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Parabolic equations involving

0
th

and 1
st

order terms with L
1

data

Thierry Goudon and Mazen Saad

Abstract. This paper is devoted to general parabolic equations in-

volving 0th and 1st order terms, in linear and nonlinear expressions,

while the data only belong to L1. Existence and entropic-uniqueness of

solutions are proved.

1. Introduction.

In this paper, we are concerned with the following general parabolic

equation

(1.1)

8>>>><
>>>>:

@tu�r � (A(t; x)ru)
+B(t; x; u;ru) = f ; in (0; T )� 
 ;

ujt=0 = u0 ; in 
 ;

u = 0 ; on (0; T )� @
 ;

where 
 is a regular open bounded set in R
N and B involves the un-

known u and its �rst derivatives. Precisely, B splits into terms which

are linear with respect to u and ru and a nonlinear term as follows

(1.2) B(t; x; u;ru) = b(t; x) � ru+ d(t; x)u+ g(t; x; u;ru) :
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Here, A; b and d are given functions de�ned on Q = (0; T ) � 
 with

values in R
N � R

N ;RN and R, respectively. Our basic requirement on

A; b; d is

A 2 (L1(Q))N�N ; d 2 L1(Q) ;(1.3)

b 2 (L1(Q))N ; r � b 2 L1(Q) :(1.4)

As usual, we also assume that there exists a > 0 such that the matrix

A satis�es

(1.5) A(t; x) � � � � a j�j2 ;

for almost every (t; x) 2 Q and for all � 2 R
N . The function g :

Q�R�RN �! R is measurable on Q for all � 2 R; � 2 R
N , continuous

with respect to � 2 R; � 2 R
N , almost everywhere in Q. Furthermore,

g is required to satisfy both a sign condition and a growth condition

with respect to the gradient variable since we suppose that

(1.6) � g(t; x; �; �)� 0 ;

there exists 0 � � < 2 such that

(1.7) jg(t; x; �; �)j � h(j�j) ((t; x) + j�j�)

holds for all � 2 R, � 2 R
N , and almost everywhere in Q, with  2

L1(Q); h being a non decreasing function on R
+ . Main di�culties in

this work arise from the fact that we consider data which only belong

to L1, namely

(1.8) u0 2 L1(
) ; f 2 L1(Q) :

Many physicals models lead to elliptic and parabolic problems with

L1-data. For instance, in [10] the authors study the modelling of an

electronical device. The derived elliptic system coupled the temperature

(denoted u) and the electronical potential (denoted �). The temper-

ature equation is considered as an elliptic equation where the second

member f = jr�j2 belongs to L1(
). In [11], a Fokker-Planck equa-

tion arising in populations dynamics is studied. The initial density of

individuals, i.e. u0, is considered to be positive and belongs to L1(
).

Models of turbulent ows in oceanography and climatology also

lead to such kind of problems (see [14] and the references therein).
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Consider an incompressible ow described by a velocity �eld u(t; x) =

u+ u0 where u is the mean �eld and u0 is related to some uctuations.

Let k = ju0j2. For small Reynolds number, the following academic

model can be used as a simpli�cation of more general (k; ") models

@tk + u � rxk � divx((� + �t)rxk) + k3=2 = �t jrxu+
t rxuj2 ;

where �t can depend on k. It is quite natural to expect that the right

hand side lies in L1(Q) and, for given �; �t and u, the above equation can

be considered as a simpli�ed version of (1.1). In [14] more complicated

and coupled models are dealt with.

In ([16, p. 110]), the author studies the Navier-Stokes equations

completed by an equation for the temperature (u = T ). In this case,

if we denote by v the velocity of the uid, then the temperature equa-

tion reduces to (1.1) with b = v, d = div(v) = 0, g = 0 and f =

(@ivj+@jvi)
2 2 L1(Q). Note that for compressible ows the divergence

of the velocity does not vanish, and the temperature equation can be

considered with linear terms having the form b � ru + du. These lin-

ear terms introduce new di�culties in the sense that the compactness

results developped in [3], [4], [16] do not apply directly to (1.1) which

needs further technical investigations.

Assuming B = 0, existence results for such parabolic problems

with non regular data are established in [4] (see also [3], [10]) while

uniqueness questions, in the sense of entropic or renormalized formula-

tions, are considered in [17], [1]. Existence-uniqueness of renormalized

solution for a linear parabolic equation involving a �rst order term with

a free divergence coe�cient is discussed in [16]. Taking into account the

g term, the corresponding elliptic problem, with an integrable source

term, is treated in [9] when � < 2 and the critical case � = 2 is dealt

with in [5]. In [6], the g term appears in (1.1), still neglecting the linear

terms involving b and d, with the restriction that g does not vanish for

large value of u, which induces some regularizing e�ects in the equa-

tion. Note that in view of the quoted papers, our results extend to

more general Leray-Lions operators ; however, to avoid technical com-

plications and to emphasize the inuence of the term B we restrict our

attention on a simple operator satisfying (1.2). Let us now introduce

some de�nitions and give the statement of our main results.

For the sake of clarity, we dropped the dependence on t; x of A; b; d

and g. When no confusion can arise, we will follow this convention in

the sequel.
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De�nition 1. By weak solution of (1:1) we shall mean any function

u 2 Lq(0; T ;W
1;q
0 (
)) \ C0(0; T ;L1(
)) such that g(u;ru) belongs to

L1(Q) and satisfying

(1.9)

Z



u�(T; x) dx�
Z



u0 �(0; x) dx�
Z
Q

u @t�(t; x) dx dt

+

Z
Q

Aru � r� dx dt+
Z
Q

(g(u;ru) + b � ru+ du)� dx dt

=

Z
Q

f � dx dt ;

for all T > 0, � 2 C0(0; T ;W
1;q0

0 (
)) \ C1(0; T ;Lq
0

(
)) and for all q

such that 1 � q < (N + 2)=(N + 1) and 1=q + 1=q0 = 1.

All terms in (1.9) are clearly de�ned (by duality Lq; Lq
0

), except

those involving g(u;ru). However, since 1 � q < (N + 2)=(N + 1), we

have q0 = q=(q � 1) > N and by Sobolev's embedding the test function

� actually lies in L1(Q) so that the integral of g(u;ru)� makes sense.

Theorem 1. Assume that (1:3)-(1:8) hold. Then, there exists a weak

solution of (1:1), in the sense of De�nition 1.

Let us recall the de�nition of the truncated function Tk. Let k 2
R
+ . We set

(1.10) Tk(z) =

8><
>:
z ; if jzj � k ;

k ; if z > k ;

�k ; if z < �k ;

and we denote Sk(z) =
R z
0
Tk(�) d� .

De�nition 2. Let g = 0. We say that u is a entropic solution of (1:1)

if u 2 C0(0; T ;L1(
)) satis�es Tk(u) 2 L2(0; T ;H1
0(
)) for all k > 0,

ru 2 L1(Q) andZ



Sk(u�  )(T ) dx�
Z



Sk(u0 �  (0; �)) dx

+

Z T

0

h@t ; Tk(u�  )i
H�1(
);H1

0
(
)
dt

+

Z
Q

Aru � r(Tk(u�  ))dxdt(1.11)
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+

Z
Q

(du+ bru)Tk(u�  ) dx dt

�
Z
Q

f Tk(u�  ) dx dt

for all k > 0 and  2 L2(0; T ;H1
0(
)) \ L1(Q) \ C0(0; T ;L1(
)) with

@t 2 L2(0; T ;H�1(
)).

Obviously, Tk(u� ) lies in L1(Q) and Sk is k�Lipschitzian; hence
with the requirements ru 2 L1(Q) and Tk(u �  ) 2 L2(0; T ;H1

0(
)),

both term in (1.11) clearly makes sense except the product Aru �
r(Tk(u� )). Remark now that r(Tk(u� )) = �

ju� j�k
r(u� ) can

be estimated by �
juj�k+k kL1

jruj + jr j = jrTk+k kL1 (u)j + jr j
which belongs to L2 since one chooses the test function  in L1(Q).

Therefore Aru � r(Tk(u�  )) is integrable.

Theorem 2. Let g = 0. Assume that (1:3)-(1:8) hold. Then, there

exists a unique entropic solution of (1.1).

The strategy we adopt is rather close to those introduced in [4].

However, new di�culties arise essentially related to the inuence of the

linear 0th and 1st order terms. Then, this paper is organized as follows.

First, Section 2 is devoted to an independent preliminary result which

will be used to derive a bound in Lq on the gradient of the solutions,

in despite of the perturbation induced by the additional terms of lower

order. In Section 3, we deal with sequences u" of approximate solutions.

We establish some a priori estimates on these solutions and we translate

the obtained bounds in terms of compactness properties. Then, we

explain how we can pass to the limit as " �! 0 in the weak formulation

satis�ed by u". In Section 4, we are concerned with the uniqueness of

entropic solution. Finally, in Section 5, we slightly weaken the regularity

assumption concerning the coe�cient b.

2. A preliminary result.

The main idea in the proof of Theorem 1 consists in deriving a

Lq(0; T ;W
1;q
0 (
)) estimate on the solutions depending only on the L1

norm of the data f and u0. Such an estimate will appear as a conse-

quence of the following lemma.
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Lemma 1. Let u 2 L2(0; T ;H1
0(
)) satisfy

(2.1) sup
t2(0;T )

Z



juj dx � � ;

and

(2.2)

Z
Bn

jruj2 dx dt � C0 + C1

Z
En

jruj dx dt ; for all n 2 N ;

where

Bn = f(t; x) 2 Q : n � ju(t; x)j � n+ 1g ;

and

En = f(t; x) 2 Q : ju(t; x)j > n+ 1g :

Then, for all 1 � q < (N + 2)=(N + 1), there exists C > 0, depending

on �, C0, C1, j
j, T , and q such that

(2.3) kuk
Lq(0;T ;W

1;q
0

(
))
� C :

Proof. In [4], [10] inequality (2.2) appears with C1 = 0 and is used to

derive (2.3). Here, the additional term is related to the inuence of the

�rst order term b �ru in the equation as we shall see in next section (see
Proposition 1). However, exploiting carefully the fact that the integral

in the right hand side is only taken over the large values of the unknow,

we can obtain (2.3) as a consequence of (2.2).

Let 1 � q < 2. From (2.2), we �rst notice that

(2.4)

Z
Bn

jruj2 dx dt � C0 + C1

�Z
En

jrujq dx
�1=q

jEnj(q�1)=q

� C0 + C1 krukLq(Q) jEnj
(q�1)=q

holds by using Holder's inequality. Thus, applying again Holder's in-

equality, we obtain

Z
Bn

jrujq dx dt � jBnj(2�q)=2
�Z

Bn

jruj2 dx dt
�q=2

� jBnj(2�q)=2
�
C
q=2

0 + C
q=2

1 krukq=2
Lq(Q)

jEnj(q�1)=2
�

(2.5)
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by (2.4) and the elementary inequality (a + b)q=2 � aq=2 + bq=2. Let

r � 0 to be chosen later. Clearly, one has

(2.6)

8>><
>>:
jBnj �

1

nr

Z
Bn

jujr dx dt ;

jEnj �
1

nr

Z
En

jujr dx dt �
1

nr
kukr

Lr(Q)
:

Hence, (2.5) becomes

(2.7)

Z
Bn

jrujq dx dt

� C
q=2

0

� 1
n

�r(2�q)=2�Z
Bn

jujr dx dt
�(2�q)=2

+ C
q=2

1 krukq=2
Lq(Q)

kukr(q�1)=2
Lr(Q)

� 1
n

�r=2

�
�Z

Bn

jujr dx dt
�(2�q)=2

:

Let K 2 N to be determined. We split krukq
Lq(Q)

as follows

(2.8)

Z
Q

jrujq dx dt =
KX
n=0

Z
Bn

jrujq dx dt+
1X

n=K+1

Z
Bn

jrujq dx dt :

Since jBnj � T j
j and jEnj � T j
j, we simply evaluate the �rst term

in the right hand side of (2.8) as follows

(2.9)

KX
n=0

Z
Bn

jrujq dx dt � KC2

�
1 + krukq=2

Lq(Q)

�
;

by (2.5), where C2 = maxfCq=20 (T j
j)(2�q)=2; Cq=21 (T j
j)1=2g. Thus,

by using Young's inequality in (2.8)-(2.9), we get

(2.10) krukq
Lq(Q)

� C(K) +

1X
n=K+1

Z
Bn

jrujq dx dt ;

where C(K) tends to in�nity asK becomes large. It remains to proceed

to the study of the series which appears in the right hand side.
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Applying Holder's inequality on the series with exponents 2=(2�q)
and 2=q and using (2.7), we have

(2.11)

1X
n=K+1

Z
Bn

jrujq dx dt

� C
q=2

0

� 1X
n=K+1

1

nr(2�q)=q

�q=2� 1X
n=K+1

Z
Bn

jujr dx dt
�(2�q)=2

+ C
q=2

1 krukq=2
Lq(Q)

kukr(q�1)=2
Lr(Q)

� 1X
n=K+1

1

nr=q

�q=2

�
� 1X
n=K+1

Z
Bn

jujr dx dt
�(2�q)=2

� C
q=2

0

� 1X
n=K+1

1

nr(2�q)=q

�q=2
kukr(2�q)=2

Lr(Q)

+ C
q=2

1 krukq=2
Lq(Q)

kukr=2
Lr(Q)

� 1X
n=K+1

1

nr=q

�q=2
:

Note that the conditions

(2.12) r
2� q

q
> 1 and

r

q
> 1

ensure the convergence of the series which appear in the right hand

side of (2.11). Consequently, these terms become arbitrarily small when

choosing K large enough as soon as (2.12) is ful�lled.

With the convention that �(K) denotes quantities which tend to 0

as K goes to 1, by combining (2.10) with (2.11), we get

(2.13) krukq
Lq(Q)

� C(K)+ �(K)
�
kukr(2�q)=2

Lr(Q)
+ krukq=2

Lq(Q)
kukr=2

Lr(Q)

�
:

Therefore, by using Young's inequality on the last term in the right

side, it follows that

(2.14) krukq
Lq(Q)

� C(K) + �(K)
�
kukr(2�q)=2

Lr(Q)
+ kukr

Lr(Q)

�
;

where we keep the notation C(K), �(K) while the value of these terms

may have changed, still with the meaning that C(K) �!1, �(K) �!
0 when K becomes large.
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We denote by q? = Nq=(N � q) the Sobolev conjugate of q. The

Sobolev imbedding theorem implies that

(2.15)

Z T

0

�Z



jujq? dx
�q=q?

dt � C

Z
Q

jrujq dx dt :

Assume now 1 < r < q? and set 1=r = � + (1� �)=q? with 0 < � < 1.

For almost everywere t 2 (0; T ), one has

(2.16) ku(t; �)kr
Lr(
)

� ku(t; �)kr�
L1(
)

ku(t; �)kr(1��)
Lq?(
)

:

Integrating (2.16) with respect to time and recalling the bound (2.1) in

L1(0; T; L1(
)) yield

(2.17) kukr
Lr(Q)

� �r�
Z T

0

�Z



jujq?dx
�r(1��)=q?

dt :

Choose now r = q (N + 1)=N , noting that the convergence condition

(2.12) is ful�lled as soon as 1 � q < (N + 2)=(N + 1). Combining

(2.14)-(2.17) with Young's inequality (since (2� q)=2 < 1) leads to

(2.18)

Z T

0

�Z



jujq? dx
�q=q?

dt

� C(K) + �(K)
��Z T

0

�Z



jujq? dx
�q=q?

dt
�(2�q)=2

+

Z T

0

�Z



jujq? dx
�q=q?

dt
�

� C(K) + �(K)

Z T

0

�Z



jujq? dx
�q=q?

dt :

We �x K > 0 so that, for instance, 1� �(K) > 1=2. Hence, we deduce

from (2.18) that

(2.19) kuk
Lq(0;T;Lq? (
))

� C

holds, and the asserted estimate (2.3) follows easily from (2.17) and

(2.14).
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3. Proof of Theorem 1.

The proof falls naturally into several steps and we detail each of

them separetely.

3.1. Approximate solutions.

We introduce the following smooth approximations of the data

(3.1)

(
u0;" 2 C10 (
) ; f" 2 C10 (
) ;

u0;" �! u0 in L
1(
) ; f" �! f in L1(Q) ;

with

(3.2) ku0;"k
L1(
)

� ku0k
L1(
)

; kf"k
L1(Q)

� kfk
L1(Q)

:

Moreover, we regularize the function g as follows

(3.3) g"(u;ru) =
g(u;ru)

1 + " jg(u;ru)j
:

Note that g" belongs in L
1(Q) and satisfy the sign condition (1.6) and

the growth condition in (1.7). Then, classical results, see e.g. [15],

[12], [7], (or, in the linear case, use a Galerkin method), provide the

existence of a sequence u" 2 C0(0; T ;L2(
)) \ L2(0; T ;H1
0(
)), with

@tu" 2 L2(0; T ;H�1(
)), of solutions of (1.1) where u0; f and g are

replaced by u0;"; f" and g" respectively. We have

(3.4)

h@tu"; �i
H�1(
);H1

0
(
)

+

Z



Aru" � r� dx

+

Z



(g"(u";ru") + b � ru" + du")� dx =

Z



f" � dx ;

for all T > 0 and � 2 L2(0; T ;H1
0(
)).

3.2. A priori estimates.

In this section, we are concerned with a priori estimates satis�ed

by the sequence u" of solutions of (3.4) which lead to compactness

properties essential to the proof.
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Proposition 1. Let A; b; d; g satisfy (1:3)-(1:7). Then, there exist

� > 0, C0 and C1 depending only on ku0k
L1(
)

, kfk
L1(Q)

, kbk
L1(Q)

,

kdk
L1(Q)

, j
j and T such that the sequence u" of solutions of (3:4)

satis�es

(3.5) sup
">0

t2(0;T )

ku"(t)k
L1(
)

� � ;

and

(3.6)

Z
Bn

jru"j2 dx dt � C0 + C1

Z
En

jru"j dx dt :

In view of Lemma 1, we deduce immediately the following

Corollary 1. Let A; b; d; g satisfy (1:3)-(1:7). Let 1 � q < (N +

2)=(N +1). Then, there exists C > 0 depending only on the data, such

that

(3.7) sup
">0

ku"k
Lq(0;T ;W

1;q
0

(
))
� C :

Proof of Proposition 1. Since Tk is a Lipschitz function and u" 2
L2(0; T ;H1

0(
)), one has Tk(u") 2 L2(0; T ;H1
0(
)), see [19], [20], with,

moreover,

rTk(u") = �
ju"j�k

ru" ;

where �
ju"j�k

denotes the characteristic function of the set f(t; x) 2 Q :

ju"(t; x)j � kg. Thus, we choose � = Tk(u") as test function in (3.4).

Writing b � ru" = r � (b u")� (r � b)u", one gets

(3.8)

d

dt

Z



Sk(u") dx+

Z



�
ju"j�k

Aru" � ru" dx

+

Z



Tk(u")g"(u";ru") dx

=

Z



f"Tk(u") dx+

Z



�
ju"j�k

u"b � ru" dx

+

Z



((r � b)� d)u"Tk(u") dx :
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By using Holder's and Young's inequalities, one obtains

(3.9)

��� Z



�
ju"j�k

u"b � ru" dx
���

�
a

2

Z



�
ju"j�k

jru"j2 dx+
1

2 a
kbk2

L1(Q)

Z



�
ju"j�k

ju"j2 dx :

Moreover, u"Tk(u") is non negative and we assume that d and r � b
belong to L1(Q). Hence, after integration of (3.8) with respect to t

and using (1.5), we are led to

(3.10)

Z



Sk(u")(t) dx+

Z t

0

Z



Tk(u")g" dx ds

+
a

2

Z t

0

Z



�
ju"j�k

jruj2 dx ds

�
Z t

0

Z



jf"Tk(u")j dx ds+
Z



Sk(u0;") dx

+
1

2 a
kbk2

L1(Q)

Z t

0

Z



�
ju"j�k

ju"j2 dx ds

+ (kdk
L1(Q)

+ kr � bk
L1(Q)

)

Z t

0

Z



u"Tk(u") dx ds ;

where, by the sign assumption (1.6) and the de�nition of Sk, all the

terms in the left hand side of (3.10) are non negative. Next, we observe

that

(3.11)

0 � z2�
jzj�k

� z Tk(z)

= z2 �
jzj�k

+ k jzj�
jzj>k

� z2 �
jzj�k

+ (2 k jzj � k2)�
jzj>k

= 2Sk(z) ;

which yieldsZ



Sk(u")(t) dx �
Z t

0

Z



jf"Tk(u")j dx ds+
Z



Sk(u0;") dx

+ C(b; d)

Z t

0

Z



Sk(u") dx ds ;(3.12)
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where C(b; d) stands for

2 (kdk
L1(Q)

+ kr � bk
L1(Q)

) +
1

a
kbk

L1(Q)
:

We set z(t) =
R


Sk(u")(t) dx. Thus, dropping non negative terms, we

have

0 � z(t) � z(0) +

Z t

0

Z



jf"j jTk(u")j dx ds+ C(b; d)

Z t

0

z(s) ds

and we apply Gronwall's lemma to deduce that

(3.13) z(t) � eC(b;d)T
�Z




Sk(u0;") dx+

Z
Q

jf"j jTk(u")j dx dt
�

holds.

We set k = 1 in (3.13). Remarking that jT1(z)j � 1 and 0 �
S1(z) � jzj leads toZ




S1(u")(t) dx � eC(b;d)T (ku0kL1(
) + kfk
L1(Q)

)

by (3.2). Therefore, we end the proof of (3.5) with the following obser-

vation Z



ju"j dx =
Z
ju"j�1

ju"j dx+
Z
ju"j>1

ju"jdx

�
Z
ju"j�1

dx+

Z
ju"j>1

�
S1(u") +

1

2

�
dx

�
3

2
j
j+ eC(b;d)T (ku0kL1(
) + kfk

L1(Q)
)

= � :

To achieve the proof of Proposition 1, we are left with the task of

showing that (3.6) holds. According to [4], we introduce the function

(3.14) �n(z) =

8>>>>>>><
>>>>>>>:

1 ; if z � n+ 1 ;

z � k ; if n � z < n+ 1 ;

0 ; if � n < z < n ;

z + k ; if � n� 1 < z � �n ;

�1 ; if z � �n� 1 ;
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and we set 	n(z) =
R z
0
�n(�) d� . We note that �n is a Lipschitz func-

tion. Thus, we have �n(u") 2 L2(0; T ;H1
0(
)), see [19], [20] with

r�n(u") = �
Bn
ru" ;

�
Bn

denoting the characteristic function of the set Bn = f(t; x) 2 Q :

n � ju"(t; x)j � n+ 1g. Then, taking � = �n(u") 2 L2(0; T ;H1
0(
)) as

test function in (3.4) gives

d

dt

Z



	n(u") dx+

Z



�
Bn
Aru" � ru" dx+

Z



g(u";ru")�n(u") dx

=

Z



f" �n(u") dx�
Z



du" �n(u") dx�
Z



b � ru" �n(u") dx :

Thus, integrating the above equation with respect to t, we have

(3.15)

Z



	n(u")(t) dx+

Z t

0

Z



�
Bn
Aru" � ru" dx dt

+

Z t

0

Z



g(u";ru")�n(u") dx dt

=

Z



	n(u0;") dx+

Z t

0

Z



f"�n(u") dx dt

�
Z t

0

Z



du" �n(u") dx dt

�
Z t

0

Z



b � ru" �n(u") dx dt :

Since j�n(z)j � 1, and taking into account the estimate (3.5) we have

(3.16)

��� Z



du" �n(u") dx
��� � � kdk

L1(Q)
:

Furthermore, we remark that u" �n(u") � 0. Then, the third term in

the left side is non negative. From the coercivity of A (see (1.5)), the

positivity of 	n(�) and (3.15) we deduce that

a

Z
Bn

jru"j2 dx dt �
Z
Q

j�n(u")f"j dx dt+
Z



	n(u0;") dx

+ � kdk
L1(Q)

+ kbk
L1(Q)

Z
Q

jru"j j�n(u")j dx dt

� kfk
L1(Q)

+ ku0k
L1(
)

+ � kdk
L1(Q)

(3.17)

+ kbk
L1(Q)

Z
Q

jru"j j�n(u")j dx dt :
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Let us split the last integral in (3.17) as follows

Z
Q

jru"j j�n(u")j dx dt =
Z
Bn

jru"j j�n(u")j dx dt+
Z
En

jru"j dx dt

�
Z
Bn

jru"j dx dt+
Z
En

jru"j dx dt ;(3.18)

since j�n(u")j = 1 on En = f(t; x) 2 Q : ju(t; x)j > n + 1g and

�n(u") = 0 if ju"(t; x)j < n.

Using the fact 0 � 	n(z) � jzj and (3.18), we deduce from (3.17)

that

a

Z
Bn

jru"j2 dx dt � kfk
L1(Q)

+ ku0kL1(
) + � kdk
L1(Q)

+ kbk
L1(Q)

�Z
Bn

jru"j dx dt+
Z
En

jru"j dx dt
�
:

By using Holder's and Young's inequalities, we have

a

Z
Bn

jru"j2 dx dt

� C +
a

2

Z
Bn

jru"j2 dx dt+
1

2 a
kbk2L1(Q) T j
j+

Z
En

jru"j dx dt ;

where C = kfk
L1(Q)

+ ku0kL1(
) + � kdk
L1(Q)

. This �nishes the proof

of (3.6) with C0 and C1 depending on kfk
L1(Q)

, ku0k
L1(Q)

, kbk
L1(Q)

,

kdk
L1(Q)

, a, j
j, T and the bound �.

Now, we are interested in the nonlinear term g". We have

Lemma 2. Suppose A; b; d; g satisfy (1:3)-(1:7) and let u" be a sequence

of solutions of (3:4). Then, there exists C > 0 depending only on the

data such that the sequence g"(u";ru") satis�es

sup
">0

kg"(u";ru")k
L1(Q)

� C ;(3.19)

lim
k!1

sup
">0

Z
ju"j>k

jg"(u";ru")j dx dt = 0 :(3.20)
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Proof. It is clear that

Z
ju"j>n+1

jg"(u";ru")j dx dt =
Z
ju"j>n+1

�n(u") g"(u";ru") dx dt

�
Z
Q

�n(u") g"(u";ru") dx dt ;(3.21)

since we recall that j�n(z)j = 1 when jzj > n+ 1 and �n(u") g" is non

negative by the sign condition (1.6). In the sequel, we will often write

g" = g"(u";ru") when no confusion can arise. From the positivity of

the �rst and the second terms in (3.15), we obtain

(3.22)

0 �
Z
Q

�n(u") g" dx dt

�
��� Z

Q

�n(u") f" dx dt
���+ ��� Z




	n(u0;") dx
���

+
��� Z
Q

d �n(u")u" dx dt
���+ ��� Z

Q

�n(u")b � ru" dx dt
���

� kf"kL1(Q) + ku0;"kL1(
) + kdk
L1(Q)

Z
Q

ju"j dx dt

+ kbk
L1(Q)

Z
Q

jru"j dx dt

since j�n(z)j � 1 and 0 � 	n(z) � jzj. By (3.2), (3.5) and the estimate

(3.7) with q = 1, we deduce

(3.23)

Z
ju"j>n+1

jg"(u";ru")j dx dt � C :

It remains to evaluate the integral over fju"j < n + 1g. Assumption

(1.6) yields

(3.24)

Z
ju"j<n+1

jg"(u";ru")j dx dt

� h (n+ 1)

Z
ju"j<n+1

(jru"j� + (t; x)) dx dt ;
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where we estimate as follows

(3.25)

Z
ju"j<n+1

jru"j� dx dt =
nX
j=0

Z
Bj

jru"j� dx dt

�
nX
j=0

jBjj1��=2
�Z

Bj

jru"j2 dx dt
��=2

:

By using (3.6), (3.7) and Holder's inequality, we get

(3.26)

Z
ju"j<n+1

jru"j� dx dt

� (T j
j)1��=2
nX
j=0

�
C0 + C1

Z
Q

jru"j dx dt
��=2

� C :

Combining (3.26) with (3.24) and (3.23), we conclude that g" is bounded

in L1(Q) uniformly in ".

We turn to the proof of (3.20). Obviously, one has

(3.27)

Z
ju"j>k

jg"j dx dt �
1

k

Z
Q

Tk(u") g" dx dt :

Similarly, replacing �n(u") by Tk(u") in (3.15) we obtain, similarly to

(3.22), that

(3.28)

0 �
Z
Q

Tk(u") g" dx dt

�
Z
Q

jf"Tk(u")j dx dt+
Z



Sk(u0;") dx

+ kdk
L1(Q)

Z
Q

Tk(u")u" dx dt

+ kbk
L1(Q)

Z
Q

jTk(u")j jru"j dx dt

holds. Let M > 0. According to [16], we use the following trick

(3.29)

(
0 � Sk(z) �M2 + k jzj�

jzj>M
;

jTk(z)j �M + k �
jzj>M

:
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which gives

Z
ju"j>k

jg"j dx dt �
M

k
kf"k

L1(Q)
+

Z
ju"j>M

jf"j dx dt

+
M2

k
ku0;"k

L1(
)
+

Z
ju0;"j>M

ju0;"j dx

+
M

k
kdk

L1(Q)
ku"k

L1(Q)
+

Z
ju"j>M

ju"j dx dt(3.30)

+
M

k
kbk

L1(Q)
kru"kL1(Q) +

Z
ju"j>M

jru"j dx dt ;

by (3.28) and (3.29). Since, on the one hand, u" is bounded in Lq(0; T;

W
1;q
0 (
)) for some q > 1 and f", u0;" are convergent sequences in L

1(Q),

L1(
) respectively, and, on the other hand,

sup
">0

meas f(t; x) 2 Q : ju"(t; x)j > Mg �
1

M
sup
">0

ku"k
L1(Q)

�
� T

M

tends to 0 as M goes to 1, we can choose M large enough so that the

terms

sup
">0

Z
ju"j>M

jf"j dx dt ;

sup
">0

Z
ju0;"j>M

ju0;"j dx ;

sup
">0

Z
ju"j>M

ju"j dx dt ;

sup
">0

Z
ju"j>M

jru"j dx dt ;

are arbitrarily smalls, which, achieves the proof of (3.20).

Let the assumptions of Proposition 1 be ful�lled. Then, u" is

bounded in Lq(0; T ;W
1;q
0 (
)), g" is bounded in L1(Q) which imply,

in view of the equation satis�ed by u" that @tu" is bounded in L1(0; T ;

W�1;q(
)) + L1(Q). Therefore, possibly at the cost of extracting sub-
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sequences, see e.g. [18], [20] we can assume that

(3.31)

8>>>>>><
>>>>>>:

u" �! u ; strongly in Lq(Q)

and almost everywhere in Q;

ju"(t; x)j � �(t; x) ; almost everywhere in Q;

with � 2 Lq(Q) ;

ru" * ru ; weakly in Lq(Q) :

3.3. Convergence almost everywhere of the gradients.

The weak convergence of the gradients is clearly insu�cient to pass

to the limit when " �! 0 in nonlinear terms. Then, we claim

Lemma 3. Let the assumptions of Proposition 1 be ful�lled and let

u" satisfy (3.31). Then, the sequence fru"g" converges to ru almost

everywhere as " goes to zero.

Proof. It su�ces to show that fru"g" is a Cauchy sequence in mea-

sure, see [8], i.e. for all � > 0

(3.32) meas f(t; x) 2 Q : jru"0 �ru"j > �g �! 0 ;

as "0; " �! 0. Let us denote by A the subset of Q involved in (3.32).

Let k > 0 and � > 0. Following [17], we remark that

(3.33) A � A1 [ A2 [ A3 [ A4 ;

where

(3.34)

A1 = f(t; x) 2 Q : jru"j � kg ;

A2 = f(t; x) 2 Q : jru"0 j � kg ;

A3 = f(t; x) 2 Q : ju" � u"0 j � �g ;

A4 = f(t; x) 2 Q : jru" �ru"0 j � � : jru"j � k;

jru"0 j � k; ju" � u"0 j � �g :

By Corollary 1 and (3.31), we conclude easily for the three �rst sets.

Indeed, one has

jA1j �
1

k
kru"kL1(Q) �

C

k
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and an analoguous estimate holds for A2. Hence, by choosing k large

enough, jA1j+ jA2j is arbitrarily small. Similarly, one gets

jA3j �
1

�
ku" � u"0k

L1(Q)

which, for � > 0 �xed, tends to 0 when "; "0 �! 0 since, by (3.31), u" is

a Cauchy sequence in L1(Q). Then, the proof is completed by choosing

� so that jA4j is given arbitrarily small, uniformly with respect to "; "0.

To this end, we shall use the equations satis�ed by u" and u"0 . Indeed,

we observe that

(3.35)

jA4j �
1

�2

Z
A4

jru" �ru"0 j2 dx dt

�
1

�2

Z
ju"�u"0 j��

jru" �ru"0 j2 dx dt

=
1

�2

Z
Q

jr(T�(u" � u"0))j2 dx dt :

Substracting the relations obtained with � = T�(u"�u"0) as test funtion
in equation (3.4) satis�ed successively by u" and u"0 leads to

d

dt

Z



S�(u" � u"0) dx+

Z



A(ru" �ru"0)rT�(u" � u"0) dx

=

Z



(f" � f"0)T�(u" � u"0) dx

�
Z



(d(u" � u"0)� br(u" � u"0))T�(u" � u"0) dx

(3.36)

�
Z



(g" � g"0)T�(u" � u"0) dx :

Since jT�(z)j � � and 0 � S�(z) � � jzj, integrating (3.36) with respect

to t and using the coercivity of A (see (1.5)) yield

(3.37)

a

Z
Q

jr(T�(u" � u"0))j2 dx dt

� � (kf" � f"0kL1(Q) + ku0;" � u0;"0kL1(
)

+ kdk
L1(Q)

ku" � u"0k
L1(Q)

+ kbk
L1(Q)

kr(u" � u"0)k
L1(Q)

+ kg" � g"0kL1(Q)) :
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Therefore, by using (3.2) and the bounds (3.7), uniform in ", on

ku"k
L1(Q)

, kru"k
L1(Q)

and on kg"k
L1(Q)

, we deduce from (3.37) that

a

Z
Q

jr(T�(u" � u"0))j2 dx dt � 2 � (kfk
L1(Q)

+ ku0kL1(
))

+ 2 � C (1 + kbk
L1(Q)

+ kdk
L1(Q)

) ;(3.38)

goes to zero as � goes to zero, uniformly in "; "0. This completes the

proof of Lemma 3.

Having disposed of the proof of Lemma 3, let us consider the be-

haviour of g" as " goes to 0, when it is assumed that 0 � � < 2.

Corollary 2. Let the assumptions of Proposition 1 be ful�lled and let u"
satisfy (3:31). Then, (up to subsequences ) the sequence fg"(u";ru")g"
converges to g(u;ru) almost everywhere in Q and strongly in L1(Q).

Proof. This result is similar to those obtained in [9] in the context

of elliptic problems. For the sake of completeness, we sketch the proof.

By combining Lemma 3 and (3.31), it is clear that

g"(u";ru") �! g(u;ru)

almost everywhere in Q as " tends to 0, since g(t; x; �; �) is a continuous

function with respect to � 2 R; � 2 R
N . Thus, by classical results, see

e.g. [8], the sequence g" will be actually strongly convergent in L1(Q)

if one shows that g" lies in weakly compact set in L1(Q). This property

follows from (3.20) since 0 � � < 2. Indeed, let A be a measurable set

in Q. We split

(3.39)

Z
A

jg"j dx dt =
Z
A\fju"j�kg

jg"j dx dt+
Z
A\fju"j>kg

jg"j dx dt ;

where it is clear thatZ
A\fju"j>kg

jg"j dx dt �
Z
ju"j>k

jg"j dx dt

tends to 0, uniformly in " as k �!1, by (3.20). Moreover, the growth
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condition (1.6) and Holder's inequality yieldZ
A\fju"j�kg

jg"j dx dt

� h(k)
�Z

A\fju"j�kg

jru"j� dx dt+
Z
A\fju"j�kg

(t; x) dx dt
�

� h(k)
�Z

ju"j�k

jru"j2 dx dt
��=2

jAj(2��)=2 + h(k)

Z
A

(t; x) dx dt

(3.40)

� h(k)CkjAj(2��)=2 + h(k)

Z
A

(t; x) dx dt

by using (3.6) and (3.7) as in (3.26). Since � < 2 and  2 L1(Q),

the right hand side of this last inequality goes to 0 as jAj �! 0. We

conclude that

lim
jAj!0

sup
">0

Z
A

jg"j dx dt = 0 ;

which completes the proof of Corollary 2.

3.4. Cauchy property in C0(0; T ;L1(
)) and passage to the

limit.

We end our review of the properties of the sequence u" with the

following result.

Lemma 4. Let the assumptions of Proposition 1 be ful�lled. We as-

sume that the sequence fu"g" satis�es (3.31). Then, fu"g" is a Cauchy

sequence in C0(0; T ;L1(
)).

Proof. We set w";"0 = u" � u"0 , F";"0 = f" � f"0 and G";"0 = g" � g"0 .

We multiply the equations (3.4) satis�ed respectively by u" and u"0 by

T1(w";"0). Substracting the obtained relations yields

(3.41)

d

dt

Z



S1(w";"0) dx+

Z
jw";"0 j�1

Arw";"0 � rw";"0 dx

=

Z



F";"0T1(w";"0) dx�
Z



G";"0T1(w";"0) dx

�
Z



(b � rw";"0 + dw";"0)T1(w";"0) dx :
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Since 0 � z T1(z) = z2 �
jzj�1

+ jzj�
jzj>1

� z2 �
jzj�1

+(2 jzj � 1)�
jzj>1

=

2S1(w";"0), one gets

��� Z



dw";"0T1(w";"0) dx
��� � 2 kdk

L1(Q)

Z



S1(w";"0) dx :

Moreover, one has jT1(w";"0)j � 1. Then, integrating (3.41) between 0

and t and from the positivity of A, it follows

Z



S1(w";"0)(t) dx

�
Z



S1(w
0
";"0) dx+

Z t

0

Z



jF";"0 jdx ds+
Z t

0

Z



jG";"0 j dx ds

+ kbk
L1(Q)

Z t

0

Z



jrw";"0 j dx ds+ 2 kdk
L1(Q)

Z t

0

Z



S1(w";"0) dx ds ;

(3.42)

where w0
";"0 = u0;" � u0;"0 . Hence, Gronwall's lemma implies that

(3.43)

Z



S1(w";"0) dx � a";"0 ;

where a";"0 stands for

a";"0 = eCT
�Z




S1(w
0
";"0) dx+

Z
Q

jF";"0 j dx dt

+

Z
Q

jG";"0 j dx dt+
Z
Q

jrw";"0j dx dt
�

� eCT (ku0;" � u0;"0k
L1(
)

+ kf" � f"0k
L1(Q)

+ kg" � g"0kL1(Q) + kru" �ru"0kL1(Q)) ;

since S1(z) � jzj. By (3.1), u0;" and f" are convergent sequences in

L1(
) and L1(Q), respectively and by Corollary 2, g" is a convergent

sequence in L1(Q). Furthermore, by Corollary 1 and Lemma 3, ru" is
both bounded in Lq(Q) and almost everywhere in Q convergent, which

implies that ru" is actually strongly convergent in Lp(Q) for 1 � p < q,

and in particular in L1(Q). Hence, it is clear that a";"0 tends to 0 as
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"; "0 �! 0. Finally, by Holder's inequality, we haveZ



jw";"0 j dx

=

Z
jw";"0 j�1

jw";"0 j dx+
Z
jw";"0 j>1

jw";"0 j dx

�
�Z

jw";"0 j�1

jw";"0 j2 dx
�1=2�Z

jw";"0 j�1

1 dx
�1=2

+

Z
jw";"0 j>1

jw";"0j dx

�
p
j
j
�Z

jw";"0 j�1

2S1(w";"0) dx
�1=2

+

Z
jw";"0 j>1

2S1(w";"0) dx ;

since
jzj
2
�
jzj>1

�
� jzj
2

+
jzj � 1

2

�
�
jzj>1

= S1(w";"0)�jzj>1

and
jzj2

2
�
jzj�1

= S1(z)�jzj�1 :

By (3.43), we deduce thatZ



ju" � u"0 j dx =
Z



jw";"0j dx �
p
2 j
j

p
a";"0 + 2 a";"0

tends to 0 as "; "0 �! 0 which proves that u" is a Cauchy sequence in

C0(0; T ;L1(Q)).

Finally, we achieve the proof of Theorem 1 by passing easily to the

limit " �! 0 in the following weak formulation

(3.44)

Z



u"�(t) dx�
Z



u0;"�(0; x) dx

�
Z t

0

Z



u"@t� dx dt+

Z t

0

Z



Aru" � r� dx dt

+

Z t

0

Z



�
b � ru" + d u" + g"(u";ru")

�
� dx dt

=

Z t

0

Z



f"� dx dt ;

with � 2 C0(0; T;W
1;q0

0 (
)) \ C1(0; T; Lq
0

(
)), obtaining in this way

that the limit u is a solution of (1.1) in the sense of (1.9).
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Remark 1. We point out the fact that the assumption on the deriva-

tives of the coe�cient b is useful uniquely to obtain the uniform bound

(3.5) in L1(0; T ;L1(
)).

Remark 2. A similar existence result may be obtained if the strong

convergences in (3.1) are replaced by weak L1 convergences.

4. Entropic solutions: End of proof of Theorem 2.

In this Section, we assume g = 0. First, we prove that, besides

the weak \natural" formulation (1.9), the limit u of the sequence of ap-

proximate solutions u" also satis�es the entropic relation (1.11). Having

disposed of the existence of such a solution, we show that u is unique

in the class of entropic solutions.

4.1. Existence of entropic solution.

Let us recall the convergence properties obtained in Section 3 on

the sequence u", after suitable extraction of subsequences. First, u"
converges to u strongly in Lq(Q), with 1 � q < (N + 2)=(N + 1), in

C0(0; T ;L1(
)), almost everywhere in Q and is dominated. Moreover,

ru" is bounded in Lq(Q) and converges almost everywhere in Q to

ru; thus, the convergence actually holds strongly in Lp(Q), for 1 �
p < q and in particular in L1(Q). We can also assume that ru" is

dominated. Let k > 0. Since Tk is continuous and bounded by k,

Tk(u") converges almost everywhere in Q and, by Lebesgue's theorem,

strongly in L2(Q) to Tk(u). Furthermore, from (3.10) it is easy to see

thatrTk(u") is bounded in L2(Q) (uniformly in ", the bound depending

on k). Therefore, we may suppose that rTk(u") * rTk(u) weakly in

L2(Q).

Fix k > 0 and let  2 L2(0; T ;H1
0(
)) \ L1(Q) with @t 2

L2(0; T ;H�1(
)). We set P = k k
L1(Q)

. It is clear that jTk(u"� )j �
k and

(4.1) jrTk(u"� )j = �
ju"� j�k

jr(u"� )j � �
ju"j�k+P

jru"j+ jr j ;

which implies that Tk(u" �  ) belongs to (a bounded set in) L2(0; T ;
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H1
0 (
)). Then, plugging � = Tk(u" �  ) in (3.4) gives

(4.2)

Z



Sk(u" �  )(T ) dx�
Z



Sk(u0;" �  (0; �)) dx

+

Z T

0

h@t ; Tk(u" �  )i ds

+

Z
Q

Aru"rTk(u" �  ) dx ds

+

Z
Q

(b � ru" + d u")Tk(u" �  ) dx ds

=

Z
Q

f"Tk(u" �  ) dx ds :

We shall study the behaviour of (4.2) when we let " go to 0. Since Sk
is k-Lipschitz, one has��� Z




Sk(u" �  )� Sk(u�  ) dx
��� � k

Z



ju" � uj dx ;

for all t 2 [0; T ] where the right hand side tends to 0 as " �! 0. Next,

since we have assumed that @t lies in L2(0; T ;H�1(
)), we have to

prove that

(4.3) Tk(u" �  )* Tk(u�  ) ; in L2(0; T ;H1
0(
)) :

Obviously, this convergence holds in L2(Q) since u" converges to u al-

most everywhere in Q and Tk is continuous and bounded by k. Derivat-

ing Tk(u" �  ) leads to

(4.4)
rTk(u" �  ) = rTk(Tk+P (u")�  )

= �
jTk+P (u")� j�k

(rTk+P (u")�r ) ;

where, by the above mentioned convergences, rTk+P (u") converges

weakly in L2(Q) to rTk+P (u) which proves (4.3). We also deal easily

with the terms involving b; d and f" since it appears in these integrals

a product of the sequence Tk(u"� ) which converges almost everywh-

were in Q and is bounded in L1(Q) with a sequence which converges

at least weakly in L1(Q). Finally, it remains to show that

(4.5)

Z
Q

Aru�rTk(u� ) dx ds � lim inf
"!0

Z
Q

Aru"�rTk(u"� ) dx ds :
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By using (4.4), we split the integral in the right hand side as followsZ
Q

Aru" � rTk(u" �  ) dx ds

=

Z
Q

�
jTk+P (u")� j�k

Aru" � rTk+P (u") dx ds

�
Z
Q

�
jTk+P (u")� j�k

Aru" � r dx ds

= A" � B" ;

where, by the same argument as above, we have

lim
"!0

B" =

Z
Q

�
jTk+P (u)� j�k

Aru � r dx ds :

Therefore (4.5) is a consequence of Fatou's lemma, applied by combin-

ing (4.3) with Tk+P and the positiveness property (1.5). Finally, letting

" �! 0 in (4.2), one gets (1.11).

4.2. Uniqueness.

Let v be an entropic solution. To obtain the uniqueness, we will

show that v = u, u still being the solution obtained by approximation.

To this end, it would be natural to choose Th(u") as test function  

in (1.11). However, as pointed out in [17], Th is not regular enough

which leads to di�culties in order to write the term involving the time

derivative of the test function. Then, it is necessary to regularize the

truncation. Let � > 0. We introduce T �h 2 C
2(R;R) satisfying

(4.6)

8><
>:

(T �h )
0(z) = 0 ; if jzj � h ;

(T �h )
0(z) = 1 ; if jzj � h� � ;

0 � (T �h )
0(z) � (Th)

0(z) � 1 :

Note that jT �h (z)j � jTh(z)j, and (T �h )"(z) = 0 when jzj � h or jzj �
h� �.

In the sequel, let us denote

L(f; u) = f � b � ru� d u :
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We take  = T �h (u") as test function in the entropic formulation (1.11)

satis�ed by v, we have

(4.7)

h Z



Sk(v � T �h (u")) dx
it
0

+

Z t

0

h@tu"; (T �h )
0(u")Tk(v � T �h (u"))i ds

+

Z t

0

Z



ArvrTk(v � T �h (u")) dx ds

�
Z t

0

Z



L(f; v) (T �h )
0(u")Tk(v � T �h (u")) dx ds :

By using (3.4), we write the term involving the time derivative of the

test function as follows

(4.8)

Z t

0

h@tu"; �i ds =
Z t

0

Z



(L(f"; u")�� Aru"r�) dx ds ;

where � = (T �h )
0(u")Tk(v � T �h (u")) and, consequently,

r� = ru"(T �h )
00(u")Tk(v � T �h (u")) + (T �h )

0(u")r(Tk(v � T �h (u"))) :

By (4.8), the entropic formulation (4.7) is equivalent to

(4.9)

h Z



Sk(v � T �h (u")) dx
it
0

+

Z t

0

Z



A(rv � (T �h )
0(u")ru")rTk(v � T �h (u")) dxds

�
Z t

0

Z



Aru"ru"(T �h )
00(u")Tk(v � T �h (u")) dxds

�
Z t

0

Z



(L(f; v)� L(f"; u") (T
�
h )
0(u"))Tk(v � T �h (u")) dxds :

Now, according to [17], let successively � �! 0, " �! 0 and h �! 1.

Di�culties only arise from the third integal in the left hand, denoted by

I� which involves the second derivative of T �h ; the remaining integrals

being treated by using the Lebesgue theorem. Indeed, it is clear that

jSk(v � T �h (u"))j � k jvj+ k h ;

jTk(v � T �h (u"))j � k ;

j(T �h )
0(u")Tk(v � T �h (u"))j � k ;
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and

jrTk(v � T �h (u"))j � (jrTk+h(v)j+ jrTh(u")j) :

Next, we wish to obtain an estimate on I� . Following [17] (see also

[2]), we de�ne another C2 function R�h, satisfying for z � 0: (R�h)
0(z) =

1� (T �h )
0(z), R�h(0) = 0, R�h(�z) = R�h(z):

Take (R�h)
0(u") as test function in (3.4). By using the positivity

of R�h and the fact that (R�h)
00(z) = j(T �h )

00(z)j, we obtain according to

[17] the following estimate

(4.10)

jI� j � k

Z t

0

Z



jL(f"; u")j�ju"j>h�� dx ds

+ k

Z



ju0;"j�ju0;"j>h�� dx :

By Lebesgue's theorem, we can pass to the limit � �! 0 in the right

hand side of (4.10), obtaining without di�culties

lim sup
�!0

jI� j � k

Z t

0

Z



jL(f"; u")j�ju"j>h dx ds+ k

Z



ju0;"j�ju0;"j>h dx :

Collecting these results, we get from (4.9) the following estimate

(4.11)

h Z



Sk(v � Th(u")) dx
it
0

+

Z t

0

Z



Ar(v � Th(u"))rTk(v � Th(u")) dx ds

�
Z t

0

Z



(L(f; v)� L(f"; u") (Th)
0(u"))Tk(v � Th(u")) dxds

+ k

Z t

0

Z



jL(f"; u")j�ju"j>h dx ds+ k

Z



ju0;"j�ju0;"j>h dx :

The assumptions on the sequence of data and the properties of u" re-

called above allow us to apply the Lebesgue theorem to pass to the limit

as " �! 0 in the �rst term of the left hand side as well as in the right

hand side. In addition, the coercivity of A (see (1.5)) and the following

almost everywhere convergence

rTk(v � Th(u")) = �
jv�Th(u")j�k

(rv � �
ju"j�h

ru")

�! �
jv�Th(u)j�k

(rv � �
juj�h

ru) ;
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permit us to apply Fatou's lemma on the second term in the left hand

side.

It remains to deal with h �!1 in the following relation

(4.12)

h Z



Sk(v � Th(u))dx
it
0

+

Z t

0

Z



ArTk(v � Th(u))rTk(v � Th(u)) dxds

�
Z t

0

Z



(L(f; v)� L(f; u)(Th)
0(u))Tk(v � Th(u)) dxds

+ kO(h) ;

where O(h) stands for

Z t

0

Z



(jf j+ kbk
L1(Q)

jruj+ kdk
L1(Q)

juj)�
juj>h

dx ds

+

Z



ju0j�ju0j>h dx :

which goes to 0 as h �!1 because f; u;ru belong to L1(Q).

We search for another expression of the integral in the right hand

side of (4.12). We write, on the one hand,

(4.13)

L(f; v)� L(f; u)(Th)
0(u)

= f � b � rv � d v � (f � b � ru� d u) (Th)
0(u)

= L(f; u) (1� (Th)
0(u))� b � r(v � u)� d (v � u)

and, on the other hand

(4.14)

Z t

0

Z



(b � r(v � u))Tk(v � Th(u)) dx ds

= �
Z t

0

Z



(v � u)b � rTk(v � Th(u))

+ (r � b)(v � u)Tk(v � Th(u)) dx ds :
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By (4.13)-(4.14), inequality (4.12) becomes

(4.15)

h Z



Sk(v � Th(u)) dx
it
0

+

Z t

0

Z



ArTk(v � Th(u))rTk(v � Th(u)) dxds

�
Z t

0

Z



j(v � u) b � rTk(v � Th(u))j dxds

+

Z t

0

Z



j(d� (r � b)) (v � u)Tk(v � Th(u))j dxds

+

Z t

0

Z



jL(f; u)(1� (Th)
0(u))Tk(v � Th(u))j dxds

+ kO(h) :

We remark that 1� (Th)
0(u) tends to 0 as h �!1, and by Lebegue's

theorem the third term of the right hand side can be included in the

general expression kO(h) which tends to 0 as h �!1.

Proceeding as in Section 4 leads to

(4.16)

Z



Sk(v � Th(u))(t) dx

+
a

2

Z t

0

Z



jrTk(v � Th(u))j2 dx ds

�
Z



Sk(v � Th(u))(0) dx

+
1

a
kbkL1(Q)

Z t

0

Z



�jv�Th(u)j<k jv � uj2 dx ds

+ (kdkL1(Q) + kr � bkL1(Q))

�
Z t

0

Z



j(v � u)Tk(v � Th(u))j dx ds

+ kO(h) :

In classical way, by Lebesgue's theorem and Fatou's lemma, letting h go

to 1, we are led to inequality (4.16) where Th(u) is replaced by u and
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the last term in the right hand side vanishes. By using 0 � z Tk(z) �
2Sk(z), 0 � z2 �

jzj�k
� 2Sk(z), we deduce as in Section 2 that

(4.17)

Z



Sk(v � u)(t) dx+
a

2

Z t

0

Z



jrTk(v � u)j2 dx ds

�
Z



Sk(v � u)(0) dx+ C(b; d)

Z t

0

Z



Sk(v � u) dx ds ;

where

C(b; d) = 2 krbk
L1(Q)

+ 2 kdk
L1(Q)

+
1

a
kbk

L1(Q)
:

Therefore, it su�ces to apply Gronwall's lemma to deduce thatZ



Sk(v � u)(t) dx = 0 ;

since v0 = u0, which gives v = u.

5. Lower regularity requirement on b.

Our aim in this section is to weaken the regularity requirement on

b, replacing the L1(Q) condition by b 2 Ls(Q) for s > q0; precisely one

has

Theorem 3. Let A; d; g satisfy (1:3)-(1:5) and let b 2 Ls(Q) with s >
q0 = q=(q�1) (recall that 1 � q < (N +2)=(N +1)) and r� b 2 L1(Q).

Then, there exists a weak solution of (1:1) in the sense of De�nition 1.

Proof. The outline of the proof is the same of Theorem 1. Consider

the approximate solution of (3.4). In the �rst step, we show, according

to (3.5), that

(5.1) u" is uniformly bounded in L1(0; T ;L1(
)) :

Reproducing the proof of Proposition 1, we take � = Tk(u") as test

function in (3.4), and we �nd (3.8). All terms are treated as above

except those involving u"b � rTk(u") which becomes��� Z
Q

u"b � rTk(u") dx dt
���

�
a

2

Z
Q

jrTk(u")j2 dx dt+
1

2 a

Z
Q

�
ju"j�k

jb u"j2 dx dt ;
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by using Holder's and Young's inequalities. Since s > 2 the last integral

is bounded by (1=2 a) k2 (T j
j)s=(s�2) kbk2
Ls(Q)

. Then, from (3.12), we

deduce that Z



Sk(u")(t) dx � �0 + �1

Z t

0

Z



Sk(u") dx ds

holds where �0 depends on kfkL1(Q); ku0kL1(
) and kbkLs(Q) and �1
depends on kdkL1(Q), krbkL1(Q). Gronwall's Lemma permits us to

conclude as in Proposition 1 and leads to (5.1).

To establish an estimate on the solutions in Lq(0; T;W
1;q
0 (
)), we

follow step by step the proofs of estimate (3.6) and of Lemma 1 which

need to be adapted. For that, take � = �n(u") in (3.4). We deduce

from (3.15)

a

Z
Bn

jru"j2 dx dt �
Z
Q

j�n(u")f"j dx dt+
Z



	n(u0;") dx

+ � kdk
L1(Q)

+

Z
En

jb � ru"j j�n(u")j dx dt

� kfk
L1(Q)

+ ku0k
L1(
)

+ � kdk
L1(Q)

+
�Z

En

jbjq
0

dx dt
�1=q0�Z

Q

jru"jq dx dt
�1=q

:

Since s > q0, using Holder's inequality, with exponents s=q0 and s=(s�
q0), yields the following substitute to (3.6)

(5.2)

Z
Bn

jru"j2 dx dt � C0 + C1kru"kLq(Q) jEnj(s�q
0)=(sq0) ;

where C0 stands for

1

a
(kfk

L1(Q)
+ ku0k

L1(
)
+ � kdk

L1(Q)
)

and C1 = kbkLs(Q).
Recall that q < 2. Therefore, Holder's inequality yieldsZ

Bn

jru"jq dx dt � jBnj(2�q)=2
�Z

Bn

jru"j2 dx dt
�q=2

� jBnj(2�q)=2(5.3)

� (Cq=20 + C
q=2

1 kru"kq=2
Lq(Q)

jEnj((s�q
0)=(sq0))(q=2)) :
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Let r and K as in Lemma 1. By using (2.6), one getsZ
Bn

jru"jq dx dt

� C
q=2

0

1

nr(2�q)=2

�Z
Bn

ju"jr dx dt
�(2�q)=2

+ C
q=2

1 kru"kq=2
Lq(Q)

ku"kr((s�q
0)=(sq0))(q=2)

Lr(Q)

�
1

nr((s�q
0)=(sq0))(q=2)+r(2�q)=2

�Z
Bn

ju"jr dx dt
�(2�q)=2

:

Repeated use of Holder's inequality, as in (2.11), implies

1X
n=K+1

Z
Bn

jru"jq dx dt

� C
q=2

0

� 1X
n=K+1

1

nr(2�q)=q

�q=2
ku"kr(2�q)=2

Lr(Q)

+ C
q=2

1 kru"kq=2Lq(Q)
ku"kr(((s�q

0)=(sq0))(q=2)+(2�q)=2)
Lr(Q)

(5.4)

�
� 1X
n=K+1

1

nr(((s�q
0)=(sq0))+(2�q)=q)

�q=2
:

The conditions

(5.5) r
2� q

q
> 1 and r

�s� q0

s q0
+

2� q

q

�
> 1

ensure the convergence of the series. As in Section 2, we deduce from

(2.8), that

kru"kqLq(Q)
� C(K)

+ �(K) (ku"kr(2�q)=2
Lr(Q)

+ kru"kq=2
Lq(Q)

ku"kr(((s�q
0)=(sq0))(q=2)+(2�q)=2)

Lr(Q)
) ;

holds where �(K) tends to zero asK goes to in�nity. Therefore, Young's

inequality yields

(5.6)

kru"kq
Lq(Q)

� C(K)

+ �(K) (ku"kr(2�q)=2
Lr(Q)

+ ku"kr((s�q
0)=(sq0)q+2�q)

Lr(Q)
) :
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If we choose r = q (N + 1)=N , estimate (2.17) becomes

ku"krLr(Q) � C ku"k
q

Lq(0;T ;Lq
?
(
))

:

Using Sobolev's theorem, as in Section 2, we derive the following esti-

mate on u" in L
q(0; T ;Lq

?

(
))

ku"k
q

Lq(0;T ;Lq
?
(
))

� C(K) + �(K) (ku"k
q(2�q)=2

Lq(0;T ;Lq
?
(
))

+ ku"k
q((s�q0)=(sq0)q+2�q)

Lq(0;T ;Lq
?
(
))

) :

Since (2� q)=2 < 1 and q (s� q0)=(s q0) + 2 � q < 1, we can use again

Young's inequality which, choosing K large enough, leads to a bound

on u" in L
q(0; T ;Lq

?

(
)) and, thus, in Lq(0; T ;W
1;q
0 (
)). Finally, let

us verify the compatibility of conditions (5.5). For

r = q
N + 1

N
;

the �rst condition is equivalent to

1 � q <
N + 2

N + 1

and the second condition means that

s >
(N + 1) q0

q0 � 1

which is clearly satis�ed since it is yet required s > q0.

Finally, one can easily verify that Lemma 2, Lemma 3, Corollary

2 and Lemma 4 are valid in the context of Theorem 3 and the proof

follows.
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