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An X-ray transform

estimate in R
n

Izabella  Laba and Terence Tao

Abstract. We prove an x-ray estimate in general dimension which is

a stronger version of Wol�'s Kakeya estimate [12]. This generalizes the

estimate in [13], which dealt with the n = 3 case.

1. Introduction.

Let n � 3 be an integer. Let B
n�1(0; 1) be the unit ball in R

n ,

and for all x; v 2 B
n�1(0; 1) de�ne the line segment l(x; v) 2 Rn by

l(x; v) = f(x+ v t; t) : t 2 [0; 1]g ;

where we have parameterized Rn as Rn�1 �R in the usual manner. Let

G be the set of all such line segments; this space is thus identi�ed with

B
n�1(0; 1)�B

n�1(0; 1). If l 2 G, we write x(l) and v(l) for the values

of x and v respectively such that l = l(x; v).

For any function f on Rn , de�ne the x-ray transform Xf on G by

Xf(l) =

Z
l

f :

We consider the question of determining the exponents 1 � p; q; r � 1
and � � 0 such that we have the bound

(1) kXfkLqvLrx . kfkLp� ;

where L
p

�
is the Sobolev space (1 +

p
�� )��Lp.
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From scaling considerations (or by letting f be a bump function

adapted to a small ball) we have the necessary condition

(2) 1 +
n� 1

r
� n

p
� � ;

while if one lets f be adapted to a tubular neighbourhood of a line

segment l 2 G, we obtain the condition

(3)
n� 1

q
+
n� 1

r
� n� 1

p
� � :

From the Besicovitch set construction we have

(4) (r; �) 6= (1; 0) :

It was conjectured by Drury [7] and Christ [5] that these three necessary

conditions are in fact su�cient. In [5] this conjecture was shown to be

true when p � (n+ 1)=2.

By H�older, Sobolev, and interpolation with trivial estimates, the

full conjecture is equivalent (modulo endpoints) to the Kakeya conjec-

ture, which asserts that (1) holds for q = n, r = 1, p = n, and � = "

for arbitrarily s mall ".

Wol� [12] showed (1) was true when

q =
(n� 1) (n+ 2)

n
; r = 1 ; p =

n + 2

2
; � =

n� 2

n + 2
+ " ;

this can of course be interpolated with the results in [5] to yield further

estimates. However, this is not the best one can do in the p = (n+2)=2

case. From (2) and (3) one expects to have (1) for

(5)

q =
(n� 1) (n+ 2)

n
; r =

(n� 1) (n+ 2)

n� 2
;

p =
n + 2

2
; � = 0 ;

this would imply the results of [12] by Sobolev embedding in the v

variable. Although we are not able to get that sharp result, we are able

to obtain the following interpolant, which is our main result.
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Theorem 1.1. For any " > 0, we have (1) for

(6)

q =
(n� 1) (n+ 2)

n
; r = 2 (n+ 2) ;

p =
n + 2

2
; � =

n� 3

2 (n+ 2)
+ " :

This result was obtained in the three dimensional case n = 3 by

Wol� [13], and the result is sharp up to endpoints for that value of n

and p. Our arguments shall be based on those in [13], with some mild

simpli�cations based on the bilinear approach in [10].

Theorem 1.1 can be stated in a discretized adjoint form, which is

more convenient for applications. Namely1:

Theorem 1.2. Let " > 0, 0 < � � 1, and 1 � m . �
1�n

. Let E,
E 0 be �-separated subsets of B

n�1(0; 1), and let A � E � E 0 � G be a

collection of line segments such that

(7) jfl 2 A : v(l) = vgj � m;

for all v 2 E. Then we have

(8)
X
l2A

�
Tl


p0
. �

�n=p+1�"
m

1=q�1=r (�n�1 jAj)1=q0 ;

where p; q; r are as in (6).

As observed in [12], an x-ray estimate of this form reveals some in-

formation on Besicovitch sets in Rn . Namely, such sets have Minkowski

dimension at least (n + 2)=2, and if the dimension is exactly (n+ 2)=2

then the line segments w hich comprise the set must be \sticky" in a

certain sense. This observation was made rigorous in [8], where the re-

sults of [13] were applied (together with those of [3] and some additional

arguments) in the three-dimensional case to improve slightly upon the

Minkowski bound just stated. We will use Theorem 1.1 to achieve a

similar result in higher dimensions [9]. Fortunately, one does not need

a sharp value of r in (6) to obtain this type of observation, as long as

r is �nite of course.

1
The notation in the theorem will be explained shortly.
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To illustrate the connection between x-ray estimates and Besicov-

itch sets, we note the following simple application of Theorem 1.2:

Corollary 1.3. Let 0 � � � n � 1, and E be a bounded subset of R
n

such that, for each direction ! 2 S
n�1

, E contains a family of unit line

segments parallel to !, whose union has Minkowski dimension � + 1.

Then the Minkowski dimension of E is at least (n+ 2)=2 + �=4.

The proof follows standard discretization arguments (see e.g. [1],

[2]) and will be omitted. A similar result holds when Minkowski di-

mension is replaced by Hausdor�. This corollary is stronger than the

corresponding corollary of the Kakeya estimate in [12], which covers

the � = 0 case. If one had an x-ray estimate for (5) then one would be

able to improve the �=4 term to the optimal � (n� 2)=(2n� 2).

2. Notation.

We use 0 < � � 1 and 0 < "� 1 to denote certain small numbers,

and N � 1 denotes a certain large integer. If l is a line segment in

G, we use Tl to denote the �-neighbourhood of l, which is thus a � � 1

tube.

We write A . B for A � CB, A� B for A � C
�1
B, and A / B

for A � C (log (1=�))�B, and C, � are quantities which vary from line

to line and are allowed to depend on " and N but not on �. We write

A � B for A . B . B and A � B for A / B / B.

Our argument will require the introduction of many quantities,

which measure various angles or cardinalities in a collection of tubes.

For purposes of visualizing the argument we recommend that one sets

the values of these quantities as follows

jEj � jEij � �
1�n

; jAj � �
1�n

m;

� � � � � � 1 ; � � pi � w ;

for i = 1; 2. The treatment of this case can be done while avoiding the

more technical tools in the argument such as the two-ends and bilinear

reductions, and most of the uniformization theory, while still capturing

the core ideas of the argument. To improve the value of r in (6) one

would probably start by considering this case.



An X-ray transform estimate in R
n 379

3. Derivation of Theorem 1.1 from Theorem 1.2.

Assume that Theorem 1.2 holds. In this section we shall see how

Theorem 1.1 follows. The argument is standard (cf. [1], [2], [12], [13],

[10]).

By a Littlewood-Paley decomposition, and giving up an epsilon in

the � index, one may assume that f has Fourier support in an annulus

f� : j�j � �
�1g. The case � & 1 is easy to handle, so we assume

henceforth that 0 < � � 1.

Fix �. It is then well known that (1) follows from the variant

kX�fkLqvLrx / �
�� kfkp ;

where

X�f(l) = �
1�n

Z
Tl

f :

By duality this is equivalent to

kX�

�Fkp0 / �
��kFk

L
q0

v L
r0

x

;

for all F on G, where X
�

�
is the adjoint x-ray transform

X
�

�
F = �

1�n

Z
G

F (l)�
Tl
dx dv :

Let E , E 0 by any �-separated subsets of Bn�1(0; 1). By discretization it

su�ces to show that

k�n�1
X
v2E

X
x2E0

F (l(x; v))�
Tl(x;v)

kp0

/ �
��

�
�
n�1

X
v2E

�
�
n�1

X
x2E0

jF (l(x; v))jr0
�q0=r0�1=q0

uniformly in E , E 0.
Fix E , E 0. By pigeonholing and positivity it su�ces to verify this

when F is a characteristic function F = �
A

for some A � E � E 0, so

that we reduce to X
l2A:v(l)2E

�
Tl


p0

/ �
(n�1)(1�1=r�1=q)��

�X
v2E

jfl 2 A : v(l) = vgjq0=r0
�1=q0

:
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By a further pigeonholing and re�ning of E , we may assume that there

exists 1 � m / �
1�n such that

(9)
m

2
� jfl 2 A : v(l) = vgj � m;

for all v 2 E . Our task is then to show that X
l2A:v(l)2E

�
Tl


p0
/ �

(n�1)(1�1=r�1=q)��
m

1=r0 jEj1=q0 :

From (9) we then have jAj � m jEj. The claim then follows from The-

orem 1.2 and the fact that (2) is almost satis�ed with equality.

It thus remains to prove Theorem 1.2.

4. A three-dimensional estimate.

For any collection A of line segments, we follow Wol� [13] (see also

[14]) and de�ne the plate number p(A) by

(10) p(A) = sup
R

jfl 2 A : Tl � Rgj
w

�

;

where R ranges over all rectangles of dimension C�C w�C ��� � ��C �.

By considering the w � � case we see that p(A) & 1 for any non-empty

A.

The purpose of this section is to prove the following distributional

estimate on a set E assuming that the directions of A are e�ectively

constrained to a two-dimensional slab, and the intersection of the tubes

Tl with E satisfy a certain \two-ends" condition of the type used in [11],

[12]. This lemma will be key in the main argument, and also employs

several techniques, notably a hairbrush argument and a uniformization

argument (both due to Wol�), which will re-appear in slightly di�erent

form in the sequel.

Lemma 4.1 ([13]). Let N � 1 be an integer, �
C . � � 1, E be a

subset of R
n
, and let A � E � E 0 be a collection of lines satisfying (7)

which satisfy the uniform density estimate

(11) jTl \Ej � � �
n�1
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and the two-ends condition

(12) jTl \E \B(x; �1=N)j / �
"=2N

� �
n�1

;

for all l 2 A; x 2 Rn . Suppose also that the set of directions fv(l) : l 2
Ag is contained in a C � C � � C � � � � � � C � box in B

n�1(0; 1) for

some � . � . 1. Then, if � is su�ciently small depending on " and N ,

we have

(13) jEj ' �
C=N

�
2 jAjm�1=2

�
�1=2 p(A)�1=2 �n�1=2 :

Proof. We repeat the argument in [13]. We may assume that A is

non-empty, and that E is contained in
S
l2A

Tl.

For every l 2 A and dyadic � . � . 1, 1 � � . �
�C , we let

Yl;�;�;A � Tl \ E denote the set

Yl;�;�;A

=
n
x 2 Tl \ E :

X
l02A: �+jv(l)�v(l0)j��

�
T
l0

(x) �
X
l02A

�
T
l0

(x) � �

o
:

(14)

In other words, Yl;�;�;A consists of those points x in Tl \X which lies

in about � tubes from A, most of which make an angle of about � with

Tl. From the pigeonhole principle we see that

(15) Tl \E =
[

�.�.1

[
1��.��C

Yl;�;�;A :

We now prove a technical lemma which allows us to uniformize � and

�. This type of argument will also be used in the sequel. (For a more

general formulation of this type of argument, see [13]). A somewhat

similar lemma appears in [4].

Lemma 4.2. Let the notation be as above. Then there exist quantities

� . � . 1, 1 � � . �
�C

and sets

A(2) � A(1) � A(0) = A

and for each i = 1; 2, l 2 A(i)
there exists a set

Y
(i)

l
� Tl \E
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such that

jA(i)j � jAj ;(16)

jY (i)

l
j � � �

n�1
;(17)

and

(18) Y
(i)

l
� Y

l;�(i);�(i); eA(i) ;

for some set A(i) � eA(i) � A(i�1)
and �

(i)
; �

(i)
satisfying

�
C=N

� . �
(i) . �

�C=N
� ;(19)

�
C=N

� . �
(i) . �

�C=N
� :(20)

The implicit constants may depend on N .

Proof. The �rst stage shall be to construct sequences

A = A0 � A1 � � � � � AN2 ;

Tl \E = Yl;0 � Yl;1 � � � � � Yl;N2 ;

and quantities �k; �k for all 1 � k � N
2 and l 2 Ak, such that

jAkj � jAj;(21)

jYl;kj � � �
n�1

;(22)

and

(23) Yl;k � Yl;�k;�k;Ak�1
;

for all 1 � k � N
2.

To do this, suppose inductively that 0 � k < N
2 is such that Ak

and Yl;k have been constructed for all l 2 Ak. From (15) we have

Yl;k �
[

�.�.1

[
1��.��C

Yl;�;�;Ak
:
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By the pigeonhole principle, for every l 2 Ak one can thus �nd �k+1(l),

�k+1(l) such that

jYl;k+1j � jYl;kj ;
where

Yl;k+1 = Yl;k \ Yl;�k+1(l);�k+1(l);Ak
:

By the pigeonhole principle again, there exists �k+1, �k+1 independent

of l such that the set

Ak+1 = fl 2 Ak : �k+1(l) = �k+1; �k+1(l) = �k+1g

satis�es (21). It is clear that this construction gives the desired prop-

erties.

By the pigeonhole principle, there must exist 1 � k1 < k2 � N
2

and �, � such that

�
C=N

� / �ki / �
�C=N

�

and

�
C=N

� / �ki / �
�C=N

�

for i = 1; 2. The claim then follows by setting A(i) = Aki
and Y

(i)

l
=

Yl;ki .

Let the notation be as in the above lemma. From (17) and (16) we

have X
l2A(2)

jY (2)

l
j � � �

n�1jAj ;

which we rewrite as Z
E

X
l2A(2)

�
Y
(2)
l

� � �
n�1jAj :

From (18), the nesting A(2) � eA(1), and (19), the integrand is bounded

by �
�C=N

�. We thus see that � and � are naturally related by the

estimate

(24) jEj� ' �
C=N

� �
n�1jAj :

One can reverse the inequality in (24), but we shall not need to do so

here.
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From (21), A(2) is non-empty. Let l0 be an arbitrary element of

A(2). Consider the \hairbrush" Al0

brush de�ned by

Al0

brush = fl 2 A(1) : Tl0\Tl 6= ?; �
C=N

� / �+jv(l0)�v(l)j / �
�C=N

�g :

From (18), (19), (20) we see that

X
l2A

l0
brush

�
Tl

(x) ' �
C=N

� ;

for all x 2 Y
(2)

l0
. Integrating this using (17), we obtain

X
l2A

l0
brush

jTl \ Y (2)

l0
j ' �

C=N
�� �

n�1
:

From elementary geometry we see that

jTl \ Y (2)

l0
j � jTl \ Tl0 j / �

�C=N
�
n
�
�1

so we conclude that

(25) jAl0

brushj ' �
C=N

��� �
�1

:

We will shortly combine (25) with (17) and (12) to prove the estimate

(26)
��� [
l2A

l0
brush

Y
(1)

l

��� ' �
C=N

��
3
� p(A)�1�n�2 :

Assuming this bound for the moment, let us complete the proof of (13).

From (18) and (20) we have

X
l02A: �+jv(l)�v(l0)j.��C=N�

�
T
l0
\E

(x) ' �
C=N

� ;

for all l 2 Al0

brush and x 2 Y
(1)

l
. From the de�nition of Al0

brush and the

triangle inequality we thus see that

X
l02A:�+jv(l0)�v(l0)j/��C=N�

�
T
l0
\E

(x) ' �
C=N

� ;
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for all x in the set in (26). Integrating this and using (26), we thus

obtain X
l02A:�+jv(l0)�v(l0)j/��C=N�

jTl0 \Ej ' �
C=N

�
2
�
3
� p(A)�1�n�2 :

From (11) we thus have

jfl0 2 A : � + jv(l0)� v(l0)j / �
�C=N

�gj� �n�1

' �
C=N

�
2
�
3
� p(A)�1�n�2 :

However, from (7) and the fact that v(l0) is constrained to a C �C��
C � � � � � � C � box, we see from elementary geometry that

jfl0 2 A : � + jv(l0)� v(l0)j / �
�C=N

�gj / �
�C=N

�� �
�2
m:

Combining these two estimates we obtain (after some algebra)

� / �
�C=N

�
1=2

�
�1=2

�
�1p(A)1=2m1=2

;

and the claim (13) follows after some algebra from this and (24).

It remains to prove (26). We �rst deal with a trivial case when

� . �
�C=N

�. In this case we simply use the bound

��� [
l2A

l0
brush

Y
(1)

l

��� � Y
(1)

l
& �

C=N
� �

n�1

from (17) and the fact from (25) that Al0

brush is non-empty, and (26)

follows since p(A), � & 1 and � . 1.

Now assume � � �
�C=N

�. To prove (26) we will in fact prove the

stronger bound

(27) jE0j ' �
C=N

��
3
� �

n�2 p(A)�1 ;

where

E
0 =

[
l2A

l0
brush

Y
(1)

l
\ 


and


 = fx 2 Rn : �
C=N

� . dist (x; l0) . �
�C=N

�g :
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From (17), (12), and elementary geometry we have

jTl \E0j � � �
n�1

;

for all l 2 Al0

brush. Summing this in l we obtain

X
l2A

l0
brush

jTl \E0j � jAl0

brushj� �n�1 ;

which we rewrite asZ
E0

X
l2A

l0
brush

�
Tl\


� jAl0

brushj� �n�1 :

We now use C�ordoba's argument (see e.g. [6]). From Cauchy-Schwarz

and the above we have

jE0j1=2
 X
l2A

l0
brush

�
Tl\



2
' jAl0

brushj� �n�1 :

From this and (25), su�ces to show that

(28)
 X
l2A

l0
brush

�
Tl\


2
2
/ �

�C=N jAl0

brushj �n�1p(A) ;

since (27) then follows from algebra.

To prove (28), we expand the left-hand side as

X
l2A

l0
brush

X
l02A

l0
brush

jTl \ Tl0 \ 
j ;

which we break up further as

X
�.�.1

X
l2A

l0
brush

X
l02A

l0
brush:Tl\Tl0\
6=?;�+jv(l)�v(l

0)j��

jTl \ Tl0 \ 
j :

From elementary geometry we have

jTl \ Tl0 j . �
n
�
�1

:



An X-ray transform estimate in R
n 387

It thus su�ces to show that

jfl0 2 Al0

brush : Tl\Tl0 \
 6= ?; �+ jv(l)�v(l0)j � �gj / �
�C=Np(A)

�

�
;

for each l, � .

Fix l, � . The conditions l0 2 Al0

brush and Tl \ Tl0 \ 
 6= ? force l
0

to lie in a �
1�C=N -neighbourhood of the 2-plane spanned by l0 and (a

slight translate of) l. Together with the condition �+ jv(l)� v(l0)j � � ,

this constrains Tl0 to live in one of O(��C=N) boxes, each of dimension

C � C� � C � � � � � � C �. The claim then follows from (10).

5. The bilinear reduction.

We now begin the proof of Theorem 1.2.

Fix 0 < " � 1. For each 0 < � � 1, let A(�) = A"(�) denote the

best constant such that

(29)
X
l2A

�
Tl


p0
� A(�) ��n=p+1�"m1=q�1=r (�n�1jAj)1=q0 ;

for all choices of m, E , E 0 and A satisfying (7). Clearly A(�) is �nite

for each �; to prove Theorem 1.2, we need to show

(30) A(�) / 1 :

It will be convenient to denote the right-hand side of (29) as Q(�;A),

thus

(31) Q(�;A) = A(�) ��n=p+1�"m1=q�1=r (�n�1 jAj)1=q0 :

By an inductive argument it su�ces to prove (30) assuming that

(32) A(�) � sup
���0�1

A(�0) :

Fix � so that (32) holds. We may �nd m, E , and A such that

(33)
 X
l2A: v(l)2E

�
Tl


p0
� Q(�;A) :

The estimate (33) states that A is essentially an optimal con�guration.

This has several consequences, at least heuristically. Firstly, it implies
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that the generic angle between two lines in A is � 1. Secondly, it implies

a \two-ends" condition, which roughly asserts that the contribution of

the generic tube Tl to (33) is not concentrated on a short interval. We

make these claims rigorous in the following sections, together with a

technical uniformization reduction; these preliminaries will simplify the

ensuing argument. We remark that one needs " > 0 in order to obtain

these reductions.

We begin with the assertion that the generic angle between two

lines is � 1. This is accomplished by

Proposition 5.1. There exist subsets E1; E2 of E such that

(34) dist(E1; E2) � 1

and

(35)
� X

l2A: v(l)2E1

�
Tl

�� X
l02A: v(l0)2E2

�
T
l0

�1=2
p0=2

� Q(�;A) :

Without (34), one could simply take E1 = E2 = E in the above

proposition. The point of this proposition is that it allows one to restrict

one's attention to pairs of tubes which intersect at large angle. This

bilinear reduction allows us to avoid many (but not all) of the di�culties

involving small angle intersections, which we have already encountered

when managing the � and � parameters in the previous section.

Proof. By squaring (33) we have

(36)
 X
l;l02A

�
Tl
�
T
l0


p0=2

� Q(�;A)2 :

Now let 0 < c0 < 1 be a small number to be chosen later, and consider

the quantity

(37)
 X
l;l02A: jv(l)�v(l0)j<c0

�
Tl
�
T
l0


p0=2

:

Cover E by �nitely overlapping sets E =
S
�
E� where each E� has

diameter O(c0), and such that for every v; v
0 2 E with jv � v

0j � c0

there exists an � such that v; v0 2 E�. We thus haveX
l;l02A: jv(l)�v(l0)j<c0

�
Tl
�
T
l0
�
X
�

� X
l2A�

�
Tl

�2
;
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where A� = fl 2 A : v(l) 2 E�g. Since p
0
=2 < 1, we have the quasi-

triangle inequality

(38)
X

�

f
2
�


p0=2

�
�X

�

kf2
�
kp

0
=2

p0=2

�2=p0
=
�X

�

kf�kp
0

p0

�2=p0
;

(see e.g. [10]), and so we may estimate (37) by

(39)
�X

�

 X
l2A�

�
Tl

p0
p0

�2=p0
:

We now claim that

(40)
 X
l2A�

�
Tl


p0
. c

�(n�1)=p0

0 Q
�
�

c0
;A�

�
:

To see this, �rst apply a mild a�ne map to make E� centered at the

origin, and apply the dilation (x; xn) ! (x=c0; xn), and then apply (29)

to the result; cf. [10].

Since our choice of p, q satisfy the scaling condition q = (n� 1) p0,

we may simplify (40) using (32) and (31) to

 X
l2A�

�
Tl


p0
. c

"

0

� jA�j
jAj

�1=q0
Q(�;A) :

Inserting this back into (37) and using the elementary inequality

X
�

� jA�j
jAj

�p0=q0
�
�X

�

jA�j
jAj

�p0=q0
� 1 ;

which follows since p
0
> q

0, we obtain

(37) . (c"0 Q(�;A))2 :

Comparing this with (36) we see that X
l;l02A: jv(l)�v(l0)j�c0

�
Tl
�
T
l0


p0=2

� Q(�;A)2

if we choose c0 to be a su�ciently small number depending only on n

and " (so c0 � 1).



390 I.  Laba and T. Tao

Now cover E by O(c1�n0 ) balls of diameter c0=4. By the pigeonhole

principle and the above estimate we see that there must exist at least

one pair E1, E2 of such balls with dist (E1; E2) � c0=2 such that

 X
l;l02A: v(l)2E1;v(l0)2E2

�
Tl
�
T
l0


p0=2

& c
C

0 Q(�;A)2 :

The claim follows.

Note that the above argument is not restricted to this particular

choice of p; q; r. See [8], [10], [11] for variants of this argument. The

arguments in the next three sections are similarly not restricted to the

exponent choices in (6).

Henceforth E1, E2 will be �xed.

6. Uniformity of multiplicity and density.

Let A be a subset of E � E 0 satisfying (7), and let E be a subset of

R
n . It would be convenient if we could ensure some uniformity on the

multiplicity function
P

l2A
�
Tl

and the density function jTl \ Ej, as in

Lemma 4.2. This is achieved by

Lemma 6.1. Let A be a subset of E � E 0 satisfying (7), and let E be a

subset of R
n
. Let �; � > 0 be quantities satisfying

(41) � jEj = � �
n�1jAj :

and

(42) � jEj1=p0 ' Q(�;A) :

Suppose E
0 � E, A0 � A are such that

(43)

Z
E0

X
l2A0

�
Tl
� � jEj

or equivalently that

(44)
X
l2A0

jTl \ E
0j � � �

n�1jAj :
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Then we have

(45)

Z
x2E0:

P
l2A0

�
Tl

(x)��

X
l2A0

�
Tl

(x) � � jEj

and

(46)
X

l2A0:jTl\E0j���n�1

jTl \ E
0j � � �

n�1jAj :

Equivalently, we have���nx 2 E
0 :

X
l2A0

�
Tl

(x) � �

o��� � jEj
and

jfl 2 A0 : jTl \ E
0j � � �

n�1gj � jAj :

The condition (41) is quite natural; cf. (24). The condition (42)

is a variant of (33), and states that �jEj1=p0 is essentially as large as

possible. Although this lemma is not phrased in a bilinear way, we will

be able to combine it with the bilinear reduction (and the two-ends

reduction in the next section) in Section 8.

Proof. We �rst prove (45). Let B = (log (1=�))� , where � is a large

constant to be chosen later. We trivially haveZ
x2E0:

P
l2A0

�
Tl

(x)/B�1�

X
l2A0

�
Tl

(x) / B
�1
� jEj :

We now claim that

(47)

Z
x2E0:

P
l2A0

�
Tl

(x)'B�

X
l2A0

�
Tl

(x) / B
�(p0�1)

� jEj ;

the claim then follows by subtracting these two estimates from (43) and

choosing � suitably.

To prove (47), we �rst observe that the left-hand side is bounded

by

/ (B�)1�p
0

Z �X
l2A

�
Tl

�p0
:
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By (29) and (42), this is bounded by

/ (B �)1�p
0

(� jEj1=p0)p0 ;

and (47) follows.

Now we prove (46), which is a dual of (45); the last two claims in

the lemma then follow easily.

As before we haveX
l2A0:jTl\E0j/B�1��n�1

jTl \E0j / B
�1
� �

n�1jAj :

It su�ces to show that

(48)
X
l2A00

jTl \ E
0j / B

0�(q�1)
� �

n�1jAj ;

for all B0 � B, where

A
00 = fl 2 A0 : jTl \ E

0j � B
0
� �

n�1g ;

by summing this for all dyadic B0 � B and using the exponential decay

of the B
0�(q�1) we can obtain the analogue of (47).

Fix B
0. By de�nition of A00 we haveZ

E0

X
l2A00

�
Tl

=
X
l2A00

jTl \E0j � B
0
� �

n�1jA00j :

From H�older we thus have

(49) jEj1=p
 X
l2A00

�
Tl


p0
' B

0
� �

n�1jA00j :

From (29) we have  X
l2A00

�
Tl


p0
� Q(�;A00) ;

from (31) and (42) we thus have

 X
l2A00

�
Tl


p0
/ � jEj1=p0

� jA00j
jAj

�1=q0
:
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Inserting this into (49) and using (41) we obtain

� �
n�1 jAj

� jA00j
jAj

�1=q0
' B � �

n�1jA00j ;

which simpli�es to

jA00j / B
0�qjAj ;

and (48) follows from the de�nition of A00.

7. The two ends reduction.

In order to apply Lemma 4.1 we need (among other things) to

obtain the conditions (11) and (12). The condition (11) can essentially

be guaranteed by Lemma 6.1, but this lemma does not give us the two-

ends condition (12). To obtain this we shall use the following lemma.

Lemma 7.1. Let N � 1, E be a subset of R
n
, and let A be a subset

of E � E 0 satisfying (7), and such that for every l 2 A there exists an

x 2 Rn such that

jTl \ E \ B(x; �1=N)j ' �
"=2N jTl \Ej :

Then we have

(50)
X
l2A

jTl \Ej / �
"=2N jEj1=pQ(�;A) :

The factor of �"=N in the above argument will allow us to conclude

that for most tubes, the set jTl \Ej is not concentrated in a short end

of the tube. This type of \two-ends condition" �rst appears in [11],

[12].

Proof. Cover [0; 1] by � �
�1=N �nitely overlapping intervals I� of

width � �
1=N , and let S� denote the slab Rn�1 � I�. For each l 2 A,

we can then �nd an � = �(l) such that

jTl \E \ S�j ' �
"=2N jTl \ Ej :

It thus su�ces to show that

(51)
X
�

X
l2A�

jTl \ S� \ Ej / �
"=N jEj1=p Q(�;A) ;
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where

A� = fl 2 A : �(l) = �g :
Partition E into about �(1�n)=N re�nements E�, each of which is �1�1=N -

separated. We can split the left-hand side of (51) as

X
�

X
�

Z
S�\E

X
l2A�;�

�
Tl\E

;

where

A�;� = fl 2 A� : v(l) 2 E�g :
By H�older, we may estimate this by

(52)
X
�

X
�

jS� \ Ej1=p
 X
l2A�;�

�
Tl\S�\E


p0
:

The sets Tl \ S� in the innermost sum can be rescaled to form a col-

lection of �1�1=N � 1 tubes which continue to satisfy (7). Also, the set

of directions E� satis�es the correct separation condition for the scale

�
1�1=N . By a rescaled version of (29) and (31), we can therefore bound

the norm in (52) by

/ �
n=Np

0

Q(�1�1=N ;A�;�) ;

which can be estimated using (31), (32) and algebra by

/ �
"=NQ(�;A) �(n�1)=qN

� jA�;�j
jAj

�1=q0
:

Inserting this back into (52), we may estimate the left-hand side of (51)

as

/ �
"=NQ(�;A)

X
�

jS� \ Ej1=p �(n�1)=qN
X
�

� jA�;�j
jAj

�1=q0
:

Since we have O(�(1�n)=N ) �'s, we can use H�older to obtain

�
(n�1)=qN

X
�

� jA�;�j
jAj

�1=q0
.
� jA�j
jAj

�1=q0
:
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We can thus bound the left-hand side of (51) as

/ �
"=NQ(�;A)

X
�

jS� \Ej1=p
� jA�j
jAj

�1=q0
:

By H�older again, we bound this by

/ �
"=NQ(�;A)

�X
�

jS� \Ejq=p
�1=q

:

Since q > p, we can bound this by

/ �
"=NQ(�;A)

�X
�

jS� \Ej
�1=p

;

and (51) follows.

8. Plate number uniformization.

We now combine the tools developed in the previous three sec-

tions to obtain the following technical uniformization lemma, which is

analogous to Lemma 4.2. We use Ai;0 for i = 1; 2 to denote the set

Ai;0 = fl 2 A : v(l) 2 Eig :

Lemma 8.1. Let the notation be as in the previous sections, and let

N � 1 be a large number. Then, if � is su�ciently small depending on

" and N , there exist numbers �; �;p1;p2 > 0 and sets

(53) A(3)
i
� A(2)

i
� A(1)

i
� A(0)

i
= Ai;0 ; for i = 1; 2 ;

and

(54) E
(3) � E

(2) � E
(1) � E

(0) � R
n

such that

(55) jE(0)j� = jAj� �n�1 ;
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and

(56) � jE(0)j1=p0 � Q(�;A) :

Furthermore, one has

jTl \ E
(j�1)j � � jTlj ;(57)

jTl \E(j�1) \B(x; �1=N)j / �
"=2N

� jTlj ;(58)

for all l 2 A(j)
i
, i = 1; 2, j = 1; 2; 3, x 2 Rn ,

(59)
X
l2A

(j)
i

�
Tl

(x) � � ; for all x 2 E
(j)
; i = 1; 2; j = 0; 1; 2; 3 ;

and

(60) �
C=Npi / pi(A(j)

i
) / �

�C=Npi ; for i = 1; 2; j = 1; 2; 3 :

The implicit constants in these estimates may depend on N .

Proof. The �rst step is to �nd � and E
(0).

Let �1; �2 range over all dyadic integers from 1 to �
�C . Let

E
(0)(�1; �2) denote the set

E
(0)(�1; �2) =

n
x :

X
l2Ai;0

�
Tl

(x) � �i for i = 1; 2
o
:

Clearly we have

(61) left hand side of (35) �
�X

�1

X
�2

�
p
0
=2

1 �
p
0
=2

2 jE(0)(�1; �2)j
�1=p0

:

Since the number of �1 and �2 is � 1, we can use the pigeonhole

principle and conclude that there exist �1, �2 for which (56) holds with

E
(0) = E

(0)(�1; �2) and � = (�1 �2)
1=2.

Fix this choice of �i, � and E
(0); this also �xes �. By construction

we have  X
l2Ai;0

�
Tl


p0
& �i jE(0)j1=p0 :
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Combining this with (29) we have

�i jE(0)j1=p0 . Q(�;A) ;

for i = 1; 2. Combining this with (29) we see that

�i / � :

From the de�nition of � we thus have �i � �. Since � . �
�C , we see

from (56), (55) that jE(0)j, � & �
C .

We now produce sets

E
(0) = E0 � E1 � � � � � EN2

and

Ai;0 � Ai;1 � � � � � Ai;N2

with the properties that

jEkj � jE0j ; for all 0 � k � N
2
;(62)

jTl \Ek�1j � � jTlj ;(63)

jTl \ Ek�1 \ B(x; �1=N)j / �
"=2N

� jTlj ;(64)

for all l 2 Ai;k, i = 1; 2, 1 � k � N
2, x 2 Rn , and

(65)
X

l2Ai;k

�
Tl

(x) � � ; for all x 2 Ek; i = 1; 2; 0 � k � N
2
:

Clearly (62) and (65) hold for k = 0. Now suppose inductively that

0 � k < N
2 is such that Ek;A1;k;A2;k have been constructed satisfying

(65) and (62) for this value of k.

We perform a certain sequence of dance steps. From (62) and (65)

we have Z
Ek

X
l2A1;k

�
Tl
� � jE0j ;

which by (55) implies

X
l2A1;k

jTl \ Ekj � jAj� �n�1 :
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By Lemma 6.1 (noting that Q(�;A1;k) � Q(�;A); we shall need similar

observations in the sequel), we thus have

(66)
X

l2A
0

1;k

jTl \ Ekj � jAj� �n�1 ;

where A01;k � A1;k is the set

A01;k = fl 2 A1;k : jTl \ Ekj � ��
n�1g :

Now de�ne the set A1;k+1 � A01;k by

A1;k+1 = fl 2 A01;k : jTl \ Ek \ B(x; �1=N)j

� �
"=2N jTl \Ekj for all x 2 Rng :

From Lemma 7.1 we haveX
l2A

0

1;k
nA1;k+1

jTl \ Ekj . �
"=2N jE0j1=p Q(�;A) ;

by (56) and (55) we thus haveX
l2A

0

1;knA1;k+1

jTl \ Ekj / �
"=2N jAj� �n�1 :

Combining this with (66) we obtain (if � is su�ciently small)X
l2A1;k+1

jTl \Ekj � jAj� �n�1 :

We may rewrite this using (55) asZ
Ek

X
l2A1;k+1

�
Tl

(x) � � jE0j :

By Lemma 6.1, we have

jE0

k
j � jE0j ;

where E
0

k
� Ek is the set

E
0

k =
n
x 2 Ek :

X
l2A1;k+1

�
Tl

(x) � �

o
:
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In particular, from (65) with i = 2, we haveZ
E
0

k

X
l2A2;k

�
Tl

(x) � � jE0j :

By (55), we may rewrite this as

X
l2A2;k

jTl \ E
0

kj � jAj� �n�1 :

By Lemma 6.1 again, this implies

X
l2A0

2;k

jTl \ E
0

k
j � jAj� �n�1 ;

where

A02;k = fl 2 A2;k : jTl \ E
0

k
j � � �

n�1g :
De�ning

A2;k+1 = fl 2 A01;k : jTl \ Ek \ B(x; �1=N)j

� �
"=2N jTl \Ekj for all x 2 Rng ;

we apply Lemma 7.1, (56), (55) and the preceding estimate as before

to conclude X
l2A2;k+1

jTl \E0

k
j � jAj� �n�1 :

By (55) again, we rewrite this asZ
E0
k

X
l2A2;k+1

�
Tl

(x) � � jE0j :

By Lemma 6.1 we have

jEk+1j � jE0j ;
where

Ek+1 =
n
x 2 E

0

k
:

X
l2A2;k+1

�
Tl

(x) � �

o
:

This completes the dance sequence. One can easily verify that (62),

(64) and (65) are all satis�ed for k+1 and i = 1; 2. One now replaces k
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by k+1, and repeats the above dance. Of course, the implicit constants

in the bounds will depend on k and hence on N .

The quantities p
i
(Ai;k) are clearly monotone decreasing, and sat-

isfy the trivial estimates 1 . p
i
(Ai;k) . �

�C . By the pigeonhole prin-

ciple one can then �nd 1 < k < N
2 � 1 such that

pi(Ai;k+2) � �
C=Npi(Ai;k) ; for i = 1; 2 :

The lemma then follows by setting E
(j) = Ek+j�1, A(j)

i
= Ai;k+j�1,

and pi = pi(Ai;k) for j = 1; 2; 3 and i = 1; 2.

This argument can be extended to create arbitrarily longer se-

quences than the ones in the above lemma, but we shall not need to do

so here.

9. Estimates for a slab.

Let the notation be as in Lemma 8.1. De�ne a �-slab to be a

�=2-neighbourhood of a 2-plane in Rn .

In the sequel we shall prove two propositions.

Proposition 9.1. Let � . � . 1, and let S be a �-slab. Then we have

(67) jE(1) \ Sj / �
1=2

�
7=2�njAj(n�2)=(n�1)m1=(n�1)

�
n�2

�
�1

:

Proposition 9.2. There exists a � . � . 1 and a �-slab S such that

(68) jE(1) \ Sj ' �
C=N

��
7=2

m
�1=2

�
1=2

�
n�2

:

Suppose for the moment that both propositions were true. Then

we would have

�
C=N

��
7=2

m
�1=2

�
n�2 / �

7=2�n jAj(n�2)=(n�1)m1=(n�1)
�
n�2

�
�1

:

If one uses (55) to eliminate �, this becomes (using (31), (6) and a lot

of algebra)

� jE(0)j1=p0 / �
�C=N

�
" Q(�;A)A(�)�1 :
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Comparing this with (56) one obtains (30) if N is chosen su�ciently

large depending on ".

It remains to prove the Propositions.

10. Proof of Proposition 9.1.

We now prove Proposition 9.1. The estimate (67) is not best pos-

sible; it was chosen primarily so that it cancelled nicely against (68).

Accordingly, our techniques shall be quite crude.

Fix � and S. From (59) we have

jE(1) \ Sj � �
�1

Z
E(1)

\S

X
l2A

(0)
1

�
Tl

:

We can rewrite the right-hand side as

�
�1

X
l2A

(1)
1

jE(1) \ S \ Tlj � �
�1

X
l2A

(1)
1

jE(0) \ S \ Tlj :

For each l, let �(l) denote the quantity

�(l) = � + \(l; S) ;

where \(l; S) is the angle between l and the plane in the middle of S.

From elementary geometry we have

jS \ Tlj . �
n�1

� �(l)�1 ;

and so by (57) we have

jE(0) \ S \ Tlj / �
n�1 min f� �(l)�1; �g / �

n�1
�
1=2

�(l)�1=2 �1=2 :

Combining all these estimates we obtain

jE(1) \ Sj / �
�1
�
n�1

X
l2A

(0)
1

�
1=2

�(l)�1=2 �1=2 :

From (57) we have � / 1, so that �
1=2 / �

7=2�n. It thus su�ces to

show that

(69)
X

l2A
(0)
1

�(l)�1=2 / �
�1 jAj(n�2)=(n�1)m1=(n�1)

:
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We can estimate the left-hand side of (69) by

(70)
X

�.�.1

X
l2A:�(l)��

�
�1=2 �

X
�.�.1

�
�1=2 jfl 2 A : �(l) � �gj ;

where � ranges over the dyadic numbers. From (7) and the �-separated

nature of E we have

jfl 2 A : �(l) � �gj . �
n�2

�
1�n

m:

Interpolating this with the trivial bound of jAj we obtain

jfl 2 A : �(l) � �gj . �
(n�2)=(n�1)

�
�1

m
1=(n�1) jAj(n�2)=(n�1) :

Inserting this back into (70) we obtain (69) since (n�2)=(n�1) � 1=2.

This concludes the proof of Proposition 69.

It is clear that there is plenty of slack in the above estimate. Indeed,

the only time when (67) is e�cient is when �; �; � � 1, and when

jEj � �
1�n. These phenomena seems to be a typical consequence of the

two ends and bilinear reductions respectively.

11. Proof of Proposition 9.2.

We now prove Proposition 9.2. This shall be a modi�ed version of

the hairbrush argument in [13].

By symmetry we may assume

(71) p1 � p2 :

Since p(A(3)
1 ) ' �

C=Np1 by (60), we see from (10) that one can �nd a

� . w . 1 and a C � Cw � C� � � � � � C� rectangle R such that

(72)
jARj
w=�

' �
C=N p1 ;

where

AR = fl 2 A(3)
1 : Tl � Rg :

This rectangle R shall form the stem of a hairbrush in S \ E
1. Let

lR denote the line generated by the �rst direction of R, and �R be the
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2-plane generated by the �rst two directions of R; thus R lies in the C �

neighbourhood of �R and in the Cw-neighbourhood of lR.

By re�ningAR slightly if necessary, we may assume that w � �
1=N ;

this may worsen the power of �1=N in (72), but is otherwise harmless.

From (34) we thus have

(73) jv(lR)� v(l)j � 1 ; for all l 2 A(2)
2 :

Since A(3)
1 � E � E 0, we have from elementary geometry that

jARj .
�
w

�

�2
:

Combining this with (72) we see that

(74) w & �
C=Np1 � :

From (57) we see that

(75) jTl \ E
(2)j � � �

n�1
;

for all l 2 AR. From this we conclude the following:

Lemma 11.1. We have

(76) jE(2) \ Rj ' �
C=N

�
3=2

w
1=2 p

1=2
1 �

n�3=2
:

Proof. Firstly, from (72) and elementary geometry we see that AR

must contain at least �C=Np1 parallel lines, which with (75) and (71)

gives

jE(2) \ Rj ' �
C=N

�p1 �
n�1

:

It thus su�ces to show

jE(2) \ Rj ' �
C=N

�
2 jARjp�11 �

n�1
;

since (76) follows by taking the geometric mean of these estimates and

then using (72).

To prove this estimate we invoke C�ordoba's argument as in the

proof of (27). Summing (75) over all l 2 AR we obtainX
l2AR

jTl \E(2)j � � �
n�1 jARj
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which we rewrite asZ
E(2)

\R

X
l2AR

�
Tl
� � �

n�1 jARj :

By the Cauchy-Schwarz inequality we thus have

jE(2) \ Rj1=2
 X
l2AR

�
Tl


2
' � �

n�1 jARj :

It thus su�ces to show that

(77)
 X
l2AR

�
Tl

2
2
/ �

�C=N jARjp1 �
n�1

:

Repeating the derivation of (28), we may estimate the left-hand side by

X
�.�.1

X
l2AR

X
l02AR:Tl\Tl0 6=?;�+jv(l)�v(l

0)j��

�
n
�
�1

;

and the claim follows from the observation

jfl0 2 AR : Tl \ Tl0 6= ?; � + jv(l)� v(l0)j � �gj . �
�C=N

�
�1

� p1 ;

which follows from (10) and elementary geometry.

Thus E(2) has a large intersection with R. We now wish to conclude

that there are many tubes from A(2)
2 passing through R.

Combining (76) with (59) and (71) we haveZ
R

X
l2A

(2)
2

�
Tl

(x) ' �
3=2

�w
1=2 p

1=2
2 �

n�3=2
;

which we rewrite asX
l2A

(2)
2

jTl \Rj ' �
3=2

�w
1=2 p

1=2
2 �

n�3=2
:

For each dyadic � . � . 1, let A�

brush denote the set

A�

brush = fl 2 A(2)
2 : Tl \ R 6= ?; �=w + \l; �R � �g :
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We thus haveX
�=w.�.1

X
l2A

�

brush

jTl \ Rj ' �
3=2

�w
1=2 p

1=2
2 �

n�3=2
:

By the pigeonhole principle, there must therefore exist a �=w . � . 1

such that X
l2A�

brush

jTl \ Rj ' �
3=2

�w
1=2 p

1=2
2 �

n�3=2
:

Fix this �. From (73) and the de�nition of A�

brush, we see from ele-

mentary geometry that jTl \ Rj / �
n
�
�1. Combining this with the

previous, we see that

(78) jA�

brushj ' �
3=2

�w
1=2 p

1=2
2 � �

�3=2
:

Thus to prove (68) it su�ces to show that

jE(1) \ Sj ' �
C=N

�
2 jA�

brushjm�1=2
�
�1=2

w
�1=2 p

�1=2
2 �

n�1=2
:

We will in fact show the slightly stronger

(79) jE(1)\S\
j ' �
C=N

�
2 jA�

brushjm�1=2
�
�1=2

w
�1=2 p

�1=2
2 �

n�1=2
;

where 
 denotes the region 
 = fx 2 Rn : �
1=N . dist (x; lR) . 1g.

We now foliate the hairbrush into three-dimensional regions in order to

apply Lemma 4.1.

Let Sn�3 denote the portion of the unit sphere S
n�1 in Rn which

is orthogonal to �R, and let � be a maximal C�1�-separated subset of

S
n�3. For each ! 2 �, let V! denote the set

V! = �R + R ! + B
n(0; C �) ;

these sets are C �-neighbourhoods of 3-spaces. From elementary geom-

etry we may cover

A�

brush =
[
!2�

A�;!

brush ;

where A�;!

brush = fl 2 A�

brush : Tl � V!g. The sets V! \ 
 have an

overlap of at most O(��C=N) as ! varies. Thus

jE(1) \ S \ 
j ' �
C=N

X
!2�

jE(1) \ S \ V! \ 
j :
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To show (79), it thus su�ces to show that

jE(1) \ S \ V! \ 
j
' �

C=N
�
2 jA�;!

brushjm�1=2
�
�1=2

w
�1=2 p

�1=2
2 �

n�1=2
;(80)

for each ! 2 �.

Fix !. The region S \ V! \
 is essentially a C �C �C ��C � �
� � � � C � box. We cover this box by about w

�1 smaller boxes B� of

dimensions C � C � C w � � C � � � � � � C � such that lR is contained

in the plane generated by the �rst two directions of this box. Note

that w � & � from the construction of �. From elementary geometry we

see that for each l 2 A�;!

brush there exists a box B� such that Tl � B�.

Also, the boxes B� have an overlap of O(��C=N ). Thus, by the same

argument as before, it su�ces to show that

(81) jE(1) \B�j ' �
C=N

�
2 jA�;!;�

brushjm�1=2
�
�1=2

w
�1=2 p

�1=2
2 �

n�1=2
;

where A�;!;�

brush = fl 2 A�;!

brush : Tl � B�g. From (57), (58) and elemen-

tary geometry we note that

jTl \ E
(1) \ B�j � � �

n�1
; for all l 2 A�;!;�

brush :

Also, from elementary geometry we see that the set of directions fv(l) :

l 2 A�;!;�

brushg is contained in a C�C w ��C ��� � ��C � box in B
n�1(0; 1).

The claim (81) now follows from Lemma 4.1, and we are done.
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