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Martin boundary for

homogeneous riemannian

manifolds of negative curvature

at the bottom of the spectrum

Ewa Damek, Andrzej Hulanicki and Roman Urban

0. Introduction.

Let M be a manifold and let L be a subelliptic second order dif-

ferential operator on M . Positive L-harmonic functions have been in-

tensively studied for many decades. In particular, if M has negative

curvature and L is coercive (i.e. there is a positive " such that L+ " I

admits the Green function), the Martin boundary has been described

by A. Ancona [A], and earlier by M. Anderson and Schoen [AS] in the

case when L is the Laplace-Beltrami operator. If L is noncoercive, the

situation is much more complicated, there are no results like in [A], so

various particular cases are of interest.

In this paper we treat noncoercive operators on simply connected

homogeneous manifolds of negative curvature. J. Wolf [W] and E.

Heintze [Hei] proved that such a manifold is isometric with a solv-

able Lie group S = N A, being a semi-direct product of a nilpotent Lie

group N and A = R
+ and, moreover, for a H 2 A the Lie algebra of

A the eigenvalues of AdH jN are all greater than 0. Conversely, every

such group equipped with a suitable left-invariant metric becomes a

homogeneous Riemannian manifold with negative curvature.
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On S we consider a second order left-invariant operator

L =

mX
j=0

Y 2
j + Y ;

such that Y0; : : : ; Ym generate S. Let � : S �! A = S=N be the

canonical homomorphism. d�(L) is a second order invariant operator

on R+ , hence

d�(L) = (a @a)2 �  a @a ;

for a  2 R. � a @a is the A-component of Y and L = L is coercive,

if and only if  6= 0.

Let �t be the semigroup of measures generated by L . If  � 0,

then there is a unique (up to a constant) positive Radon measure � on

N such that

��

t � � = � ; t > 0

[E]. For  > 0 the measure � is bounded, while �0 is unbounded. The

measures � ,  > 0 have been studied in various contexts [B], [E], [G],

[Ra], see also [D1], [D2], [DH2], [DHZ]. In particular, the bounded L-

harmonic functions,  > 0 are described as �-Poisson integrals [Ra],

[D1], [DH2] of L1-functions on N . If  = 0, the only bounded L-

harmonic functions are constants but the unbounded measure �0 gives

rise to non-trivial positive L0 harmonic functions.

Also � plays an essential role in description of the Martin bound-

ary for L (and L�) both in the coercive and the noncoercive case.

However, while the �rst case can be deduced from Ancona's theory [D2],

the latter requires new methods. This is the main topic of our study

here.

We make use of a probabilistic method introduced in [DH1] and

continued in [DHZ]. The essence of it is a decomposition of the di�usion

on S generated by a�2L into the \vertical component" generated by

(@a)2 � (=a) @a (Bessel process) and the \horizontal component" for

which the transition probabilities conditioned on a trajectory at of the

\vertical component" satisfy some evolution equation (Chapter 3). The

idea of this decomposition is very intuitive and goes back to [M], [MM],

cf. also [K], [S], [Tay]. The available proofs of the properties of this

decomposition are either very sketchy or quite involved. We give here

a direct proof of it adapted to the situation of our interest.

The main aim of the present paper is to describe the Martin bound-

ary for L , for all  2 R. In addition, we �nd lower and upper pointwise
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bounds for � . � turns out to be the main building block for all mini-

mal positive L .

In the simplest two dimensional case, i.e. when S = \ax + b"

the description of the Martin boundary is due to Molchanov, [Mo].

Indeed, his technique is based on properties of the Bessel process, as is

ours, only in the two-dimensional case the operator in the horizontal

direction can be made independent of the vertical direction which makes

the decomposition mentioned above superuous, and all the arguments

are much simpler.

1. Preliminaries.

Let

(1.0) S = N �A

be a solvable Lie algebra which is the sum of its nilpotent ideal N and

a one-dimensional algebra A = R
+ . We assume that

(1.1)
there exists H 2 A such that the real parts

of the eigenvalues of adH : N 7�! N are positive :

Let N;A; S be the connected and simply connected Lie groups whose

Lie algebras are N ;A;S respectively. Then S = NA is a semi-direct

product of N and A = R
+ .

On S we consider a second order left-invariant operator

L =

mX
j=0

Y 2
j + Y ;

such that Y0; : : : ; Ym generate S. It follows from elementary linear alge-

bra that Y0; : : : ; Ym can be chosen in the way that Y1(e); : : : ; Ym(e) 2 N .

The decomposition (1.0) is not unique, i.e. there is no canonical

choice of A. We put A = exp ft Y0 : t > 0g and assume with no loss

of generality that the real parts of the eigenvalues of adY0 are strictly

positive. Moreover, multiplying L by a constant we may assume that

the real parts of adY0 are large. Decomposing s 2 S as s = xa, x 2 N ,
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a = exp (log a)(Y0), we write

(1.2)

Lf(xa) = Lf(xa)

= ((a @a)2 �  a @a) f(xa)

+
� mX
j=1

�a(Xj)
2 + �a(X)

�
f(xa) ;

where �a = Adexp (log a)Y0 and X;X1; : : : ; Xm are left-invariant vector

�elds on N and X1; : : : ; Xm generate N . We shall keep the subscript 

in L in order to stress the role of the A-component of Y .

(1.1) together with the assumption on the length of Y0 imply (see

e.g. [DHZ]) that there are m1;m2 > 2 and C > 0 such that

(1.3) k�akN!N � C (am1 + am2) ; a > 0 :

In N we de�ne a \homogeneous" norm j � j. Let (�; �) be an arbitrary

�xed inner product in N and let

hX;Y i =

Z 1

0

(�a(X);�a(Y ))
da

a
; kXk =

p
hX;Xi :

We put

j expXj = jXj = (inf fa > 0 : k�a(X)k � 1g)�1 :

Since for X 6= 0

lim
a!0

k�a(X)k = 0 ;

lim
a!1

k�a(X)k = 1 ;

and a �! k�a(X)k is increasing ;

it follows that for every Y 6= 0 there is precisely one a such that

Y = �a(X) ; jXj = 1 ; jY j = a :

If the action of A on N is diagonal, j � j is the usual homogeneous norm

on N . Finally, let

�a(expX) = exp (log a)Y0 expX exp (� log a)Y0
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i.e. �a is the di�erential of �a.

The space Hb of bounded harmonic functions for L is well known.

If  � 0, then bounded harmonic functions are constant. This is a

consequence of [BR] (cf. also [DH2]). If  > 0, Hb is in one-one

correspondence with L1(N) via the Poisson integral

(1.4) F (s) =

Z
N

f(s � x)m(x) dx ;

where x �! s � x denotes the action of S on N = S=A ([Ra], [DH2]).

m is a smooth, bounded positive function with d�(x) = m(x) dx

whence
R
N
m(x) dx = 1 ([D]). Moreover [D],

(1.5) C�1 (1 + jxj)�Q� � m(x) � C (1 + jxj)�Q� ; x 2 N :

For  > 0 the function m is uniquely de�ned by two conditionsZ
N

m(x) dx = 1

and

P (xa) = a�Q �m(�a�1(x)) is L-harmonic :

It turns out that the probability measure m is also the basic

ingredient in the description of positive harmonic functions for all  2
R.

Let

(1.6) Q = Re Tr adY0

and

(1.7) Py(xa) = a�Q �m(�a�1 (y�1x)) :

If  > 0, the family fPygy2N and the function a are all the mini-

mal positive L-harmonic functions ([A], cf also [D2]). The proofs (as

well as the proof of (1.5)) are based on the Ancona's potential theory

on manifolds with negative curvature. Since L�f = a�L(af), the

minimal positive L�-harmonic functions are 1 and a�Py(xa).

The case  = 0 is essentially di�erent, because Ancona's theory

does not apply. To examine the Martin kernel we have to estimate

the Green function G0 for L0 in another way. The �nal description of
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positive minimal L0-harmonic functions, however, is very similar to the

case  6= 0.

Let �t be the semigroup of probability measures with the in�nites-

imal generator L0 and let � = �1. The Markov chain on N with the

transition probability

P (x;B) = �� � �x(B) ; x 2 N ; B � N ;

is a Harris chain with the unique (up to a multiplicative constant)

positive Radon measure �0 such that �� � �0 = �0; [E]. �0 has a smooth

density m0 which is not integrable in contrast to m ,  > 0.

The aim of this paper is to show

Theorem. The minimal positive L0-harmonic functions normalized at

e are

(1.8)

the constant function 1

and Py(xa) =
1

m0(y)
a�Q �m0(�a�1 (y�1x)) :

Moreover, we have

(1.9) C�1 (1 + jxj)�Q � m0(x) � C (1 + jxj)�Q ; x 2 N :

To prove the theorem we proceed in the following way. For  =

�2� � 0 we de�ne a new operator

L = a�2L

which is not left-invariant on S. We study it on the space N�R+ . How-

ever, it has some homogeneity with respect to the family of \dilations"

Dr, r > 0 on N � R
+

Dr(x; a) = (�r(x); ra) :

We have

(1.10) L(f �Dr) = r2Lf �Dr :

Also L commutes with the natural action of N on N �R+ on the left.
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The Green function G for L is given by

(1.11) G(x; a; y; b) =

Z 1

0

pt(x; a; y; b) dt ;

where

Ttf(xa) =

Z
N�R+

f(y; b) pt(x; a; y; b) b1+2� dy db

is the heat semigroup on L2(a2�+1) generated by L (see Theorem 5.6).

By (1.10)

(1.12) pr2t(x; a; y; b) = r�Q�2��2 pt(Dr�1(x; a);Dr�1(y; b))

and so

(1.13) G(x; a; y; b) = r�Q�2�G(Dr�1(x; a);Dr�1(y; b)) :

The operator L� conjugate to

L = @2a + (1� ) a�1 @a + a�2
mX
j=1

�a(Xj)
2 + a�2 �a(X) ;

with respect to the measure a1+2� dx da is

L� = @2a + (1� ) a�1 @a + a�2
mX
j=1

�a(Xj)
2 � a�2 �a(X) :

Clearly,

p�t (x; a; y; b) = pt(y; b;x; a)

and

(1.14) G�(x; a; y; b) = G(y; b;x; a) :

Although the case  = 0 is the most interesting for us, we keep the

assumption  � 0 to stress that our method works for all those cases. In

particular, we obtain new proofs of (1.5) and (1.7). (Again conjugating

the operator by a .)

Let G be the Green function for L ,  � 0. G is uniquely de�ned

by the following two conditions

(1.15) L G(� ; yb) = ��yb ; as distributions :
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(Functions are identi�ed with distributions via the right Haar measure

a�1 da dx.)

(1.16) For every yb 2 S; G(�; yb) is a potential for L :

It turns out that

(1.17) G(x; a; y; b) b� = G(xa; yb) :

Since the notions of potentials for L and L coincide, the only condi-

tion to check is (1.15). By Theorem (5.6) we have

Z
G(x; a; y; b)L��(x; a) a2�+1 da dx = ��(y; b) :

ButZ
G(x; a; y; b)L��(x; a) a2�+1 da dx

=

Z
G(x; a; y; b) a2�L��(x; a) a�1 da dx

=

Z
G(x; a; y; b) a�L��(x; a) a�1 da dx ;

which shows (1.17).

Using (1.17) we describe the Martin boundary for L0 (Theorem

6.3). The case  6= 0 was described in [D2]. For that we heavily use

(1.13) to �nd appropriate estimates for Martin kernels.

(1.11) can be extended to b = 0 (see Lemma (5.2) and (5.5)) as the

limit of G(x; a; y; bn), bn �! 0. More precisely,

G(x; a; y; 0) = lim
bn!0

G(x; a; y; bn)

as Radon measures. Then

(1.18) �m(x) = G�(x; 1; e; 0) ;  � 0 :

(1.18) follows from the fact that

G�(x; a; e; 0) = a�Q�2�G�(�a�1(x); 1; e; 0)
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is L�-harmonic. Hence a�Q�2� �m(�a�1(x)) is L�-harmonic, and so

a�Q �m(�a�1(x)) is L-harmonic. But the last condition implies that

for every t

��t �m = m ;  � 0 ;

which uniquely determines m .

Hence, from estimates on G we conclude estimates for m .

2. Bessel Process.

Let b�(t) denotes the Bessel process with a parameter � � 0; [RY],

i.e. a continuous Markov process with state space [0;+1) generated

by � = @2a + (2�+ 1=a) @a, � � 0.

The transition function with respect to the measure y2�+1 dy is

given by ([RY])

pt(x; y)

=

8>><
>>:
c(�)

1

2 t
exp

��x2 � y2

4 t

�
I�

�x y
2 t

� 1

(x y)�
; for x; y > 0 ;

c(�) (2 t)�(�+1) exp
��y2

4 t

�
; for x = 0; y > 0;

(2.1)

where

I�(x) =

1X
k=0

�x
2

�2k+�
k! �(k + �+ 1)

is the Bessel function [L]. Therefore, for x � 0 and B � (0;+1)

Px(b�(t) 2 B) =

Z
B

pt(x; y)y2�+1 dy :

The Bessel process appears as the vertical component of the di�usion

generated by L ,  = �2�. The aim of this chapter is to recall the

basic properties of the process b�(t). The proofs are rather standard,

we sketch them briey for reader's convenience.

Lemma 2.2. Let 
 be the space of trajectories of the Bessel process

b�(t). For b� 2 
 and � > 0 de�ne ��(b�)(t) =
p
� b�(t=�): Assume

that b�(t) starts from x. Then :
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i) for every � > 0, ebt = ��(b�)(t) is the Bessel process (with a

parameter �) starting from
p
� x,

ii) for every � > 0, x � 0,

Exf � �� = Ep�x f :

The Bessel process b� on R+ started at x > 0 satis�es the following

stochastic di�erential equation [RY, p. 416],

b�(t) = x+ �(t) + (2�+ 1)

Z t

0

1

b�(s)
ds ;

where �(t) is the one-dimensional Brownian motion started at 0. Con-

sequently, we have

Px[b�(s) � �] � P0[b�(s) � �] and Px[b(s) � �] � Px[�(s) � �] :

Also, by the comparison theorem [RY, p. 364],

� � �0 then for all s � 0 ; b�(s) � b�0(s) ; almost everywhere ;

whence

b�(s) � j�n(s)j ; where n = [2�] + 3 ;

and �n is the n-dimensional Brownian motion.

Lemma 2.3.

Pa[ max
0�s�t

��(s) � �] � e�"(t=�
2) :

Indeed, Let q = P0[��(1) � 1]. Then q < 1 and

Pa[ max
0�s�t

b�(s) � �] � Pa=�[ max
0�s�t=�2

b�(s) � 1]

� E0

[t=�2]Y
k=0

Pb�(k)[b�(1) � 1]

� q[t=�
2]

� e�"(t=�
2) :
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Lemma 2.4. There exist constants c1; c2 such that for every R > 0

and for every t > 0,

PR

�
inf

s2[0;t]
b�(s) <

R

2

�
� c1e

�c2R2=t :

Indeed,

PR

h
inf

s2[0;t]
b�(s) <

R

2

i
� PR

h
inf

s2[0;t]
�(s) <

R

2

i
� c1 e

�c2R2=t :

Lemma 2.5. There exist constants c1, c2 such that for every x � 0,

for every � > 0 and for every t > 0,

Px( sup
s2[0;t]

b�(s) > x+ �) � c1 e
�c2�2=t :

Indeed, for n = [2�] + 3

Px( sup
s2[0;t]

b�(s) > x+ �) � Px( sup
s2[0;t]

�n(s) > x+ �) � c1 e
�c2�2=t :

Lemma 2.6. Let � > 0: There are constants �; c1; c2 > 0 such that for

every a � 0 and A > 0,

Pa

� Z 1

0

b��(s) ds < A
�
� c1 e

�c2A�� :

Proof. Given positive �, we have

Pa

�Z 1

0

b�(s) ds < A
�

� Pa

�
sup
s2[0;1]

b�(s) � 2A�
�

+Pa

�
sup
s2[0;1]

b�(s) > 2A�; jfs : b�(s) > A�gj < A1���� :
By Lemma 2.3,

Pa

�
sup
s2[0;1]

b�(s) � 2A�
� � c1 e

�c2A�� :
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To estimate the probability of


 =
�

sup
s2[0;1]

b�(s) > 2A�; jfs : b�(s) > A�gj < A1���	 ;
we de�ne the stopping time � = inf fs : b�(s) = 2A�g. Then by Lemma

2.4,

Pa(
) � EaPb�(�)

�
inf

s2[0;A1���]
b�(s) <

b�(0)

2

�
� c1 e

�c2A2��1+��

:

We choose � such that 2 � � 1 + � � < 0.

Corollary 2.7. Let � � 0. Then

sup
a�0

Ea

�Z 1

0

b��(s) ds
��D=2

< +1 :

Proof. Since by the previous Lemma

Pa

� 1

n+ 1
�
Z 1

0

b��(s) ds � 1

n

�
� c�c2n

�

1 ;

we have

Ea

�Z 1

0

b��(s) ds
��D=2

�
X
n

(n+ 1)D=2e�c2n
�

< +1 :

3. Solution of a heat equation on the product N � R
+ .

In this chapter we give an analytic proof of the decomposition of the

di�usion on N �R+ into its components. Using it we �nd a convenient

formula for the solution of the heat equation

(L � @t)u(t; x; a) = 0 :

For a multi-index � = (�1; : : : ; �k), �j 2 Z+ and a basis X1; : : : ; Xn of

the Lie algebra N of the Lie group N we write

X� = X
�1
1 � � �X�n

n :
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For k = 0; 1; : : : ;1 we de�ne

Ck = ff : X�f 2 C(N); for j�j < k + 1g

and

Ck
1 = ff 2 Ck : lim

x!1
X�f(x) exists for j�j < k + 1g :

For k <1 the space Ck
1 is a Banach space with the norm

kfkCk
1

=
X
j�j�k

kX�fkC(N) :

Let

L�(t) = �(t)�2
�X

(��(t)(Xj))
2 + ��(t)(X)

�
:

For a continuous function � : [0;+1) �! [0;+1) = A let fU�(s; t);

0 < s < tg be the (unique) family of bounded operators on C1 = C0
1

which satis�es

i) U�(s; s) = I,

ii) U�(s; r)U�(r; t) = U�(s; t), s < r < t,

iii) @sU
�(s; t)f = �L�(s)U�(s; t)f , for every f 2 C1,

iv) @tU
�(s; t)f = U�(s; t)L�(t)f for every f 2 C1,

v) U�(s; t) : C2
1 �! C2

1.

U�(s; t) is a convolution operator U�(s; t)f = f � p�(t; s), where

p�(t; s) is a probability measure with a smooth density. By ii) we have

p�(t; r) � p�(r; s) = p�(t; s) for t > r > s. Existence of U�(s; t) follows

from [T].

Let dWa be the probability measure on the space C([0;+1);R+ );

for the Bessel process b�(t) = bt.

For f 2 C1c (N) we de�ne

(3.1)
u(t; x; a) =

Z
U�(0; t)f(x; �(t)) dWa(�)

= EaU
�(0; t)f(x; �(t)) :
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Theorem 3.1. Let  = �2� and let u = u(t; x; a) be the function on

N de�ned by (3:1). Then

Lu(t; x; a) = @tu(t; x; a) ; on R+ �N � R
+ :

u is continuous and

(3.2) u(0; x; a) = f(x; a) ; when t �! 0 :

Proof. First, we prove that u = u(t; x; a) de�ned in (3.1) is a solution

of the integral equation

(3.3) u(t; x; a) = Eaf(x; bt) +

Z t

0

EaL(bt�s)u(s; x; bt�s) ds :

To do this we observe that EaL(bt�s)u(s; x; bt�s) is �nite. Let Y1;

: : : ; Yn be a �xed basis of N . Then

�aXj = �
j
1(a)Y1 + � � �+ �jn(a)Yn ;

where �
j
i 's are continuous functions and j�ji (a)j � C (am1+am2). More-

over,

Yk

Z
f �N p�(s; 0)(x; �s) dWa(�)

and

Yk Yl

Z
f �N p�(s; 0)(x; �s) dWa(�)

are bounded for x in a compact set. We have

L(a)u(s; x; a)

= L(a)

Z
U�(0; s) f(x; �s) dWa(�)

= L(a)

Z
f �N p�(s; 0)(x; �s) dWa(�)

= a�2
X
j;k;l

�
j
k(a)�

j
l (a)Yk Yl

Z
f �N p�(s; 0)(x; �s) dWa(�)(3.4)

+ a�2
X
j;k

�
j
k(a)Yk

Z
f �N p�(s; 0)(x; �s) dWa(�)
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and, by the above remarks

(3.5) jL(a)u(s; x; a)j � C (am3 + am4) ;

where

m3 = min fm1;m2; 2m1; 2m2;m1 +m2g � 2 > 0

and

m4 = maxfm1;m2; 2m1; 2m2;m1 +m2g � 2 :

It follows that Ea L(bt�s)u(s; x; bt�s) is �nite. Indeed, by (3.4) and

(3.5), proceeding as before (i.e. replacing a by bt�s) we obtain

jEa L(bt�s)u(s; x; bt�s)j � C Ea(bm3

t�s + bm4

t�s) :

Now we calculate

EaL(bt�s)u(s; x; bt�s)

=

Z
L(bt�s)u(s; x; bt�s) dWa(b)

=

Z
L(bt�s)

Z
U�(0; s) f(x; �s) dWbt�s(�) dWa(b)

=

ZZ
L(bt�s)U

�(0; s) f(x; �s) dWbt�s(�) dWa(b)

=

Z
L(bt�s)U

b(t� s; t) f(x; bt) dWa(b) :

By (3.6), and the Fubini's theorem we obtain

Z t

0

EaL(bt�s)u(s; x; bt�s) ds

=

ZZ t

0

L(bt�s)U
b(t� s; t) f(x; bt) ds dWa(b) ;

but

Z t

0

L(bt�s)U
b(t� s; t) f(x; bt) ds = U b(0; t) f(x; bt)� f(x; bt) :
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Indeed by iii) we get

d

ds
U b(t� s; t) f(x; bt) = � d

ds
U b(�; t) f(x; bt)

���
t�s

= �(�L(bt�s)U
b(t� s; t) f(x; bt))

= L(bt�s)U
b(t� s; t) f(x; bt) :

Therefore,

Z t

0

EaL(bt�s)u(s; x; bt�s) ds

=

Z
U b(0; t) f(x; bt) dWa(b)�

Z
f(x; bt) dWa(b)

= u(t; x; a)� Eaf(x; bt) :

Now we are going to prove that u is a solution of the di�erential equation

(3.2). Since u is a solution of (3.3) we have

u(t+ h; x; a)� u(t; x; a)

h

=
Eaf(x; bt+h)�Eaf(x; bt)

h
+

1

h

Z t

0

(EaL(bt+h�s)u(s; x; bt+h�s)

�EaL(bt�s)u(s; x; bt�s)) ds

+
1

h

Z t+h

t

EaL(bt+h�s)u(s; x; bt+h�s) ds :

Let � be the in�nitesimal generator of the Bessel process i.e.

� = @2a +
2�+ 1

a
@a :

Letting h to 0 we get

@tu(t; x; a)

= �Eaf(x; bt) + �

Z t

0

EaL(bt�s)u(s; x; bt�s) ds+ L(a)u(t; x; a)

in a sense of distributions.
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On the other hand, since u is a solution of (3.3) thus

Lu(t; x; a)

= (L(a) + �)u(t; x; a)

= L(a)u(t; x; a) + �
�
Eaf(x; bt) +

Z t

0

EaL(bt�s)u(s; x; bt�s) ds
�

= L(a)u(t; x; a) + �Eaf(x; bt) + �

Z t

0

EaL(bt�s)u(s; x; bt�s) ds :

So u is a solution of (3.2).

Theorem 3.2. Let

Ttf(x; a) =

Z
U�(0; t) f(x; �t) dWa(�) :

Then fTtg is a semigroup.

Proof.

Ts(Ttf)(x; a) =

Z
U b(0; s)Ttf(x; bs) dWa(b)

=

Z
U b(0; s)

Z
U�(0; t) f(x; �t) dWbs(�) dWa(b)

=

Z
U b(0; s)U b(s; s+ t) f(x; bs+t) dWa(b)

=

Z
U b(0; s+ t) f(x; bs+t) dWa(b)

= Ts+tf(x; a) ;

where in the third equality we have used the Markov property.

4. Estimate of the evolution kernels by the Nash inequality.

Let X;X1; : : : ; Xm be as in (1.2),

La = a�2
� mX
j=1

(�aXj)
2 + �a(X)

�
;

�0 =

mX
j=1

X2
j ;
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and

� = �0 +X :

Let � : [0;+1) �! [0;+1) be a continuous function such that �(t) > 0

for t > 0, and p�(t; s; x) = p�(t; s)(x), s < t be the evolution generated

by the operator L�(t) + @t.

The aim of this Chapter is to prove the following estimate for

p�(t; 0; x):

Theorem 4.1. For every compact set K � N , which does not contain

the identity element e of N , there exist positive constants C1, C2, m3,

m4 and n � Q such that for every x 2 K and for every t,

p�(t; 0; x) � C1

�Z t

0

��2(1�Q=n)(u) du
��n=2

exp
�
� C2

A(0; t)

�
;

where

A(s; t) =

Z t

s

(�m3(u) + �m4(u)) du :

The main tool in the proof of the above theorem is the Nash in-

equality (see e.g. [VSC])

(4.2) kfk2+4=n
L2 � �C (�f; f) kfk4=n

L1 = (�0f; f) kfk4=n
L1 ;

for all f 2 C10 (N), where d is the local dimension of (N;X1; : : : ; Xm)

and D is the dimension at in�nity of (N;X1; : : : ; Xm) n is any num-

ber satisfying d � n � D(see [VSC]). Let Qt be the heat semi-group

generated by �0. Then

kQtkL1!L1 � C

�
t�d=2 ; if t � 1 ;

t�D=2 ; if t � 1 ;

(Theorem IV.4.1 in [VSC]) and so (4.1) follows by the Nash theorem

(Theorem II.5.2 in [VSC]). Since we can make Q arbitrarily big (see

1.6), � = �2 (1�Q=n) is positive.

Proof of Theorem 4.1. We start with some integral estimates on

f � p�(t; s).

Let 0 � ' 2 C1c (N); supp' � Br(e) and
R
' = 1 (r will be �xed

later). Let �(x) = � �'(x) where � is a left invariant Riemannian metric
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on N . There exists a positive constant C such that if Y1; : : : ; Yn is a

�xed basis of N then

(4.3) jYj �(x)j � C ; jYi Yj �(x)j � C ; for i; j = 1; : : : ; n

[H]. Moreover,

(4.4) �(x) �
Z

(�(x y�1) + �(y))'(y) dy � �(x) + r ;

and

(4.5) �(e) =

Z
�(y�1)'(y) dy � r :

For a natural number m let �m(x) = �m � '(x), where

�m(x) = min fm; �(x)g :

Then there exists a positive constant C such that for every m, (4.3),

(4.4) and (4.5) hold with �m and �m instead of � and � respectively.

We have

(4.6) (@s(f � p�(t; s); e��m) = �(f � p�(t; s); L��(s)e
��m))

(4.6) is obvious, if instead of e��m we put e��m , where  2 C10 (N).

So to conclude (4.6) we take the sequence  j =  � �aj for  2 C10 (N)

such that  (0) = 1 and aj �! 0. Since �aj (x) �! e for every x 2 N

and, by (1.3), j�aj (Xj) j �! 0, we obtain (4.6) as the limit of

@s(f � p�(t; s); e��m j) = �(f � p�(t; s); L��(s)(e
��m j)) :

Therefore, by (1.2) and (4.3),

@s(f � p�(t; s); e��m)

� C (�+ �2)��2(s) (�m1(s) + �m2(s))2 (f � p�(t; s); e��m)

+ C ���2(s) (�m1(s) + �m2(s)) (f � p�(t; s); e��m) :

Thus

@s(f � p�(t; s); e��m)

(f � p�(t; s); e��m)
� C (�+ �2) (�m3(s) + �m4(s)) ;
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and so

(f � p�(t; s); e��m) � (f; e��m) exp (C (�+ �2)A(s; t)) ;

where

A(s; t) =

Z t

s

(�m3(u) + �m4(u)) :

Therefore,

(p�(t; s); e��m) � e��m(e) exp (C(�+ �2)A(s; t))

� e�r exp (C (�+ �2)A(s; t)) :

Now for m �!1 (4.4) and (4.5) yield

(4.7)
(p�(t; s); e��) � (p�(t; s); e�(�+r))

� e2�r exp (C (�+ �2)A(s; t)) :

The next step is the Nash inequality for La. Applying (4.2) to f � �a
we obtain

a�Q(1+2=n)kfk2(1+2=n)
L2 � �C a�Q(a2Laf; f) a�4Q=n kfk4=n

L1

= �C a�Q+2�4Q=n(Laf; f) kfk4=n
L1 :

Thus

(4.8) kfk2(1+2=n)
L2 � �C a2(1�Q=n)(Laf; f) kfk4=n

L1 :

Now we proceed similarly as in the case of semigroups (e.g. [VSC]).

For a function 0 � f 2 C1c (N) such that
R
f = 1 we de�ne

fs(x) = f � p�(t; s)(x) ; hs(x) = kfsk2L2 :

Then

�@shs = �@s(fs; fs)
= 2 (L�(s)fs; fs)

� �2C�1��2(1�Q=n)(s) kfsk2(1+2=n)L2

= �C ��2(1�Q=n)(s)h1+2=ns :
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(By (4.7) we may exchange @s with the integral.) So

�@shs h�1�2=ns � �C ��2(1�Q=n)(s) :

Hence

�
Z t

s

@uhu h
�1�2=n
u du =

n

2
h�2=nu

���u=t
u=s

� �C
Z t

s

��2(1�Q=n)(u) du :

Thus
n

2
(h
�2=n
t � h�2=ns ) � �C

Z t

s

��2(1�Q=n)(u) du :

Since h
�2=n
t > 0,

�n
2
h�2=ns � �C

Z t

s

��2(1�Q=n)(u) du

and so

kf � p�(t; s)kL2 = h1=2s � C
� Z t

s

��2(1�Q=n)(u) du
��n=2

kfkL1 :

Therefore,

kp�(t; s)kL2 � C
� Z t

s

��2(1�Q=n)(u) du
��n=4

kp�(t; s)kL1 � kp�(t; u)kL2kp�(u; s)kL2

� C
� Z t

�

��2(1�Q=n)(u) du
��n=4

(4.9)

�
�Z �

s

��2(1�Q=n)(u) du
��n=4

:

Taking � such that

(4.10)

Z �

s

��2(1�Q=n)(u) du =

Z t

�

��2(1�Q=n)(u) du

=
1

2

Z t

s

��2(1�Q=n)(u) du
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we obtain

kp�(t; s)kL1 � C
�Z t

s

��2(1�Q=n)(u) du
��n=2

:

By the subadditivity of the metric � , estimates (4.7) and (4.9) we have

p�(t; 0; x) e��(x)

�
Z
p�(t; s; x) p�(s; 0; x y�1) e��(y) e��(xy

�1) dy

� kp�(t; s)k1=2L1 kp�(s; 0)k1=2L1 (p�(t; s); e2��)1=2 (p�(s; 0); e2��)1=2

� C
�Z t

s

��2(1�Q=n)(u) du
��n=4�Z s

0

��2(1�Q=n)(u) du
��n=4

� e4�r exp (C (�+ �2)A(s; t)) exp (C (�+ �2)A(0; s))

= C
�Z t

s

��2(1�Q=n)(u) du
��n=4�Z s

0

��2(1�Q=n)(u) du
��n=4

� e4�r exp (C (�+ �2)A(0; t)) :

Now for the s such that in the last product the �rst two factors are

equal we obtain

p�(t; 0; x) e��(x)

� C
�Z t

0

��2(1�Q=n)(u) du
��n=2

e4�r exp (C (�+ �2)A(0; t)) :

If � = " �(x)=A(0; t), then

p�(t; 0; x) � C
� Z t

0

��2(1�Q=n)(u) du
��n=2

� exp
�4 " r �(x)

A(0; t)
+ C " �(x) +

C "2 �2(x)

A(0; t)
� " �2(x)

A(0; t)

�
:

Now our assumptions on K imply that we may neglect C " �(x) and we

can �nd r such that r < �(x)=16, x 2 K. Moreover, we assume that

C " < 1=4. Then

p�(t; 0; x) � C
�Z t

0

��2(1�Q=n)(u) du
��n=2

exp
��" �2(x)

2A(0; t)

�
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and the proof is completed.

Theorem 4.11. Assume that

(4.12) � � �(s) � � ; for s 2 [r; r + T ] :

Given 0 < T1 < T2 < T and a neighborhood B of e, we can �nd C > 0

independent on r such that

(4.13) p�(r; r + t) � C ; for z 2 B ; 0 < T1 � t � T2 < T ;

and any � satisfying (4:12).

Proof. Although we have an evolution here, not a semigroup, the

proof of (4.12) is the same ([SS, p. 106-108]). It is based on the Poincar�e

inequality and upper bound estimates we have just proved. Let �a be

the optimal control metric de�ned by the vector �elds a�2 �a(X1); : : : ,

a�2 �a(Xm) and let Br;a = fx 2 N : �a(x) < rg. Then

(4.14)

min
z2R

Z
Br;a

jf(x)� zj2 dx �
Z
Br;a

jf(x)� fr;aj2 dx

� C r2
Z
B(3=2)r;a

jrf(x)j2 dx ;

where,

fr;a =
1

jBr;aj
Z
Br;a

f(y) dy and jrf j2 =

mX
j=1

(Xj)
2 :

The constant C does not depend on a; r. (4.14) implies

(4.15)

min
z2R

Z
jf(x)� zj2 	a;r(x) dx =

Z
jf(x)� f	r;a

j2 	a;r(x) dx

� C r2
Z
jrf(x)j2 	a;2r(x) dx ;

where

f	a;r
=

Z
f(y) 	a;r(y) dyZ

	a;r(y) dy
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and

	a;r(x) =

8<
:
�1� �a(x)

r

�2
; if �a(x) < r ;

0 ; if �a(x) � r ;

and c does not depend on a. Having (4.15) we follow the argument on

[SS, p. 106-108].

5. Green function for L.

Let

Ttf(x; a) = EaU
�(0; t) f(x; �t)

be the semigroup of operators generated by L . Since

jEaU
�(0; t)f(x; �t)j � kfkL1 and EaU

�(0; t)f(x; �t) � 0 for f � 0 ;

for every x 2 N; a � 0; t > 0; there exists a probability measure

pt(x; a; �; �) such that

Ttf(x; a) =

Z
N�R+

f(y; b) pt(x; a; dy; db) :

Moreover, pt(x; a; �; �) 2 L2(N � R
+ ; dx
 a2�+1 da). Indeed,

jU�(0; t)f(x; �(t))j � kp�(t; 0)kL2( dx)

�Z
jf(x; �(t))j2 dx

�1=2
:

Therefore,

jTtf(x; a)j � (Eakp�(t; 0)k2L2(dx))
1=2
�
Ea

Z
jf(x; �(t))j2 dx

�1=2
� c(a; t) (Eakp�(t; 0)k2L2( dx))

1=2kfkL2(dx
a2�+1da)

because for a �xed t the kernel (2.1) is bounded as a function of space

variable. By (4.9), Lemma 2.2 and Corollary 2.15, Eakp�(t; 0)k2
L2( dx)

<

1 and so, for every t; x; a,

pt(x; a; �; �) 2 L2(N �R+; dx
 da2�+1 da) :

Now a standard argument shows that for �xed x 2 N , a > 0,

(5.1) (L� � @t) p�(x; a; �; �) = 0 :
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We want to have (5.1) also for a = 0.

Lemma 5.2. Given f 2 C1c (N � R
+ � R

+); we have

(5.3)

lim
a!0

Z
pt(x; a; y;b) f(y; b; t) dyb2�+1db dt

=

Z
pt(x; 0; y; b) f(y; b; t) dyb2�+1 db dt :

Proof. We rewrite (5.3) as

lim
a!0

EaU
�(0; t) f(x; �(t); t) = E0U

�(0; t) f(x; �(t); t) :

Since the trajectories are continuous, it is enough to show that

U�(0; t) f(x; �(t); t) is a continuous function of the trajectory �. For an

arbitrary �xed T > 0 let

d(�; �0) = sup
t2[0;T ]

j�(t)� �0(t)j :

We have

(5.4)

U�(s; t) f(x; �(t); t)� U�0(s; t) f(x; �(t); t)

= U�(s; t) f(x; �(t); t)� U�(s; t) f(x; �0(t); t)

+ U�(s; t) f(x; �0(t); t)� U�0(s; t) f(x; �0(t); t)

and

jU�(s; t) f(x; �(t); t)� U�(s; t) f(x; �0(t); t)j
� sup

x;t
jf(x; �(t); t)� f(x; �0(t); t)j ;

which clearly tends to 0 if d(�; �0) �! 0. The second term in (5.4) can

be written as

U�(s; t) f(x; �0(t); t)� U�0(s; t) f(x; �0(t); t)

=

Z t

s

U�(s; r) (L(�r)� L(�0r))U
�0(r; t) f(x; �0(t); t) dr :

It also tends to 0, because for � � 0

lim
�0!�

Z t

0

j��r � �0�r j = 0 ;
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which completes the proof of Lemma 5.2.

Now we are ready to study the Green function for L in greater

detail. Let

(5.5) G(x; a; y; b) =

Z 1

0

pt(x; a; y; b) dt :

The previous lemma, applied both to L and L� , says that pt(x; a; y; b)

is well de�ned also for a � 0, b > 0 or for a > 0, b � 0. Therefore

G(x; a; y; b) is de�ned for arbitrary x; y in N and a2 + b2 > 0.

Theorem 5.6. G is the Green function for L. More precisely,

G(�; �; y; b) 2 L1loc(N � R
+ ) ;(5.7)

LG(�; �; y; b) = ��(y;b) ;(5.8)

G(�; �; y; b) is a L-potential ;(5.9)

and

G(x; a; �; �) 2 L1loc(N � R
+) ;(5.10)

L�G(x; a; �; �) = ��(x;a) ;(5.11)

G(x; a; �; �) is a L�-potential :(5.12)

In particular,

L�G(x; 0; �; �) = 0 on N � R
+ ;(5.13)

LG(�; �; y; 0) = 0 on N � R
+ :(5.14)

Finally, given " > 0, there exists C > 0 such that

(5.15) C�1 � G(x; a; y; b)� C ;

whenever jxj < ", 0 � a < ", jyj = 1, b � 1 or jyj < ", 0 � b < ",

jxj = 1, a � 1, respectively.
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Proof. Since the heat semigroup p�t (x; a; y; b) corresponding to L� is

given by p�t (x; a; y; b) = pt(y; b;x; a) it is enough to prove (5.10)-(5.12).

First we notice thatZ 1

0

Tt�(x; a) dt <1 ; for � 2 C10 (N � R
+) :

Indeed, if t < 1 then jTt�(x; a)j � k�kL1 and the beginning of the

proof of Lemma 5.1 shows that

Z 1

1

Tt�(x; a) dt <1 :

To prove (5.11) we write

Z
R+

Z
N

L�G(x; a; y; b)�(y; b) dyb2�+1 db

=

Z
R+

Z
R+

Z
N

pt(x; a; y; b)L�(y; b) dy b2�+1 db dt(5.16)

= lim
t1!0

t2!1

Z t2

t1

Z
R+

Z
N

pt(x; a; y; b)L�(y; b) dy b2�+1 db dt ;

because (5.16) is absolutely convergent. But

(5.17)

Z
R+

Z
N

pt(x; a; y; b)L�(y; b) dy b2�+1 db = @tTt�(x; a) :

Moreover,

lim
t1!0

Tt1�(x; a) = ��(x; a)

and by (4.9), Corollary 2.7, Lemma 2.2

jTt2�(x; a)j � C Ea

�Z t2

0

b�(s) ds
��D=2

;

which tends to 0, when t2 !1. This proves (5.11) and (5.13). To show

that G(x; a; �; �) is L�-potential we consider an L�-harmonic function

h satisfying

0 � h(y; b) � G(x; a; y; b)
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and apply T �r to it. Then, on one hand side

T �r h(z; c) = h(z; c) ;

and on the other,

T �r h(z; c) �
Z 1

0

pt+r(x; a; z; c) dt �! 0 ; for (z; c) 6= (x; a) :

Hence h = 0. (5.15) is a direct consequence of the next Lemma.

Lemma 5.18. Given � > 0, � � 0, D > 0, a1 > 0, there is C such

that if a � a1, 0 < b < 1, 0 < � < 1, then

Z 1

0

Ea

�Z t

0

b��(s) ds
��D=2

e�c=A(0;t)

� �([b� �; b+ �])�1 1fb�: b�(t)2[b��;b+�]g dt < C ;

where A(0; t) is de�ned in Theorem 4:1 and �(A) =
R
A
r2�+1 dr.

Proof. Assume �rst that t � 1. Then, by the Markov property, it is

enough to estimate

(5.19)

Z 1

1

Ea

�Z t=2

0

b��(s) ds

��D=2
� �([b� �; b+ �])�1Eb�(t=2) 1f��:��(t=2)2[b��;b+�]g(��) :

But by (2.1) and Lemma 2.3

Eb�(t=2) 1f��:��(t=2)2[b��;b+�]g(��) � C t�1�� �([b� �; b+ �]) :

On the other hand by Lemma 2.2

Ea

�Z t=2

0

b��(s) ds
��D=2

= 2(1+�=2)D=2 t�(1+�=2)D=2Ea=
p
t

�Z 1

0

b��(s) ds
��D=2

:

Now, Corollary 2.7 implies that (5.19) is dominated by a constant for

every a; b; �.
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Let t < 1. First we notice that for every M; c > 0 there is C such

that e�c=x � C xM for every x > 0. Therefore, it su�ces to estimate

Z 1

0

Ea

�Z t

0

b��(s) ds
��D=2

A(0; t)�([b��; b+�])�11fb�: b�(t)2[b��;b+�]g ;

where

A(0; t) =

Z t

0

(bm3
� (s) + bm4

� (s)) ds ;

Since

A(0; t)M � C
��Z t

0

bm3
� (s) ds

�M
+
�Z t

0

bm4
� (s) ds

�M�
;

we are left with

I =

Z 1

0

Ea

�Z t

0

b��(s) ds
��D=2�Z t

0

bmj

� (s) ds
�M

� �([b� �; b+ �])�1 1fb�: b�(t)2[b��;b+�]g(b�) ; �;mj > 0 ;

and so, in view of the Schwartz inequality, we are to estimate

I1 =

Z 1

0

Ea

� Z t

0

b��(s) ds
��D

1fb�: b�(t)2[b��;b+�]g(b�) ;

and

I2 =

Z 1

0

Ea

�Z t

0

bmj

� (s) ds
�2M

1fb�: b�(t)2[b��;b+�]g(b�) :

By Lemma 2.2 and Corollary (2.15),

I1 = t�(1+�=2)D Ea=
p
t

�Z 1

0

b��(s) ds
��D

� 1fb�: b�(1)2[(b��)=pt;(b+�)=pt]g(b�)

� t�(1+�=2)D Ea=
p
t

�Z 1=2

0

b��(s) ds
��D

�Eb�(1=2) 1f��:��(1=2)2[(b��)=
p
t;(b+�)=

p
t]g(��)

� C t(1+�=2)D�1�� �([b� �; b+ �]) :
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Let 
�1 = fb� : sups2[0;1] b�(s) � a1g and


m =
�
b� : a1 +m < sup

s2[0;1]
b�(s) � a1 +m+ 1

	
; m = 0; 1; 2; : : :

Then

I2 =

1X
m=�1

Ea

�Z t

0

bmj

� (s) ds
�2M

1
m
(b�)1fb�: b�(t)2[b��;b+�]g(b�) :

We treat the cases m = �1; 0; 1 and m � 2 separately. For m = �1; 0; 1

we have

Ea

�Z t

0

bmj

� (s) ds
�2M

1
�1[
0[
1
(b�)1fb�: b�(t)2[b��;b+�]g(b�)

� C t2M�1�� �([b� �; b+ �]) :

Let 0 < �1 < 1=2, A = (
P1

n=1 2�n�1)�1 Then


m �
1[
n=1

2n�1[
k=1


m;n;k ;

where


m;n;k =
n
b� : b�

�k t
2n

�
� b�

� (k � 1) t

2n

�
>

mA

2n�1

o
:

Indeed, since b�(t) � 2 and sups2[0;t] b�(s) > 2, we can always �nd n

and k < 2n such that b� 2 
m;n;k. Therefore, by Lemma (2.6),

Ea

�Z t

0

bmj

� (s) ds
�2M

1
m;n;k
(b�)1fb�: b�(t)2[b��;b+�]g(b�)

� t2M (a1 +m+ 1)2Mmj Ea1
m;n;k
(b�)Eb�(kt=2n)

� 1f��: s�(t�kt=2n)2[b��;b+�]g(��)

� C t2M�1��(a1 +m+ 1)2Mmj 2n(1+�) �([b� �; b+ �]

�EaEb�(((k�1)t)=2n) 1f��:��(t=2n)>mA=2n�1+��(0)g(��)

� C t2M�1��(a1 +m+ 1)2Mmj 2n(1+�) �([b� �; b+ �])

� exp
�
� c2m

2A2 2n(1�2�1)

t

�
:
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Hence,

I2 � C tM���1 �([b� �; b+ �])

and �nally,

I � C

Z 1

0

t�(1+�=2)(D=2)+M���1 dt < +1 :

Now we pass to the lower estimate for the Green function. Let

jyj = 1, � > 0 and let �� be a family of smooth functions with the

properties: supp �� � fz 2 N : jy�1zj < �g, �� � 0,
R
��(z) dz = 1.

Finally, let  �( � ) = �([b� �; b+ �])�1 1[b��;b+�]( � ).

Lemma 5.21. Given a1 > 0 and a compact set K � N , there is c > 0

such that for every a � a1, 0 < b < 1, 0 < � < 1,

Z 2

1

EaU
b(0; t)'�(x) �(b�(t)) dt � c ; x 2 K :

Proof. Let d;D be positive numbers which will be chosen later. We

consider the set


 =
�
b� : sup

s2[0;t]
b�(s) � D; inf

s2[t=4;3t=4]
b�(s) � d

	
;

and we estimateZ 2

1

Ea'� � pb(t; 0)(x)1
(b�)�([b� �; b+ �])�1 1fb�: b�(t)2[b��;b+�]g(b�)

from below. We have

'� � pb(t; 0)(x)

=

ZZ
'� � pb

�
t;

2 t

3

�
(z) pb

�2 t

3
;
t

3

�
(z�1 x y�1) pb

� t
3
; 0
�

(y) dz dy :

In view of (4.7), we choose a compact set K1 such that for b 2 
 and

1 � t � 2,Z
K1

'� � pb
�
t;

2 t

3

�
(z) dz � " > 0 ;

Z
K1

pb
� t

3
; 0
�

(y) dy � " > 0 ;
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where " = "(A). Then, by Theorem (4.11) there is C = C(D; d;K;K1)

such that

pb
�2 t

3
;
t

3

�
(z�1 x y�1) � C ;

for z; y 2 K1, x 2 K, b� 2 
, 1 � t � 2. Therefore we are left with

I = �([b� �; b+ �])�1Pa(b� : b� 2 
; b�(t) 2 [b� �; b+ �])

� Ea1fsup
s2[0;2t=3] b�(s)�D2;infs2[t=3;2t=3] b�(s)�dg(b�)�([b� �; b+ �])�1

�Pb�(2t=3)

�
sup

s2[0;t=3]
��(s) � D; ��

� t
3

�
2 [b� �; b+ �]

�

provided D2 < D. Notice that if d � b�(2 t=3) � D2,

�([b� �; b+ �])�1Pb�(2t=3)

�
��

� t
3

�
2 [b� �; b+ �]

�
� C = C(d;D2) :

But, proceeding as in the proof of the previous theorem we see that

�([b��; b+�])�1Pb�(2t=3)

�
sup

s2[0;t=3]
��(s) � D; �

� t
3

�
2 [b��; b+�]

�
� c1 e

�c2(D�D2)
2

:

Therefore choosing D and D2 appropriately we have

�([b��; b+�])�1Pb�(2t=3)

�
sup

s2[0;t=3]
��(s) � D; ��

� t
3

�
2 [b��; b+�]

�
� C(d;D;D2) ;

for 1 � t � 2. Hence for D1 < D2,

I � C(d;D;D2)Ea1fb�: sups2[0;t=3] b�(s)�D1;b�(t=3)>2dg

�Pb�(t=3)

�
inf

s2[0;t=3]
��(s) � d; sup

s2[0;t=3]
��(s) � D2

�
:

By Lemmas 2.12 and 2.13

Pb�(t=3)

�
inf

s2[0;t=3]
��(s) � d; sup

s2[0;t=3]
� D2

�
� 1�Pb�(t=3)

�
inf

s2[0;t=3]
��(s) < d

��Pb�(t=3)

�
sup

s2[0;t=3]
��(s) > D2

�
� 1� c1 e

�c2d2 � c1 e
�c2(D2�D1)

2

� C > 0
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provided d and D2 �D1 are large enough. Finally,

Pa

�
sup

s2[0;t=3]
b�(s) � D1; b�

� t
3

�
> 2 d

�

� 1�Pa

�
sup

s2[0;t=2]
b�(s) > D1

��Pa

�
b�

� t
3

�
< 2 d

�

� c1 e
�c2d2 � c1 e

�c2D2
1 � C > 0 ;

for su�ciently large D1.

6. Estimates of the Poisson kernels and the Martin boundary.

(5.15) and (1.13) imply immediately the following estimates for

m .

Theorem 6.1. Let m be the Poisson kernel of L,  > 0. Then there

exists a constant C such that

C�1 (jxj+ 1)�Q� � m(x) � C (jxj+ 1)�Q� ;

for x 2 N: In particular,

C�1 (jxj+ 1)�Q � m0(x) � C (jxj+ 1)�Q ;

for x 2 N .

Proof. Theorem 5.6 says that there is a positive constant C such

that

(6.2) C�1 � G�(x; a; e; 0) � C

if jxj = 1; a � 1. Let x = �a(y), jxj = a � 1, jyj = 1. By (1.18), we

have

m(x) = G�(x�1; 1; e; 0)

= G�(�a(y); 1; e; 0)

= a�Q�G�(y; a�1; e; 0)

= jxj�Q�G�(y; a1; e; 0) ;
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and the proof is completed.

Now we consider the case  = 0; i.e. we look at the operator L0.
The next theorem gives description of the Martin boundary for L0.

Theorem 6.3. The Martin boundary for L = L0 consists of the fol-

lowing functions :

a) the constant function 1,

b) Py(xa) =
1

m0(e)
a�Q �m0(�a�1(y�1x)) :

All of them are minimal.

Proof. By (1.17) we may use G to write the Martin kernels. Assume

that

lim
n!1

G(x; a; yn; bn)

G(e; 1; yn; bn)
= K(x; a)

and jynj �! 1 or bn �!1.

Let rn = maxfjynj; bng. Then

G(x; a; yn; bn) = r�Qn G(�r�1
n

(x); r�1n a;�r�1
n

(yn); r�1n bn) :

We take n such that

j�r�1
n

(x)j < 1

4
; r�1n a <

1

4
:

Since j�r�1
n

(yn)j = 1 and r�1n bn � 1 or �r�1
n

(yn) � 1 and r�1n bn = 1, by

Theorem 5.4 and the Harnack inequality for L�, there is a constant c

independent of x; a such that

c�1 � G(�r�1
n

(x); r�1n a;�r�1
n

(yn); r�1n bn) � c ;

c�1 � G(e; r�1n ;�r�1
n

(yn); r�1n bn) � c :

Therefore K(x; a) is bounded and so must be constant (see [BR]).

Now we assume that yn �! y0 and bn �! 0. First we prove that

(6.4) lim
n!1

G(x; a; yn; bn)

G(e; 1; yn; bn)
= lim

n!1

G(y�10 x; a; e; bn)

G(e; 1; e; bn)
;
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i.e. that

(6.5) lim
n!1

G(y�1n x; a; e; bn)

G(y�10 x; a; e; bn)
= 1 :

Notice that for n su�ciently large (depending on x; a), �(y�1n x; a;

y�10 x; a) < 1. Hence by the Harnack inequality

jG(y�1n x; a; e; bn)�G(y�10 x; a; e; bn)j
� G(y�10 x; a; e; bn) �(y�1n x; a; y�10 x; a) :

and (6.5) follows. We have

G(x; a; e; bn) = a�QG(�a�1(x); 1; e; a�1bn) :

Therefore when bn �! 0,

lim
bn!0

G(x; a; e; bn) = a�QG(�a�1(x); 1; e; 0) = a�Q �m(�a�1(x))

and so

lim
bn!0

G(x; a; e; bn)

G(e; 1; e; bn)
=

1

m0(e)
a�Q �m0(�a�1(x)) = Pe(xa) :

1 is minimal because the only bounded L-harmonic functions are con-

stants, Pe is minimal if and only if Py is minimal. Hence all of them

are minimal.
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