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Path-wise solutions of stochastic

di�erential equations driven

by L�evy processes

David R. E. Williams

Abstract. In this paper we show that a path-wise solution to the

following integral equation

Yt =

Z t

0

f(Yt) dXt ; Y0 = a 2 R
d ;

exists under the assumption that Xt is a L�evy process of �nite p-

variation for some p � 1 and that f is an �-Lipschitz function for some

� > p. We examine two types of solution, determined by the solution's

behaviour at jump times of the process X, one we call geometric, the

other forward. The geometric solution is obtained by adding �ctitious

time and solving an associated integral equation. The forward solution

is derived from the geometric solution by correcting the solution's jump

behaviour.

L�evy processes, generally, have unbounded variation. So we must

use a pathwise integral di�erent from the Lebesgue-Stieltjes integral.

When X has �nite p-variation almost surely for p < 2 we use Young's

integral. This is de�ned whenever f and g have �nite p and q-variation

for 1=p+ 1=q > 1. When p > 2 we use the integral of Lyons. In order

to use this integral we construct the L�evy area of the L�evy process and

show that it has �nite (p=2)-variation almost surely.
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0. Introduction.

In this paper we give a path-wise method for solving the following

integral equation

(1) Yt = Y0 +

Z t

0

f(Yt) dXt ; Y0 = a 2 R
d :

when the driving process is a L�evy process.

Typically, a L�evy process, almost surely, has unbounded variation.

The integral does not exist in a Lebesgue-Stieltjes sense. However, the

integral still makes sense as a random variable due to the stochastic

calculus of semi-martingales developed by the Strasbourg school [14].

The semi-martingale integration theory is not complete though.

There are processes of interest which do not �t into the semi-martingale

framework, for example the fractional Brownian motion. An alternative

integral is provided by the path-wise approach studied by Lyons [11],

[12] and Dudley [3]. The basis of their papers is that of Young [21],

who showed that the integral

(2)

Z t

0

f dg

is de�ned in a Riemann sense whenever f and g have �nite p and q-

variation for 1=p+1=q > 1 (and they have no common discontinuities).

For a comprehensive overview of the theory we recommend the lecture

notes of Dudley and Norvai�sa in the case p < 2, [4].

Recently in [15], a system of linear Riemann-Stieltjes integral equa-

tions is solved when the integrator has �nite p-variation for some 0 <

p < 2. These results are contained in Theorem 1.1 where we allow

non-linearity of the vector �eld f . This is because our approach is an

extension of the method of [11], [12].

The approach that we follow distinguishes two cases. The �rst is

when the process has �nite p-variation, almost surely, for some p < 2.

We use the Young integral [21]. In [11], (1) is solved when Xt is a

continuous path of �nite p-variation for some p < 2.

The second case is when the process has �nite p-variation, almost

surely, for some p > 2. The Young integral is only de�ned when f

and g have �nite p and q-variation for 1=p + 1=q > 1. So an iteration

scheme on the space of paths with �nite p-variation does not work.

However, Lyons de�ned an integral against a continuous function of
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p-variation for some p > 2, [12]. The integral is developed in the space

of geometric multiplicative functionals (described in Appendix A). The

key idea is that we enhance the path by adding an area function to

it. If there is su�cient control of the pair, path and area, then the

integral is de�ned. The canonical example in [12] is Brownian motion.

The area process enhancing the Brownian motion is the L�evy area [10,

Chapter 7, Section 55]. We show that there is an area process of a L�evy

process which has �nite (p=2)-variation, almost surely.

In order to solve (1) for a discontinuous function we add �ctitious

time during which linear segments remove the discontinuities, creating

a continuous path. By solving for the continuous path and then re-

moving the �ctitious time we recover a solution for the discontinuous

path. This is called a geometric solution. A second type of solution is

derived from the geometric solution which we call the forward solution.

Several papers, [8], [7], and [5], have used the geometric solution to an-

swer questions about continuity of solution for a stochastic di�erential

equation driven by a discontinuous path.

The �rst section treats the case where the discontinuous driving

path has �nite p-variation for some p < 2. The second section treats the

case where the path has �nite p-variation for some p > 2 only. The main

proofs of the second section are deferred to the third section. In the

appendix we prove the homeomorphic ow property for the solutions

when the driving path is continuous. This is used in proving that

forward solutions can be recovered from geometric solutions.

1. Discontinuous processes { p < 2.

In this section we extend the results of [11] to allow the driving path

of (1) to have discontinuities. The results are applied to sample paths of

some L�evy processes, those that have �nite p-variation, almost surely,

for some p < 2. Throughout this section p 2 [1; 2) unless otherwise

stated.

First, we determine the solution's behaviour when the integrator

jumps. There are two possibilities to consider: the �rst is an extension

of the Lebesgue-Stieltjes integral; the second is based on a geometric

approach.

Suppose that the discontinuous integrator has bounded variation.

The solution y would jump

yt � yt� = f(yt�) (xt � xt�) ;
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at a jump time t of x. If x has �nite p-variation for some 1 < p < 2

we insert these jumps at the discontinuities of x. We call a path y with

the above jump behaviour a forward solution.

The other jump behaviour we consider is the following: When a

jump of the integrator occurs we insert some �ctitious time during which

the jump is traversed by a linear segment, creating a continuous path

on an extended time frame. Then we solve the di�erential equation

driven by the continuous path. Finally we remove the �ctitious time

component of the solution path. We call this a geometric solution be-

cause the solution has an \instantaneous ow" along an integral curve

at the jump times. This jump behaviour has been considered before by

[13], [8] and [5].

The disadvantage of the �rst approach is that the solution does

not, generally, generate a ow of di�eomorphisms, [9].

In this section we prove the following theorem:

Theorem 1.1. Let xt be a discontinuous function of �nite p-variation

for some p < 2. Let f be an �-Lipschitz vector �eld for some � > p.

Then there exists a unique geometric solution to the integral equation

(3) yt = y0 +

Z t

0

f(yt) dxt ; y0 = a 2 R
d :

With the above assumptions, there exists a unique forward solution as

well.

Before proving the theorem we recall the de�nitions of p-variation

and �-Lipschitz:

De�nition 1.1. The p-variation of a function x(s) over the interval

[0; t] is de�ned as follows

kxk
p;[0;t]

=
�

sup
�2�[0;t]

X
�

jx(tk)� x(tk�1)j
p
�1=p

;

where �[0; t] is the collection of all �nite partitions of the interval [0; t].

Remark. This is the strong p-variation. Usually probabilists use the

weaker form where the supremum is over partitions restricted by a mesh

size which tends to zero.
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De�nition 1.2. A function f is in Lip(�) for some � > 1 if

kfk1 <1 and
@f

@xj
2 Lip(�� 1) ; j = 1; : : : ; d :

Its norm is given by

kfkLip(�) , kfk1 +

dX
j=1

 @f
@xj


Lip(��1)

; for � > 1 :

This is Stein's [20] de�nition of �-Lipschitz continuity for � > 1.

It extends the classical de�nition: f is in Lip(�) for some � 2 (0; 1] if

jf(x)� f(y)j � K jx� yj� ;

with norm

kfk1 + sup
x6=y

jf(x)� f(y)j

jx� yj�
:

1.1. Geometric solutions.

In this subsection we de�ne a parametrisation for a c�adl�ag path x

of �nite p-variation. The parametrisation adds �ctitious time allowing

the traversal of the discontinuities of the path x. We prove that the

resulting continuous path x� has the same p-variation that x has. We

solve (3) driven by x� using the method of Lyons [11]. Then we get

a geometric solution of (3) by removing the �ctitious time (i.e. by

undoing the parametrisation).

De�nition 1.3. Let x be a c�adl�ag path of �nite p-variation. Let � > 0,

for each n � 1, let tn be the time of the n'th largest jump of x. We

de�ne a map � � : [0; T ] �! [0; T + �
P

1

i=1 jj(ti)j
p] (where j(u) denotes

the jump of the path x at time u) in the following way

(4) � �(t) = t+ �

1X
n=1

jj(tn)j
p �

ftn�tg
(t) :

The map � � : [0; T ] �! [0; � �(T )] extends the time interval into one

where we de�ne the continuous process x�(s)

(5) x�(s) =

8><>:
x(t) ; if s = � �(t) ;

x(t�n ) + (s� � �(t�n ))

� j(tn) �
�1 jj(tn)j

�p ; if s 2 [� �(t�n ) �
�(tn)) :



300 D. R. E. Williams

Remarks 1.1. 1) (s; x�s), s 2 [0; � �(T )] is a parametrisation of the

driving path x.

2) The terms jj(tn)j
p in (4) ensure that the addition of the �ctitious

time does not make � �(t) explode.

3) In Figure 1 we see an example of a parametrisation of a discon-

tinuous path xs in terms of the pair (t(s); y(s)).

The next proposition shows that the above parametrisation has

the same p-variation as the original path, on the extended time frame

[0; � �(T )].

T(s)

Y(s)

s
0

0

X(s)

Figure 1. Parametrisation of a discontinuous path.

Let xs be a discontinuous path of bounded variation (p = 1). De-

�ne a map �(s) inserting �ctitious time for the discontinuities of x.

De�ne a parametrisation (t(s); y(s)) in the manner of (5). (t(s); y(s))

traverses the jumps of x during the �ctitious time.
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Proposition 1.1. Let x be a c�adl�ag path of �nite p-variation. Let x�

be a parametrisation of x as above.

kx�kp;[0;��(T )] = kxkp;[0;T ] ; for all � > 0 :

Proof. Let �0 be a partition of [0; � �(T )]. Let

Vx� (�0) =
X
�0

jx�(ti)� x�(ti�1)j
p :

We show that we increase the value of Vp(�0) by moving points lying

on the jump segments to the endpoints of those segments.

Let ti�1; ti; ti+1 be three neighbouring points in the partition �0
such that ti lies in a jump segment. Consider the following term

(6) jx�ti � x�ti�1
j
p + jx�ti+1

� x�ti j
p :

We show that (6) is dominated by replacing x�ti by one of x�l and x�r,

where l and r denote the left and right endpoint of the jump segment

containing ti.

For simplicity we set a = x�ti�1
; b = x�ti+1

and c = x�l . Let

L , fc+ k x : k 2 (0; 1); c; x 2 R
d ; x 6= 0g ; a; b 2 R

d
nL :

Let the function f : [0; 1] �! (0;1) be de�ned by

f(k) = ja� djp + jd� bjp ; d = c+ k x :

Then f 2 C2[0; 1] and one can show that f 00 � 0 on (0; 1) when p � 1.

To conclude the proof we move along the partition replacing ti which

lie in the jump segments by new points t0i that increase Vx�(�0). The

partition �0 is replaced by a partition �00 whose points lie on the pre-

image of [0; � �(T )]. Therefore we have

Vx�(�0) � Vx� (�
0

0) = Vx(�
0

0) :

Hence kx�kp;[0;��(T )] = kxkp;[0;T ].

Theorem 1.2. Let x be a c�adl�ag path with �nite p-variation for some

p < 2. Let f be a Lip() vector �eld on R
n for some  > p. Then there
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exists a unique geometric solution y, having �nite p-variation which

solves the di�erential equation

(7) dyt = f(yt) dxt ; y0 = a 2 R
n :

Proof. Let x� be the parametrisation given in (5). The theorem of

[11, Section 3] proves that there is a continuous solution y� which solves

(3) on [0; � �(T )]. Then (s; y�s) is a parametrisation of a c�adl�ag path y

on [0; T ].

The solution is well-de�ned. To see this, consider two parametrisa-

tions of x and note that there exists a monotonically increasing function

�s such that

(s; x�s) = (�s; x
�
�s
) :

1.2. Forward solutions.

In this subsection we show how to recover forward solutions from

geometric solutions. The idea behind our approach is to correct the

jump behaviour of the geometric solution using a Taylor series expan-

sion, cf. Lemma 1.1. The correction terms are controlled by

1X
i=1

jxti � x
t
�

i

j
2 ;

which is �nite due to the �nite p-variation of the path x.

In the case where the driving path has only a �nite number of

jumps we note that the forward solution can be recovered trivially. It

is enough to mark the jump times of x and solve the di�erential equation

on the components where x is continuous, inserting the forward jump

behaviour when the jumps occur. It remains to show that the forward

solution exists when the driving path has a countably in�nite number

of jumps. The method we use requires the following property of the

geometric solution:

Theorem 1.3. Let x be a continuous path of �nite p-variation for some

p > 1. Let f be in Lip(�) for some � > p. The maps (�t)t�0 : R
n �!

R
n obtained by varying the initial condition of the following di�erential

equation generate a ow of homeomorphisms

(8) d�t = f(�t) dxt ; �0 = Id ; (the identity map) :
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We leave the proof of Theorem 1.3 until Appendix A. We note the

uniform estimate

(9) sup
0�t�T

j�at � �bt j � C(T )ja� bj :

The following lemma will enable estimates to be made when the geo-

metric jumps are replaced by the forward jumps:

Lemma 1.1. Let x be a c�adl�ag path with �nite p-variation. Let f be in

Lip(�) for some � > p. Let �yi (respectively �zi) denote the geometric

(respectively forward ) solution's jump which correspond to �xi, the i-th

largest jump of x. Then we have the following estimate on the di�erence

of the two jumps

k�yi ��zik1 � K j�xij
2 ;

where the constant K depends on kfkLip(�).

Proof. Parametrise the path x so that it traverses its discontinuity

in unit time. Solve geometrically over this interval with the solution

having initial point a. Note that the forward jump is the �rst order

Taylor approximation to the geometric jump. Then

(10)

y1(a) = y0(a) +
dys(a)

ds

���
s=0

+
1

2

d2ys(a)

ds2

���
s=�

= z1(a) +
1

2

d2ys(a)

ds2

���
s=�

;

for some 0 < � < 1. We estimate the second order term by

(11)

1
2

d2ys(a)

ds2


1

=
1
2

d

ds
f(ys(a))(�xi)


1

�
1

2
krfk1 kfk1 j�xij

2

�
1

2
kfk2Lip(�) j�xij

2 :

Both krfk1 and kfk1 are �nite because f is Lip(�) for some � > p �

1.
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Theorem 1.4. Let x be a c�adl�ag path with �nite p-variation. Let f be

in Lip(�) for some � > p. Then there exists a unique forward solution

to the following di�erential equation

(12) dzt = f(zt) dxt ; z0 = a :

Proof. By Theorem 1.3 there exists a unique homeomorphism y which

solves

dyt = f(yt) dxt ; y0 = a ;

in a geometric sense.

Label the jumps of x by jx = fjig
1

i=1 according to their decreasing

size. Let zn denote the path made by replacing the geometric jumps of

y corresponding to fjig
n
i=1 by the forward jumps ff(�) (�xi)g

n
i=1. We

show that the fzngn�1 have a uniform limit.

We order the corrected jumps chronologically, say ftig
n
i=1. Then

we estimate the following term using Lemma 1.1 and the uniform bound

on the growth of y given in (9)

(13)

jzns (a)� ys(a)j �

nX
i=1

jyti;s(z
n
ti
(a))� yti;s(yti�1;ti(z

n
ti�1

(a)))j

� C(T )

nX
i=1

jznti(a)� yti�1;ti(z
n
ti�1

(a))j

� C2(T )K

1X
i=1

j�xij
2 :

So we have the uniform estimate

(14)

kzn � yk1 � K(C3(T ); kfkLip(�))

1X
i=1

j�xij
2 <1 ; for all n � 1 :

We use an analogous bound to get Cauchy convergence of fzngn�1. Let

m; r � 1.

kzm � zm+r
k1 � K(C(T; zm); kfkLip(�))

1X
i=m+1

j�xij
2 :
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One notes that fC(T; zm)g are uniformly bounded, because of the

boundedness of C(T ) = C(T; y) and the Lipschitz condition on f .

Therefore we have the following estimate

kzm � zm+r
k1 � L

1X
i=m+1

j�xij
2 :

This implies that fzng are Cauchy in the supremum norm because x

has �nite p-variation (p < 2) which implies that
P

1

m+1 j�xij
2 tends to

zero as m increases.

Remark. Theorems 1.4 and 1.2 combine to prove Theorem 1.1.

Corollary 1.1. With the above notation, z has �nite p-variation.

Proof. Let s < t 2 [0; T ].

jzt � zsj � j(zt � zs)� (yt � ys)j+ jyt � ysj ;

where (yt� ys) is the increment of the geometric solution starting from

zs driven by the path xt on the interval [s; T ]. Then

j(zt� zs)� (yt� ys)j � C
X

jxj[s;t]

j�xij
2 and jyt� ysj � kxkp;[s;t] ;

which implies that

jzt � zsj
p
� 2p�1

�
Cp
� X
jxj[s;t]

j�xij
2
�p

+ kxk
p

p;[s;t]

�
;

hence

kzkp;[0;T ] � 2(p�1)=p
�
Cp
� X
jxj[0;T ]

j�xij
2
�p

+ kxk
p

p;[0;T ]

�1=p
<1 :

1.3. p-variation of L�evy processes.

In this subsection we apply Theorem 1.1 to L�evy processes which

have �nite p-variation, almost surely.
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L�evy processes are the class of processes with stationary, indepen-

dent increments which are continuous in probability. The class includes

Brownian motion, although this process is atypical due to its continu-

ous sample paths. Typically a L�evy process will be a combination of a

deterministic drift, a Gaussian process and a jump process. For further

information on L�evy processes we direct the reader to [1].

The regularity of the sample paths of a L�evy process has been

studied intensively. In the 1960's several people worked on the question

of characterising the sample path p-variation. The following theorem,

due to Monroe, gives the characterisation:

Theorem 1.5 ([17, Theorem 2]). Let (Xt)t�0 be a L�evy process in R
n

without a Gaussian part. Let � be the L�evy measure. Let � denote the

index of Xt, that is

(15) � , inf
n
� > 0 :

Z
jyj�1

jyj� �(dy) <1

o
;

and suppose that 1 � � � 2. If  > � then

(16) P (kXk <1) = 1 ;

where the -variation is considered over any compact interval.

Remark. Note that all L�evy processes with a Gaussian part only have

�nite p-variation for p > 2.

Corollary 1.2. Let (Xt)t�0 be a L�evy process with index � < 2 and

no Gaussian part. Let f be a vector �eld in Lip(�) for some � > p.

Then, almost surely, the following stochastic di�erential equation has a

unique forward and a unique geometric solution

dYt = f(Yt) dXt ; Y0 = a :

Proof. The corollary follows immediately from Theorems 1.5 and 1.1.

2. Discontinuous processes { p > 2.

The goal of this section is to extend (Corollary 1.2) to let any L�evy

process be the integrator of (1).
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One problem we have is that the Young integral is no longer useful

because we use a Picard iteration scheme which fails condition (2) when

p > 2. However, we can use the method from [12]. To de�ne the integral

we need to provide more information about the sample path. We do

this by de�ning an area process of the L�evy process. Then we prove

that the enhanced process (path and area) has �nite p-variation, cf.

De�nition A.3.

We parametrise the enhanced process in an analogous manner to

(5) (adding �ctitious time). Then we solve (1) in a geometric sense

using the method for continuous paths (p > 2) given in [12]. Finally,

forward solutions are obtained by jump correction as before.

Before enhancing (Xt)t�0 we give an example which shows that

there exist L�evy measures with index two. So a L�evy process does not

need a Gaussian part to have, almost surely, �nite p-variation only for

p > 2.

Example 2.1. One can de�ne the following measures on R

�k (dx) , jxj�3+1=k dx ; jxj 2 ((k + 1)�3(k+1); k�3k] , Jk

�m(dx) ,

mX
k=1

�k(dx \ Jk \ (�Jk)) :

We show that � , limm!1 �m is a L�evy measure. The integrability

condition

(17)

Z
jxj�1

jxj2 �(dx) <1 :

must be satis�ed.Z
jxj�1

jxj2 �m(dx) = 2

Z 1

0

mX
k=1

x�1+1=k�
Jk
(x) dx

= 2

mX
k=1

(k x1=k)k
�3k

(k+1)�3(k+1)

= 2

mX
k=1

k (k�3 � (k + 1)�3(1+1=k))

� 2

mX
k=1

k (k�3 � 2�3(1+1=k)k�3(1+1=k))
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= 2

mX
k=1

k�2 (1� 2�3(1+1=k)k�3=k)

< C

1X
k=1

k�2

<1 ;

where C is some suitable constant. We take the limit as m tends to

in�nity on the left hand side to prove (17).

Now we show that

(18)

Z
jxj�1

jxj� �(dx) =1 ;

for all � < 2. Fix � < 2. De�ne the following number

m(�) , inf
n
k : �+

1

k
< 2
o
<1 ; as � < 2 :

Let m > m(�). ThenZ
jxj�1

jxj� �m(dx)

� 2

mX
k=m(�)

1

(�+ 1=k � 2)
(k�3k(�+1=k�2) � (k + 1)�3(k+1)(�+1=k�2))

= 2

mX
k=m(�)

1

(2� (�+ 1=k))
((k + 1)�3(k+1)(�+1=k�2) � k�3k(�+1=k�2))

�
2

2� �

mX
m(�)

((k + 1)3(k+1)(2�(�+1=k)) � k3k(2�(�+1=k)))

�!1 ; as m �!1 :

This proves that the index � of � equals two. Theorem 1.5 implies that

the pure jump process associated to the L�evy measure � almost surely

has �nite p-variation for p > 2 only.

The following theorem gives a construction of the L�evy area of the

L�evy process (Xt)t�0. The L�evy area process and the L�evy process
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form the enhanced process which we need in order to use the method

of Lyons [12].

Theorem 2.1. The d-dimensional L�evy process (Xt)t�0 has an anti-

symmetric area process

(As;t)
ij
,

1

2

Z t

s

Xi
u� � dX

j
u�X

j
u� � dX

i
u ; i; j = 1; 2; almost surely :

The proof is deferred to Section 3.

Theorem 2.2. The L�evy area of the L�evy process (Xt)t�0, almost

surely, has �nite (p=2)-variation for p > 2. That is

sup
�

�X
�

jAtk�1;tk j
p=2
�2=p

<1 ; almost surely ;

where the supremum is taken over all �nite partitions � of [0; T ].

The proof is deferred to Section 3.

Now we parametrise the sample paths of (Xt)t�0 as before (5).

Proposition 2.1. Parametrising the process (Xt)t�0 does not a�ect

the area process' (p=2)-variation.

Proof. The proof is similar to the proof of Proposition 1.1. One can

show that if � lies in a jump segment then

jAs;�j
(p=2) + jA�;tj

(p=2) ; s < � < t ;

is maximised when � is moved to one of the endpoints of the jump

segment.

With the parametrisation of the path and the area we can de�ne the

integral in the sense of Lyons [12]. Consequently we have the following

theorem:

Theorem 2.3. Let (Xt)t�0 be a L�evy process with �nite p-variation

for some p > 2. Let f be in Lip(�) for some � > p. Then there exists,
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with probability one, a unique geometric and a unique forward solution

to the following integral equation

(19) Yt = Y0 +

Z t

0

f(Yt) dXt ; Y0 = a 2 R
d :

Remark. When constructing the forward solution it is necessary that

the sum
1X
n=1

j�Xnj
2

remains �nite. This is guaranteed by the requirement on L�evy measures

to satisfy Z
jxj�1

(jxj2 ^ 1) �(dx) <1 :

3. Proofs of Theorem 2.1 and Theorem 2.2.

For clarity, throughout this section we assume that the L�evy pro-

cess (Xt)t�0 is two dimensional and takes the following form

(20) Xt = Bt +

Z
jxj�1

x (Nt(dx)� t �(dx)) :

That is, (Xt)t�0 is a Gaussian process with a compensated pure jump

process, whose L�evy measure is supported on (x 2 R
2 : jxj � 1).

Proposition 3.1. The d-dimensional L�evy process (Xt)t�0 has an

anti-symmetric area process

(As;t)
ij
,

1

2

Z t

s

Xi
u� �dX

j
u�X

j
u� �dX

i
u ; i; j = 1; 2 ; almost surely :

For �xed s < t we obtain the area process by the following limiting

procedure

(As;t)
ij = lim

n!1

nX
m=0

2m�1X
k=1
odd

A
i;j

k;m ; almost surely ;
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where A
ij

k;m is the area of the (ij)-projected triangle with vertices

X(u(k+1)=2;m�1); X(u(k�1)=2;m�1); X(uk;m) ;

where uk;m , s+ k 2�m (t� s). Also we have the second order moment

estimate

(21) E [(A
ij
s;t)

2] � C(�) (t� s)2 :

Proof. We de�ne As;t(n)

As;t(n) ,
1

2

2n�1X
k=0

(X(1)(uk;n)�X(1)(s)) (X(2)(uk+1;n)�X(2)(uk;n))

� (X(2)(uk;n)�X(2)(s)) (X(1)(uk+1;n)�X(1)(uk;n))

=

2n�1X
k=0

Bk;n ;

where Bk;n is the (signed) area of the triangle with vertices

X(s); X(uk;n); X(uk+1;n) :

By considering the di�erence between As;t(n) and As;t(n + 1) we see

that

B2k;n+1 + B2k+1;n+1 � Bk;n

is the area of the triangle with vertices

X(uk;n); X(uk+1;n); X(u2k+1;n+1) ;

which we denote by Ak;n. We re-order As;t(n)

As;t(n) =
1

2

nX
m=0

2m�1X
k=1
odd

(X(uk;m)� dk;m)

� (X(u(k+1)=2;m�1)�X(u(k�1)=2;m�1))

=
1

2

nX
m=0

2m�1X
k=1
odd

Ak;m ;
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where dk;m , (1=2) (X(u(k+1)=2;m�1) +X(u(k�1)=2;m�1)). The conver-

gence to the area process is completed using martingale methods.

Let Fn , �(X(uk;n) : k = 0; : : : ; 2n). Then

Lemma 3.1.

(22) E [X(uk;m) jFm�1] = dk;m ; almost surely :

Proof. For ease of presentation we let

U1 , X(uk;m)�X(u(k�1)=2;m�1) ;

U2 , X((u(k+1)=2;m�1)�X(uk;m) :

Then

E [X(uk;m)� dk;m jFm�1]

= E [X(uk;m)� dk;m jX(u(k�1)=2;m�1); X(u(k+1)=2;m�1)]

=
1

2
E [U1 � U2 jX(u(k�1)=2;m�1); X(u(k+1)=2;m�1)] :

Using the stationarity and the independence of the increments of X we

see that U1 and U2 are exchangeable, that is

P (U1 2 A; U2 2 B) = P (U2 2 A; U1 2 B) ; for all A;B 2 B(R2) :

The exchangeability extends to the random variables

(Ui jX(u(k�1)=2;m�1); X(u(k+1)=2;m�1)) ; i = 1; 2 :

We deduce that

E [U1 � U2 jX(u(k�1)=2;m�1); X(u(k+1)=2;m�1)] = 0 :
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Returning to the proof of Proposition 3.1, we compute the variance

of Ak;m. This will be used to show that

sup
n�1

E [As;t(n)
2] <1 ;

E (A2
k;m)

= E (((X(1)(uk;m)� d
(1)

k;m) (U
(2)
1 + U

(2)
2 )

� (X(2)(uk;m)� d
(2)

k;m) (U
(1)
1 + U

(1)
2 ))2)

=
1

4
E [((U

(1)
1 � U

(1)
2 ) (U

(2)
1 + U

(2)
2 )� (U

(2)
1 � U

(2)
2 ) (U

(1)
1 + U

(1)
2 ))2]

=
1

4
E [(U

(1)
1 U

(2)
2 )2 � 2U

(1)
1 U

(2)
2 U

(1)
2 U

(2)
1 + (U

(1)
2 U

(2)
1 )2]

, (1) + (2) + (3) :

We use the independence of the increments and Itô's formula for dis-

continuous semi-martingales to compute (1); (2) and (3).

(1) = E [(U
(1)
1 U

(2)
2 )2] = E [(U

(1)
1 )2] E [(U

(2)
2 )2] :

By applying Itô's formula and using the stationarity of the L�evy process

we �nd that

(3) = (1) = 2�2m (t� s)2
Z
jxj�1

jx1j
2 �(dx)

Z
jxj�1

jx2j
2 �(dx) :

Another application of Itô's formula gives

(2) = �2 E [U
(1)
1 U

(2)
2 U

(1)
2 U

(2)
1 ]

= �2 E [U
(1)
1 U

(2)
1 ] E [U

(2)
2 U

(1)
2 ]

= �2�2m+1 (t� s)2
� Z

jxj�1

x1 x2 �(dx)
�2

:

Collecting the terms together we have the following expression

E [A2
k;m ] = C0(�) 2

�2m+1 (t� s)2 ;

where

C0(�) ,
�Z

jxj�1

jx1j
2 �(dx)

Z
jxj�1

jx2j
2 �(dx)�

�Z
jxj�1

x1 x2 �(dx)
�2�

:
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Now we estimate the following term

E [A2
s;t(n)] = E

h� nX
m=1

2m�1X
k=1
odd

Ak;m

�2i
;

which through conditioning and independence arguments equals

= E

h nX
m=1

2m�1X
k=1
odd

A2
k;m

i

= C0(�)

nX
m=1

2m�1X
k=1
odd

2�2m+1 (t� s)2

� C0(�)

1X
m=1

2m�1X
k=1
odd

2�2m+1 (t� s)2

, C(�) (t� s)2 :

We use the martingale convergence theorem to deduce that, almost

surely, there is a unique limit of As;t(n). Furthermore the last calcula-

tion implies that there is a moment estimate of the area process given

by

E [A2
s;t ] � C(�) (t� s)2 :

We note that there is another way that one could de�ne an area

process of a L�evy process. One could de�ne the area process for the

truncated L�evy processes and look for a limit as the small (compen-

sated) jumps are put in. Using the above construction one can de�ne

A"
s;t for a �xed pair of times, corresponding to the L�evy process X".

With the �-�elds (G")">0 de�ned by

G"
, �(X� : � > ") ; for " > 0 ;

we have the following proposition:

Proposition 3.2. (A"
s;t)">0 form a (G")-martingale.
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Proof. Let � > " > 0. By considering the construction of the area

given above for the truncated processes X� and X" we look at the

di�erence at the level of the triangles A
�

k;n and A"
k;n.

E [A"
k;n �A

�

k;n jG
�]

= E (A
�;"

k;n + (X
�;"

k;n � d
�;"

k;n)
 (X
�

(k+1)=2;n�1
�X

�

(k�1)=2;n�1
)

+ (X
�

k;n � d
�

k;n)
 (X
�;"

(k+1)=2;n�1
�X

�;"

(k�1)=2;n�1
) jG�) ;

where the superscript �; " signi�es that the process is generated by the

part of the L�evy measure whose support is ("; �]. Using the spatial

independence of the underlying L�evy process we have

= E [A
�;"

k;n ] + E [(X
�;"

k;n � d
�;"

k;n)]
 (X
�

(k+1)=2;n�1
�X

�

(k�1)=2;n�1
)

+ (X
�

k;n � d
�

k;n)
 E [(X
�;"

(k+1)=2;n�1
�X

�;"

(k�1)=2;n�1
)]

= 0 :

With the uniform control on the second moment of the martingale

E [(A"
s;t)

2] � C(�) (t� s)2 ; for all " > 0 ;

we conclude that A"
s;t converges almost surely as " �! 0.

The algebraic identity

(23) As;u = As;t +At;u +
1

2
[Xs;t; Xt;u] ; s < t < u ;

for the anti-symmetric area process A generated by a piecewise smooth

path X extends to the area process of the L�evy process. This is due to

(23) holding for the area processes A" of the truncated L�evy processes

X".

Proposition 3.3. The L�evy area of the L�evy process (Xt)t�0 has �nite

(p=2)-variation for p > 2, almost surely. That is

sup
�

�X
�

jAtk�1;tk j
p=2
�2=p

<1 ; almost surely ;

where the supremum is taken over all �nite partitions � of [0; T ].



316 D. R. E. Williams

Proof. In Proposition 3.1 we constructed the area process for a pair

of times, almost surely. This can be extended to a countable collection

of pairs of times, almost surely. In the proof below we assume that the

area process has been de�ned for the times

k 2�nT; (k + 1) 2�n T ; k = 0; 1; : : : ; 2n � 1; n � 1 :

The proof follows the method of estimation used in [6]. To estimate

the area process for two arbitrary times u < v we split up the interval

[u; v] in the following manner:

We select the largest dyadic interval [(k� 1) 2�nT; k 2�n] which is

contained within [u; v]. Then we add dyadic intervals to either side of

the initial interval, which are chosen maximally with respect to inclusion

in the interval [u; v]. Continuing in this fashion we label the partition

according to the lengths of the dyadics. We note that there are at most

two dyadics of the same length in the partition which we label [l1;k; r1;k]

and [l2;k; r2;k] where r1;k � l2;k. Then

[u; v] =

1[
k=1

[
i=1;2

[li;k; ri;k] :

We estimate Au;v using the algebraic formula (23).

Al1;m;r2;m

=

mX
k=1

X
i=1;2

Ali;k;ri;k+
1

2

X
1�a�b�2

X
1�j<k�m

(Xra;k�Xla;k ; Xrb;j�Xlb;j ) :

Noting thatX
1�a�b�2

X
1�j<k�m

j(Xra;k �Xla;k ; Xrb;j �Xlb;j )j

=
X

1�a�b�2

X
1�j<k�m

j(Xra;k �Xla;k)
 (Xrb;j �Xlb;j )

� (Xrb;j �Xlb;j )
 (Xra;k �Xla;k)j

�
X

1�a�b�2

X
1�j<k�m

jXra;k �Xla;k j jXrb;j �Xlb;j j

�

� mX
k=1

X
i=1;2

jXri;k �Xli;k j

�2
;
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we have the estimate

(24)

jAu;vj
p=2

� 2(p=2)�1
�� 1X

k=1

X
i=1;2

jAli;k;ri;k j

�p=2

+
1

2

� 1X
k=1

X
i=1;2

jXri;k �Xli;k j

�p�
:

Using H�older's inequality, with p > 2 and  > p� 1, we have

jAu;vj
p=2

� 2(p=2)�1
�� 1X

n=1

n�=((p=2)�1)
�(p=2)�1 1X

n=1

n
� X
i=1;2

jAli;k;ri;k j

�p=2

+
1

2

� 1X
n=1

n�=(p�1)
�p�1 1X

n=1

n
� X
i=1;2

jXri;k �Xli;k j

�p�(25)

� C1(p; )

1X
n=1

n
X
i=1;2

jAli;k;ri;k j
p=2

+ C2(p; )

1X
n=1

n
X
i=1;2

jXri;k �Xli;k j
p :

One can uniformly bound jAu;vj
p=2 for any pair of times u < v 2 [0; T ]

by extending the estimate in (25) over all the dyadic intervals at each

level n, that is,

jAu;vj
p=2

� C1(p; )

1X
n=1

n
2nX
i=1

jAli;k;ri;k j
p=2

+ C2(p; )

1X
n=1

n
2nX
i=1

jXri;k �Xli;k j
p :

If the right hand side is �nite, almost surely, then the area can be

de�ned for any pair of times.

The (p=2)-variation of the L�evy area can be estimated by the same
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bound.

(26)

sup
�

X
�

jAu;vj
p=2

� C1(p; )

1X
n=1

n
2nX
i=1

jAli;k;ri;k j
p=2

+ C2(p; )

1X
n=1

n
2nX
i=1

jXri;k �Xli;k j
p :

We use (21) to control the �rst sum

E [jAs;t j
p=2] � C (t� s)p=2 ; for p � 4 :

So we have

E

h 1X
n=1

n
2nX
i=1

jAli;k;ri;k j
p=2
i
� C

1X
n=1

n
2nX
i=1

(2�n T )p=2

= C

1X
n=1

n 2�n((p=2)�1)

<1 ; for p > 2 :

This implies that the �rst term in the right hand side of (26) is almost

surely �nite. Now we consider the second term of (26).

Lemma 3.2.

1X
n=1

n
2n�1X
k=0

jX(k+1)2�nT �Xk2�nT j
p <1 ; almost surely :

Before proving the lemma we recall a result of Monroe, [16].

De�nition 3.1. Let Bt be a Brownian motion de�ned on a probability

space (
;F;P). A stopping time T is said to be minimal if for any

stopping time S � T , B(T )
(d)
= B(S) implies that, almost surely, S = T .

Theorem 3.1 [16, Theorem 11]. Let (Mt)t�0 be a right continuous

martingale. Then there is a Brownian motion (
;Gt; Bt) and a family

(Tt) of Gt-stopping times such that the process BTt has the same �nite

distributions as Mt. The family Tt is right continuous, increasing, and
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for each t, Tt is minimal. Moreover, if Mt has stationary independent

increments then so does Tt.

Remark. It should be noted that the stopping times Tt are not gen-

erally independent of Bt. However, in the case of �-stable processes

0 < � < 2 one can use subordination to gain independence of the

stopping times, [2].

Proof of Lemma 3.2. Let (�t)t�0 denote the collection of minimal

stopping times for which

Xt

(d)
= B�t :

The proof will be completed once it has been shown that

(27)

1X
n=1

n
2n�1X
k=0

jB�((k+1)2�nT ) �B�(k2�nT )j
p <1 ; almost surely :

The following inequality holds because Brownian motion is (1=p0)-H�ol-

der continuous, almost surely, for p0 > 2

(28) jB�(tk+1;n) � B�(tk;n)j
p
� C j�(tk+1;n)� �(tk;n)j

p=p0 ;

for all k = 0; : : : ; 2n � 1, and for all n � 1, almost surely, where tk;n ,

k 2�n T and 2 < p0 < p.

[17, Theorem 1] shows that the index of the process �(s) is half

that of the L�evy process. Therefore, with probability one, �(s) has

�nite (1 + �)-variation for all � > 0.

Theorem 3.2. If � is a minimal stopping time and E (B� ) = 0, then

E (�) = E (B2
� ).

Consequently the process (�t)t�0 can be controlled in the following

way

(29) E [�t ] = E [B2
�t
] = E [X2

t ] = t

Z
jxj<1

jxj2 �(dx) ;

where � is the L�evy measure corresponding to the process Xt. From

(29) and Theorem 3.1 we note that the process �t is a L�evy process

whose L�evy measure, say �, satis�es the followingZ 1

0

x�(dx) <1 :
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From this result we deduce that the process �t, almost surely, has

bounded variation. From [18, Theorem 5] we note that there is a posi-

tive constant A such that

P (�t � A t ; for all t � 0) = 1 :

From the above bound and using the fact that � has stationary inde-

pendent increments one can show

P (�(tk+1;n)� �(tk;n) � A(tk+1;n � tk;n) = A 2�n j �(tk;n)) = 1 ;

P

� \
n�1

2n�1\
k�0

(j�(tk+1;n)� �(tk;n)j � A 2�n)
�
= 1 :

Returning to (28) we see that

jB�(tk+1;n) �B�(tk;n)j
p
� C j�(tk+1;n)� �(tk;n)j

p=p
0

� CA 2�n(p=p
0) ;

which implies that

1X
n=1

n
2n�1X
k=0

jB�((k+1)2�nT )�B�(k2�nT )j
p
� C A

1X
n=1

n2�n(p=p
0

�1) <1 ;

due to p0 being chosen in the interval (2; p).

This lemma concludes the proof that the bound in (26) is �nite,

which shows that the area process, almost surely, has �nite (p=2)-

variation.

In this section we have proved that the area process exists and has

�nite (p=2)-variation when (Xt)t�0 has the form (20) To prove theorems

2.1, 2.2 we note that a general L�evy process has the form

Xt = a t+Bt + Lt +
X

0�s<t

j�Xsj�1

�Xs ; almost surely :

So, we need to add area corresponding to the drift vector and the jumps

of size greater than one. However, this part of the L�evy process has

bounded variation and is piecewise smooth so there is no problem de�n-

ing its area. Similarly, it has, almost surely, �nite (p=2)-variation.
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A. Homeomorphic ows.

In this section we give a proof that the solutions, generated by (1)

as the initial condition is varied, form a ow of homeomorphisms when

the integrator is a continuous function. The proof modi�es the one

given in [12] for the existence and uniqueness of solution to (1). The

main idea is that one uniformly bounds a sequence of iterated maps

which have projections giving the convergence of the solutions with

two di�erent initial points and bounding the di�erence of the solutions.

First, we need some notation.

De�nition A.1. Let T (n)(Rd) denote the truncated tensor algebra of

length n over Rd . That is

T (n)(Rd) ,

nM
i=0

(Rd)
i ;

where (Rd)
0 = R and T (1)(Rd) denotes the tensor algebra over Rd .

Let � = [0; T ]� [0; T ]. A map X : � �! T (n)(Rd) will be called

a multiplicative functional of size n if for all times s < t < u in [0; T ]

the following relation holds in T (n)(Rd)

Xst 
Xtu = Xsu

and X
(0)
st � 1.

A map X : � �! T (n)(Rd) is called a classical multiplicative func-

tional if t �! Xt , X
(1)
0t is continuous and piecewise smooth and

(30) X
(i)
st =

ZZ
s<u1<���<ui<t

dXu1 � � �dXui ;

where the right hand side is a Lebesgue-Stieltjes integral. We denote the

set of all classical multiplicative functionals in T (n)(Rd ) by S(n)(Rd).

De�nition A.2. We call a continuous function ! : � �! R
+ a control

function if it is super-additive and regular, that is,

!(s; t) + !(t; u) � !(s; u) ; for all s < t < u 2 [0; T ] ;

!(s; s) = 0 ; for all s 2 [0; T ] :
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Let X be a path of strong �nite p-variation. Then we can de�ne the

following control function

!(s; t) , kXk
p

p;[s;t]
:

De�nition A.3. A functional X = (1; X(1); : : : ; X(n)) de�ned on

T (n)(Rd ) where n = [p] is said to have �nite p-variation if there is

a control function ! such that

(31) jX
(i)
st j �

!(s; t)i=p

�
� i
p

�
!

; for all (s; t) 2 � ; i = 1; : : : ; n ;

for some su�ciently large � and x! , �(x+ 1).

Theorem A.1 ([12, Theorem 2.2.1]). Let X(n) be a multiplicative

functional of degree n which has �nite p-variation, with n , [p] ([p]

denotes the integer part of p). Then for m > n there is a unique

multiplicative extension X(m) in T (m)(Rd) which has �nite p-variation.

Remark. The above theorem shows that once a su�cient number of

low order integrals associated to a path Xt have been de�ned, then the

remaining iterated integrals of Xt are de�ned.

De�nition A.4. We call a multiplicative functional X :��!T (n)(Rd)

geometric if there is a control function ! such that for any positive

" there exists a classical multiplicative functional Y (") which approxi-

mates X in the following way

j(Xst � Yst("))
(i)
j � " !(s; t)i=p ; i = 1; : : : ; n = [p] :

We denote the class of geometric multiplicative functionals with �nite

p-variation by 
G(Rd)p.

Example A.1. Let Wt be an R
d -valued Brownian motion. Then the

following functionalW de�ned on T (2)(Rd ) belongs to 
G(Rd)p for any

p > 2.

(32) Wst ,

�
1;Wt �Ws;

ZZ
s<u1<u2<t

�dWu1 � dWu2

�
;
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where �dWu denotes the Stratonovich integral. It should be noted

that if one replaced the Stratonovich di�erential in (33) by the Itô

di�erential then one would not get an element of 
G(Rd )p. This is due

to the quadratic variation term which occurs in the symmetric part of

the area process

W
(2)
st =

ZZ
s<u1<u2<t

dWu1 dWu2 :

It was shown in [19] that one had su�cient control of the above func-

tional to generate path-wise solutions to stochastic di�erential equa-

tions driven by a Brownian motion. This control was derived from

a moment condition in the same spirit as Kolmogorov's criterion for

H�older continuous paths. The moment condition was veri�ed for the

above area by the use of known stochastic integral results, though one

could also derive it from a construction depending on the linearly in-

terpolated Brownian motion.

There are two stages to de�ning the integral against a geometric

multiplicative functional. The �rst gives a functional which is almost

multiplicative (see [12] for de�nition). The second associates, uniquely,

a multiplicative functional to the almost multiplicative functional.

Theorem A.2. There is a unique geometric multiplicative functional

Y which we call the integral of the 1-form � against the geometric mul-

tiplicative functional X. We denote this by

Yst ,

Z t

s

�(Xu) �X :

Corollary A.1. One has the following control on the p-variation of Y

(33)
���� Z t

s

�(Xu) �X
�(i)��� � (C !(s; t))i=p

�
� i
p

�
!

; i = 1; : : : ; [p] ;

where C depends on p; k�kLip(); ; �; �; L and [p].

The estimate is derived from estimating both the almost multi-

plicative functional and the di�erence of it from the integral.

We now state two lemmas which help prove that the solutions of

(1) are homeomorphic ows when the initial condition is varied.
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Lemma A.1. Let X be in 
G(Rd)p controlled by a regular !0. Let

f : Rn �! hom(Rd ;Rn ) be a Lip() map for some  > p. Let Y
(i)
st ,

i = 1; 2 denote the element in 
G(Rn)p which solves the rough integral

equation

Y
(i)
st =

Z t

s

f(Y (i)) �X ;

with initial condition Y
(i)
0 = ai, i = 1; 2. Let Wst be the multiplicative

functional which records the di�erence in the multiplicative functionals

Y
(1)
st and Y

(2)
st . Then

(34) jW
(i)
st j � �i

!(s; t)(i=p)

�
� i
p

�
!

; for all i � 1 ;

where � = ja1 � a2j, ! , C !0, the constant C depends on p; kfkLip();

�; . The bound holds for all times s � t on the interval J , fu :

! (0; u) � 1g.

Lemma A.2. With the assumptions of Lemma A.1 one can estimate

the di�erence of the increments of Y
(1)
st and Y

(2)
st for any pair of times

0 � s < t which satisfy !(s; t) � 1 as follows

jY
(1)
st � Y

(2)
st j � � exp

 
1

�
�1
p

�
!

(! (0; s) + ! (0; s)(1=p))

!
!(s; t)(1=p)

�
�1
p

�
!

:

In particular for any t > 0 one has

(35) jY
(1)
t � Y

(2)
t j � ja1 � a2jC(t) :

Now we can prove that the solutions form a ow of homeomor-

phisms as the initial condition is varied.

Proof of Theorem 1.3. The continuity of solutions follows from

Lemma A.2. It remains to show that the inverse map exists and is con-

tinuous. This can be checked by repeating all the previous arguments

using the reversed path (Xt�s)0�s�t as the integrator.

The induction part of the proof of Lemma A.2 will require the

following lemma about rescaling:
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Lemma A.3 ([12]). Let X be a multiplicative functional in T ([p])(Rd)

which is of �nite p-variation controlled by !. Let (X;Y ) be an extension

of X to T ([p])(Rd � R
n) of �nite p-variation controlled by K!. Then

(X;�Y ) is controlled by

max f1; �kp=iK : 1 � k � i � [p]g! ;

where � 2 R. In particular, if � � K�[p]=p � 1 then (X;�Y ) is

controlled by !.

Proof of Lemma A.1. We set up an iteration scheme of multiplicative

functionals which we will bound uniformly, by induction. A projection

of the sequence proves that a Picard iteration scheme converges to the

solutions of (1) starting from a1 and a2. Another projection shows that

the di�erence of these solutions is bounded.

Let " > 0 and � > 1. Let V
(1)
st be the geometric multiplicative

functional given by

V
(1)
st , (Z

(1)(1)
st ; Y

(1)(1)
st ; Y

(1)(0)
st ; Z

(2)(1)
st ; Y

(2)(1)
st ; Y

(2)(0)
st ;W

(1)
st ; "�1Xst)

=
�Z t

s

f(a1) �X � a1;

Z t

s

f(a1) �X; a1;

Z t

s

f(a2) �X � a2;Z t

s

f(a2) �X; a2;

Z t

s

f(a1)� f(a2) �X; "
�1Xst

�
:

The iteration step is a two stage process. Given V (m) we set

eV (m+1) =

Z
km� (V

(m)) �V (m) ;

where km� is the 1-form on ((Rn)�7 � R
d) given by

km� (a1; : : : ; a8) (dA1; : : : ; dA8)

= (a1 g(a2; a3) dA8; dA3 + ��mdA1; dA2; a4 g(a5; a6) dA8;

dA6 + ��mdA4; dA5; �
�1 g(a2; a4) dA8; dA8) :

g(x; y) is the 1-form appearing in [11, Lemma 3.2] which satis�es the

following relation with respect to f

f i(x)� f i(y) =
X
j

(x� y)jgij(x; y) :
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eV (m+1) is well de�ned because g and km� are both Lip() for some

 > p� 1.

We de�ne V (m+1) to be the geometric multiplicative functional

obtained by rescaling the �rst and fourth components of eV (m+1) by " �

and the seventh component by ".

The uniform bound on the iterates (V (m))m�1 will be obtained by

induction. X is controlled by a regular !0 so there exists a constant C

such that V (1) is controlled by ! , C !0. Suppose that V
(k) (k � m)

are controlled by !. From (Corollary A.1) there is a constant C1 such

that eV (m+1) is controlled by C1 !. If we choose " > 0, � > 1 such that

" � C
�[p]=p
1 and " � � C

�[p]=p
1 , then Lemma A.3 implies that V (m+1) is

controlled by !, completing the induction step.

The uniform control on the iterates V (m) ensures the convergence

of fY (i)(m)gm�1 to the solutions of

dY
(i)
t = f(Y

(i)
t ) dXt ; Y

(i)
0 = ai ; i = 1; 2 :

Through the de�nition of f�W (m)gm�1, the sequence at the level of

the paths will converge to the scaled di�erence of the two solutions

��1(Y (2) � Y (1)). For s; t in J one has

j
�W

(i)
st j �

!(s; t)i=p

�
� i
p

�
!

; i = 1; : : : ; [p] ;

which implies that

jW
(i)
st j � �i

!(s; t)i=p

�
� i
p

�
!

; i = 1; : : : ; [p] :

Proof of Lemma A.2. We de�ne the following set of times

(36) t0 , 0 and tj , inf fu > tj�1 : !(tj�1; u) = 1g ;

for all j 2 f1; : : : ; n(s)g, where n(s) , max fj : tj � sg and tn(s)+1 = s.

We solve the di�erential equation starting from s and use (34) to

show that

jW k
stj � K(s)k

!(s; t)(k=p)

�
�k
p

�
!

;
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where K(s) is an upper bound on the supremum over all the possible

di�erences of the paths jY
(1)
s � Y

(2)
s j ; at time s. The bound K(s) is

derived recursively by considering the analogous upper bound for the

di�erence of the solutions to the di�erential equation over the time

interval [ti�1; ti] given below

jY
(1)
ti

� Y
(2)
ti
j � jY

(1)
ti�1

� Y
(2)
ti�1

j+ jWti�1 ti j

� jY
(1)
ti�1

� Y
(2)
ti�1

j

 
1 +

!(ti�1; ti)
(1=p)

�
�1
p

�
!

!
;

which implies that

K(tj) � K(tj�1)

 
1 +

!(tj�1; tj)
(1=p)

�
�1
p

�
!

!
; j = 1; : : : ; n(s) + 1 :

Therefore

jW k
stj � K(t0)

k

n(s)+1Y
j=1

 
1 +

! (tj�1; tj)
(1=p)

�
�1
p

�
!

!k

!(s; t)(k=p)

�
�k
p

�
!

� �k exp

 
k

 
n(s)X
j=1

!(tj�1; tj)
(1=p)

�
�1
p

�
!

+
! (tn(s); s)

(1=p)

�
�1
p

�
!

!!

�
!(s; t)(k=p)

�
�k
p

�
!

;

noting that !(tj�1; tj) = 1 and using the sub-additivity of ! we obtain

� �k exp

 
k

�
�1
p

�
!

(! (0; s) + ! (0; s)(1=p))

!
!(s; t)(k=p)

�
�k
p

�
!

:

By considering the above bound at the level of the paths (k = 1) and

repeatedly using the triangle inequality one deduces (35).
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