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Convexity and uniqueness

in a free boundary problem

arising in combustion theory

Arshak Petrosyan

Abstract. We consider solutions to a free boundary problem for the

heat equation, describing the propagation of ames. Suppose there is a

bounded domain 
 � QT = R
n � (0; T ) for some T > 0 and a function

u > 0 in 
 such that

ut = �u ; in 
 ;

u = 0 and jruj = 1 ; on � := @
 \QT ;

u(�; 0) = u0 ; on 
0 ;

where 
0 is a given domain in Rn and u0 is a positive and continuous

function in 
0, vanishing on @
0. If 
0 is convex and u0 is concave

in 
0, then we show that (u;
) is unique and the time sections 
t

are convex for every t 2 (0; T ), provided the free boundary � is locally

the graph of a Lipschitz function and the �xed gradient condition is

understood in the classical sense.

1. Introduction and main result.

In this paper we consider solutions to a free boundary problem for

the heat equation. Suppose there is a domain 
 � QT := R
n � (0; T )

421
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for some T > 0 and a positive smooth function u in 
 such that

ut = �u ; in 
 ;(1)

u = 0 and jruj = 1 ; on � ;(2)

u(�; 0) = u0 ; on 
0 ;(3)

where � := @
 \ QT is the (free) lateral boundary of 
, 
0 � R
n is

the initial domain and u0 is a prescribed positive continuous function

in 
0, that vanishes continuously on �0 := @
0. Then we say the pair

(u;
) or, when there is no ambiguity, 
 to be a solution to problem

(P). This problem, in mathematical framework, was introduced by L.

A. Ca�arelli and J. L. V�azquez [CV]. It describes propagation of so-

called premixed equi-di�usional ames in the limit of high activation

energy. In this problem the time sections

(4) 
t = fx 2 Rn : (x; t) 2 
g

represent the unburnt (fresh) zone in time t, �t := @
t corresponds

to the ame front, and u = c (Tc � T ) is the normalized temperature.

For further details in combustion theory we refer to paper [V] of J. L.

V�azquez.

The existence of weak solutions to problem (P) as well as their

regularity under suitable conditions on the data were established in

[CV]. However, we should not expect any uniqueness result unless we

impose some special geometrical restrictions. In this paper we study the

case when the initial domain 
0 is bounded and convex, and the initial

function u0 is concave. Throughout the paper we make the following

assumptions concerning solutions (u;
) to problem (P). First, the

boundary of 
 consists of three parts

(5) @
 = 
0 [ � [ 
T ;

where 
T is a nonvoid open set in the plane t = T . The presence of

nonempty 
T excludes the extinction phenomenon in time t 2 [0; T ].

This assumption is rather of technical character, that can be avoided

with the following simple procedure. Consider the extinction time

(6) T
 = sup ft : 
t 6= ?g :

Then every domain 
(�) = 
 \ f0 < t < �g, � 2 (0; T
), has nonempty

\upper bound" 
� . Therefore we can consider �rst 
(�) instead of 


and then let � �! T
.
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Next, we assume that for every (x0; t0) 2 � there exists a neigh-

borhood V in Rn � R such that (after a suitable rotation of x-axes)

(7) 
 \ V = f(x; t) = (x0; xn; t) : xn > f(x0; t)g \ V \QT ;

where f is a Lipschitz function, de�ned in

V 0 = f(x0; t) : there exists xn with (x0; xn; t) 2 V g :

Further, for u we assume that it is continuous up to the boundary @


and can be extended smoothly through 
T . The gradient condition in

(2) is understood in the classical sense

(8) lim

t3y!x

jru(y; t)j = 1 ;

for every x 2 @
t, 0 < t � T .

The main result of this paper is as follows.

Theorem 1. In problem (P) let 
0 be a bounded convex domain and

u0 be a concave function in 
0. Suppose that (u;
) is a solution to this

problem in the sense described above. Then (u;
) is a unique solution.

Moreover, the time sections 
t of 
 are convex for every t 2 (0; T ).

The plan of the paper is as follows. In Section 2 we prove a theorem

on the convexity of level sets of solutions to a related Dirichlet problem.

In Section 3 we recall some properties of caloric functions in Lipschitz

domains. And �nally in Section 4 we prove Theorem 1.

2. Convexity of level sets.

In this section we establish some auxiliary results, which are, how-

ever, of independent interest.

Let u0 and 
0 be as in problem (P) and a domain 
 � QT meets

conditions (5) and (7). Then by the Petrowski criterion [P] 
 is a

regular domain for the Dirichlet problem for the heat equation (in the

Perron sense), and its parabolic boundary is given by

(9) @p
 = 
0 [ � :
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We �x one such domain 
 and denote by u the solution to the Dirichlet

problem

(10)

8><
>:

ut = �u ;

u = u0 ; on 
0 ;

u = 0 ; on � :

Theorem 2. Let the time sections 
t of the domain 
 be convex for

t 2 [0; T ]. Let also u0 be a concave function on 
0, positive in 
0 and

vanishing on @
0. Then the level sets

(11) Ls(u(�; t)) = fx 2 
t : u(x; t) > sg

are convex for every �xed s > 0 and t 2 (0; T ), where u is the solution

to the Dirichlet problem (10).

The proof is based on the Concavity maximum principle originally

due to N. Korevaar [K1] and [K2]. For a function v on 
 set

(12) C(x; y; t) =
v(x; t) + v(y; t)

2
� v

�x+ y

2
; t
�
:

The function C is de�ned on an open subset D of the �ber product

e
 = f(x; y; t) : (x; t); (y; t) 2 
g:

Note that D = e
 if the time sections of 
 are convex. Note also that

if v is extended to the \upper bound" 
T of 
, then C is extended to

the \upper bound" DT of D. We denote @pD = D n (D [DT ).

Lemma (Concavity maximum principle). Let v in C
2;1
x;t (
)\C(
[
T )

satisfy to a parabolic equation

(13) vt = aij(t;rv) vij + b(t; x; v;rv) ; in 


with smooth coe�cients and such that b is nonincreasing in v and jointly

concave in (x; v). Then either C � 0 in D [DT or

0 < sup
(x;y;t)2D[DT

C(x; y; t) = lim sup
(x;y;t)!@pD

C(x; y; t) :
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Proof. See [K2], the proof of Theorem 1.6. Though the result is

proved there for cylindrical domains, the proof is valid also in our case.

Remark. There are several formulations of this principle in the el-

liptic case. The strongest version states that it is su�cient to require

harmonic concavity of b in (x; v) instead of concavity; see B. Kawohl

[Ka], and A. Greco and G. Porru [GP]. In the parabolic case, in or-

der to use such an extension, it seems necessary to assume also the

nonnegativeness of vt; see A. Kennington [Ke].

Proof of Theorem 2. Assume �rst, that the functions f in the local

representations (7) of 
 are smooth in (x0; t) and strictly convex in x0

and that u0 is smooth. These assumptions imply the smoothness up

to @
 of the solution u to (10). Also, the positivity of u0 implies the

positivity of u. De�ne now v = log (u). We claim then that v(�; t) are

concave functions in 
t for every t 2 (0; T ]. Clearly, this will imply the

statement of the theorem. For this purpose, we consider the concavity

function C, de�ned above, and show that C � 0 on D [ DT . Suppose

the contrary. Then take a maximizing sequence (xk; yk; tk) 2 D [ DT

such that

(14) lim C(xk; yk; tk) = sup
D[DT

C > 0 :

Without loss of generality we may assume that there exists limit

(x0; y0; t0) = lim (xk; yk; tk) :

Direct calculation shows, that v satis�es

(15) vt = �v + jrvj2 ;

in 
 and hence the Concavity maximum principle is applicable. Hence

we may assume (x0; y0; t0) 62 D [ DT . We want to exclude also the

other possibilities. First, the case t0 = 0 and x0; y0 2 
0 is impossible,

since v(�; 0) = log (u0) is concave in 
0. Next, x0 2 �t0 but y0 6= x0 is

also excluded by the strict convexity of 
t's, since then C(xk; yk; tk) �!

�1. So, it remains to consider the last case x0 = y0 2 �t0 . We observe

now that by the boundary point lemma, the outward spatial normal

derivatives u� < 0 on � [ �T . Besides, u� < 0 also on �0 since u0
is concave and positive in 
0 and vanishes on �0. By the smoothness

assumption we have therefore u� � �"0 < 0 on �. Hence we can carry
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out the same reasonings as in [CS, Proof of Lemma 3.1] (see also [GP,

Lemma 3.2]) to obtain that lim inf C(xk; yk; tk) < 0, which contradicts

(14). Therefore C � 0 in D [DT and v(�; t) is concave in 
t for every

t 2 (0; T ]. This proves the theorem in the considering case.

To prove the theorem in the general case, we use approximation of


 by domains with smooth lateral boundary and with strictly convex

time sections, and relevant smooth concave approximations of u0.

3. On caloric functions.

In this section we recall some properties of caloric functions in Lip-

schitz domains. They will be used in the next section, where we prove

Theorem 1. The main reference here is the paper [ACS] by I. Athana-

sopoulos, L. Ca�arelli and S. Salsa.

As in the previous section we consider a domain 
, satisfying con-

ditions (5) and (7). Let also u be the solution to (10). Consider a

neighborhood V of a point (x0; t0) 2 �, where (7) holds. The function

u vanishes on �\V , is positive and satis�es the heat equation in 
\V .

In other words, u is caloric.

We start with the following lemma from [ACS], which states that a

caloric function u is \almost harmonic" in time sections near the lateral

boundary �.

Lemma 4 ([ACS, Lemma 5]). There exist " > 0 and a neighborhood

Q of the point (x0; t0) 2 � such that the functions

(16) w+ = u+ u1+" ; w� = u� u1+" ;

are respectively sub- and superharmonic in Q \ 
 \ ft = t0g.

We will need also the following lemma on asymptotic development

of u near the boundary point (x0; t0).

Lemma 5 [ACS, Lemma 6]. Suppose there exists an n-dimensional

ball B � 
c \ ft = t0g such that B \ � = f(x0; t0)g. Then near x0 in


t0

(17) u(x; t0) = �(x� x0; �)
+ + o (jx� x0j) ;

for some � 2 [0;1) and where � denotes the outward radial direction

of B at (x0; t0).
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In the next lemma we show that � in (17) is in fact the nontan-

gential limit of jru(y; t0)j as y �! x0.

Lemma 6. Under the conditions of Lemma 5, let also K � 
t0 be

an n-dimensional truncated cone with the vertex at (x0; t0) such that

jx� x0j � c1 dist(x;�t0) for every x 2 K and some constant c1. Then

(18) lim
K3y!x0

ru(y; t0) = � � ;

where � and � are as in the asymptotic development (17).

Proof. By [ACS, Corollary 4], there exists a neighborhood V of the

point (x0; t0) such that

(19) jut(x; t)j � c2
u(x; t)

dx;t
; dx;t = dist (x;�t) ;

for all (x; t) 2 V \ 
. Take an arbitrary sequence yk �! x0, yk 2 K,

and consider the functions

(20) vk(z) =
u(yk + rkz; t0)

rk
; rk = jyk � x0j ;

de�ned on the ball B = B(0; �), � = 1=(2 c1). Using (17) and (19), we

obtain that for large k

(21) jvk(z)j < (�+ 1) (1 + �)

and

(22) j�vk(z)j = rk j�u(yk + rkz; t0)j = rk jut(yk + rkz; t0)j � 2 c1 c2 ;

uniformly in B. Then C1;� norms of vk are locally uniformly bounded in

B for a � 2 (0; 1); see e.g. [LU]. Therefore a subsequence of vk converges

locally in C1 norm to a function v0 in B. We may also assume that over

this subsequence there exists e0 = lim ek, where ek = (yk�x0)=jyk�x0j.

Then, using (17), we can compute that v0(z) = �(z; �) +�(e0; �) in B,

hence rv0(0) = ��. Therefore, over a subsequence, limru(yk; t0) =

limrvk(0) = rv0(0) = ��. Since the sequence yk �! x0, yk 2 K was

arbitrary, this proves the lemma.
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4. Proof of the main theorem.

In this section 
 will be a solution to problem (P), under conditions

of Theorem 1. Denote by 
� the spatial convex hull of 
, in the sense

that the time sections 
�t are the convex hulls of 
t for every t 2 (0; T ).

Since 
 is assumed to satisfy (5) and (7), 
� will also satisfy similar

conditions. In particular, we may apply the results of two previous

sections to 
�. The lateral boundary of 
� will be denoted by �� and

the solution to the Dirichlet problem, corresponding to (5), by u�.

In the proof of Theorem 1 we use ideas of A. Henrot and H.

Shahgholian [HS]. The key step is to prove the following lemma.

Lemma 7. For every x0 2 ��t0 , 0 < t0 � T ,

(23) lim inf

�

t0
3y!x0

jru�(y; t0)j � 1 :

Proof. From Lemma 4 it follows that there are " and s0 such that

the function w+(y) = u�(y; t0) + u�(1+")(y; t0) is subharmonic in the

ringshaped domain fu�(�; t0) < s0g. Let now y 2 
�t0 and u�(y; t0) =

s < s0. Then y 2 `�s = @Ls(u
�(�; t0)). By Theorem 2, L�s = Ls(u

�(�; t0))

is convex and therefore there exists a supporting plane in Rn to L�s
at the point y. After a suitable translation and rotation in spatial

variable we may assume that y = 0, the supporting plane is x1 = 0, and

L�s � fx1 < 0g. Let x� 2 @
�t0 have the maximal positive x1-coordinate.

Since 
�t0 is the convex hull of 
t0 , there must be x� 2 @
�t0 \ @
t0 .

Take now � 2 (0; 1) and consider a function v(x) = w+(x)+� x1. Since


�t0 \ fx1 > 0g � fu�(�; t0) < s0g, v is subharmonic in 
�t0 \ fx1 > 0g

and therefore it must admit its maximum value on the boundary of this

domain. Note that the maximum can be admitted either at x� or at y =

0. We show that the former case cannot occur. Indeed, the plane x1 =

x�1 is supporting to the convex set 
�t0 and therefore there exists a ball

B � 
�t0
c
� 
c

t0
, \touching" both boundaries @
�t0 and @
to at x

� and

with the outward radial direction � = �e1 = (�1; 0; : : : ; 0). Therefore

from Lemma 5 we will have the following asymptotic developments for

u and u� near x� in 
t0 and 
�t0 respectively

u(x; t0) = �(x�1 � x1)
+ + o (jx� x�j) ;(24)

u�(x; t0) = ��(x�1 � x1)
+ + o(jx� x�j) :(25)
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Since (8) is satis�ed at the point x�, we conclude by Lemma 6 that

� = 1. Next, u� � u in 
 and hence �� � � = 1. Observe now that w+

admits the same representation as (25). Hence for the function v(x)

introduced above

(26) v(x) = (�� � �) (x�1 � x1) + � x�1 + o (jx� x�j) :

Let now �0 be a spatial unit vector with (�0; e1) < 0 such that x� +

h �0 2 
t0 for small h > 0. The existence of such a �0 follows from the

local representation of @
t0 as the graph of a Lipschitz function. Then

v(x� + h �0) > v(x�) by (26) and consequently v has no maximum at

x�. Therefore v admits its maximum at the origin y = 0. Hence

(27) jrw+(0)j = lim
h!0+

w+(0)� w+(h e1)

h
� lim

h!0+

� h� 0

h
= � :

Letting � �! 1 we obtain that jrw+(y)j � 1, provided u�(y; t0) < s0.

Now observe that rw+ = (1+(1+")u�")ru�. This proves the lemma.

Proof of Theorem 1. Prove �rst that the domain 
 coincides with

its spatial convex hull 
�, studied above. For this purpose we apply

the Lavrentiev principle. As a reference point we take xmax 2 
0, a

maximum point for the initial function u0. Without loss of generality

we may assume that xmax = 0. Since u0 is concave,

(28) u0(�x) � u0(x) ;

for every � � 1 and x 2 
0(�) = ��1
0. For � � 1 de�ne

(29) u��(x; t) = u�(�x; �2 t) ;

in 
�(�) = f(x; t) : (�x; �2t) 2 
�g. Suppose now that 
� 6� 
. Then

(30) �0 = inf f� : 
�(�) � 
g > 1 ;


�(�0) � 
, and there exists a common point (x0; t0) 2 ��(�0) \ �

with t0 2 (0; T ). Show that this leads to a contradiction. Indeed, by

construction, u��0 satis�es the heat equation in 
�(�0). Comparing the

values of u��0 and u on the parabolic boundary @p

�(�0) (see (28)), we

obtain that u��0 � u in 
�(�0). Let now � be the normal vector of

a supporting plane in Rn to the convex domain 
�(�0)t0 at the point

x0, pointing into 
�(�0)t0 . From lemmas 5, 6 and 7 and the de�nition
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of u�� we conclude that ru��0(x0 + h �; t0) �! �0 �
�� with �� � 1, as

h �! 0+. From elementary calculus there exists � 2 (0; 1) such that

(31)

@

@�
u(x0 + � h �; t0)

@

@�
u��0(x0 + � h �; t0)

=
u(x0 + h �; t0)

u��0(x0 + h �; t0)
� 1

and hence

(32) lim sup

t0

3y!x0

@

@�
u(y; t0) � lim

h!0+

@

@�
u��0(x0 + h �) = �0 �

� > 1 ;

which violates condition (8) at the point (x0; t0). Therefore 
� = 
,

i.e. the time sections 
t are convex, for every t 2 (0; T ).

It remains to prove the uniqueness of 
. For this we make the

following observation. Let 
0 be another solution. Then if everywhere

in the proof of inclusion 
� � 
 above we replace 
� by (
0)�, but

leave 
 unchanged, we will obtain that (
0)� � 
. Since 
 and 
0 are

interchangeable, also we will have 
� � 
0. Therefore 
0 = 
 and the

proof of Theorem 1 is completed.
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