matrices ej := En

j
, j = 1; : : : ; n, where for each

1 � k � n, fEk

j
gk
j=1 are inductively de�ned by

E1
1 :=

�
0 �1
1 0

�
;

and in general for 1 � k � n� 1; and 1 � j � k

Ek+1
j

:=

�
Ek

j
0

0 �Ek

j

�

and

Ek+1
k+1 :=

�
0 �I2k
I2k 0

�
:

Then it is easy to check that the generator relations hold. Thus A n is

isomorphic to the subalgebra ofM(2n�2n;R) consisting of all matrices

generated by the En

j
.

It is important to note that under this representation, the Cli�ord

conjugation corresponds to the transposition of matrices. In particular,

if a 2 A n is such that aa 2 R (for example for vectors), then the

determinant of the corresponding matrix A is given by

Det (A) = (a a)2
n�1

:

It follows using the representation in M(2n� 2n;R) that the system of

Cli�ord valued convolution equations is equivalent to a matrix system of

convolution equations in E 0(Rn). Indeed, let T be the (n 2n)�2n matrix

of convolution operators whose blocks Ti are the matrices corresponding

to the distributions �
r
(i = 1) and Pi �r for i = 2; : : : ; n. Let G be the

matrix corresponding to g. Thus we can write the system as

TG = 0;

where T 2M((n 2n)� 2n; E 0(Rn )) and G 2M(2n � 2n; E(Rn)).
Let F be the (n 2n)�2n matrix obtained from T via Fourier Trans-

form in each entry. We will show that the minors of F generate bE 0

(Rn ).

Note that the blocks Fi correspond to the Fourier transform of the

matrix representation of Pi �r . Then from the form of Pi, Lemma 4.3

and the note above about determinants, we get that

Det (Fi) = (� (z21 + z2
i
) jn=2+1(r

p
z2 ))2

n�1

;
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for i = 2; : : : ; n, where � is a constant depending only on r and n.

Similarly for the distribution �
r
the determinant of the matrix F1 is

given by

Det (F1) = (� jn=2(r
p
z2))2

n�1

for a constant � as above.

So far we have obtained the determinant of n minors of T , we will

need only one more. Note that taking a minor of T is equivalent to

taking a linear combination of the Pi �r. In other words, since the Pi
are a basis of the left regular homogeneous polynomial of degree 1, any

left regular homogeneous polynomials of degree 1 can be obtained as a

minor of T . Hence, we can repeat the argument used for the Pi �r said

for q �
r
with q = e2 x3 + e3 x2. We then get that the determinant of

this minor Fn+1 is given by

Det (Fn+1) = (� (z22 + z23) jn=2+1(r
p
z2))2

n�1

:

We will drop the exponent 2n�1 from these functions as they are not

relevant.

It is clear that the functions fi := Det (Fi) for i = 1; : : : ; n + 1,

have no common zeros because the two Bessel functions which appear

have no common, zeros and the polynomials have no common zeros.

Moreover, we claim that the set ffig generate bE 0

(Rn).

Since the zeroes of jn=2 and jn=2+1 interlace, and they are separated

from each other by a �xed number (see Remark 4.4), we can �nd an

estimate as in Lemma 4.5 that works for the sum of the two functions.

Thus for all w 2 C ,

jjn=2(r w)j+ jjn=2+1(r w)j �
� e�jImwj

(1 + jwj)n+5=2 ;

where � is a positive constant. Now note that for z 2 C n ,

jIm
p
z2j � jIm zj :

It follows that for all z 2 C n ,

jjn=2(r
p
z2)j+ jjn=2+1(r

p
z2)j � � e�jIm zj

(1 + kzk)n+5=2 :

Now for a set of polynomials, the H�ormander condition (4.3) is equiv-

alent to that the polynomials have no common zeros. In that case, we
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can take B = 0. It then follows from this and the above inequality that

the set of functions ffig satis�es the H�ormander condition.

Applying Theorem 4.2, the proof is completed.

Remark 4.6. We need all the �rst moments in the theorem. Indeed if

we have less of the Pi �r , the respective convolution system will have a

non-zero solution.

Remark 4.7. It follows from the proof of the theorem that for the mo-

ments of order greater than one, what we need is that the corresponding

minors have no common zeros. This will follow from dimensionality.

5. Conclusions.

There are many directions for which the type of problems we have

considered could be investigated. This includes the study in other

spaces, other operators of Dirac type or more concrete surfaces.

As we showed in Section Four some of the results in the plane gen-

eralize to the Cli�ord analysis setting but the proofs are more involved

than the ones for the case of the plane. Hence some di�culties are ex-

pected for the other variations. Of course, it would not be possible to

recover all the results in the plane in part because there is no Riemann

Mapping Theorem when n > 2. For instance, for the case of higher

order moments we can only o�er the following remarks.

Using the Premelj formulas [21] and the Taylor series expansion

for regular functions (see [11]), it is easy to show that if S is a Jordan

surface and f is a continuous function de�ned on S with Cli�ord values

then f can be extended to a left regular function inside S if and only if

Z
S

Vl1;:::;lk(x)n(x) f(x) dS(x) = 0 ;

for every k and for every homogeneous regular polynomial Vl1;:::;lk(x)

of degree k. This means that a function could be extended to be left

regular inside a surface if and only if all its Cli�ord moments vanish.

Using this we can formulate the general version of the moments problem

as follows.

Let S be a Jordan surface and let f 2 C(Rn ; A n). Suppose that for
every � 2 M(n), f can be extended to be left regular inside �S. Does
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it follow that f is left regular? that is if

Z
�S

Vl1;:::;lk(x)n(x) f(x) dS(x) = 0 ;

for every k, and for every homogeneous regular polynomial Vl1;:::;lk(x) of

degree k, and for every � 2M(n) is then f left regular? As we mention

in Section One, the proof for the complex case relies on the argument

principle. But in Cli�ord analysis there is no argument principle.

It is shown in [3] that we do not need vanishing of moments but

only that they do not grow too fast. Whether or not this is true in the

situation of Section Four is another interesting problem.
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