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On pseudospheres

that are quasispheres

John L. Lewis and Andrew Vogel

Abstract. We construct bounded domains D not equal to a ball in

n � 3 dimensional Euclidean space, Rn , for which @D is homeomorphic

to a sphere under a quasiconformal mapping of Rn and such that n� 1

dimensional Hausdor� measure equals harmonic measure on @D.

1. Introduction.

Denote points in Euclidean space, Rn , by x = (x1; : : : ; xn) and let

E; @E, denote the closure and boundary of E � R
n , respectively. Put

B(x; r) = fy : jy � xj < rg and S(x; r) = fy : jy � xj = rg when

r > 0. De�ne k dimensional Hausdor� measure, 1 � k � n, in Rn as

follows: For �xed � > 0 and E � R
n , let L(�) = fB(xi; ri)g be such

that E � [B(xi; ri) and 0 < ri < �, i = 1; 2; : : : Set

�k
�
(E) = inf

L(�)

�X
�(k) rk

i

�
;

where �(k) denotes the volume of the unit ball in Rk . Then

Hk(E) = lim
�!0

�k� (E) ; 1 � k � n :

Let D be a bounded domain in Rn with 0 2 D and Hn�1(@D) < +1.
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222 J. L. Lewis and A. Vogel

Then @D is said to be a pseudo sphere (see [S]) if

(1.1)

a) D 6= ball and there is a homeomorphism

f : Rn �! R
n with f(S(0; 1)) = @D ;

b) h(0) = a

Z
@D

h dHn�1 ; whenever h is harmonic

in D and continuous on D :

In b), a denotes a constant. The construction of pseudo spheres in R2 ,

which are not circles, was �rst done by Keldysh and Lavrentiev to show

the existence of domains not of Smirnov type (see [KL], [P, Chapter 3]).

Also a completely di�erent proof of existence in R2 has been given by

Duren, Shapiro, and Shields in [DSS] (see also [Du, Chapter 10]). In

higher dimensions we proved in [LV].

Theorem A. There exists a pseudo sphere in Rn , n � 3.

Recall that a function g : Rn �! R
n is said to be K � 1 quasicon-

formal on Rn (see [R], [Re]) if:

i) g is a homeomorphism of Rn onto Rn ,

ii) g has distributional partial derivatives that are locally n-th

power integrable,

iii) kDg(x)kn � K Jg(x), almost everywhere.

In iii), Dg(x) = (@gi(x)=@xj), is the Jacobian matrix of g and

kDg(x)k is the norm of Dg(x) as a linear operator on Rn . Also Jg(x)

(the Jacobian of g at x) is the determinant of Dg(x). In [LV] we asked

whether f in the de�nition of a pseudosphere can also be chosen K > 1

quasiconformal from R
n to Rn when n � 3. If so, then @D is said

to be a K quasisphere. In R
2 it follows easily from the geometric

construction of Keldysh and Lavrentiev and the Ahlfors three point

condition [A] that there exists pseudospheres which are quasispheres.

The construction in [DSS] (see also [D, Chapter 10]) is also easily seen

to produce pseudospheres that are quasispheres. In this note we answer

our own conjecture by proving

Theorem 1. Given K > 1 there exists a pseudo sphere in Rn , n � 3,

which is a K quasisphere.
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We note that the only 1 quasiconformal maps of Rn are M�obius

transformations. Also, it was shown by [FL] that convex domains satis-

fying some mild smoothness conditions cannot be pseudospheres. More

generally, let G be Green's function for a bounded domain D with pole

at 0 and suppose B(0; 2s) � D. Assume that

+) jrGj �M <1 in D nB(0; s),

++) Hn�1(@D n @D�) = 0, where

@D� = fx 2 @D : lim sup
r�!0

r�nmin fHn(B(x; r)\D);

Hn(B(x; r) nD)g > 0g :

In [LV1, Theorem 5] we showed that if b), +), ++) are valid, then D

must be a ball. Recall that @D is said to be Ahlfors regular if for some

r0 > 0 and every x 2 @D we have Hn�1(B(x; r) \ @D) � rn�1 where

� means the two quantities are related by constants independent of x

and r; 0 < r � r0. This inequality and b) are easily seen to imply +).

Also if D is an NTA domain in the sense of Jerison and Kenig [JK],

then ++) is valid. We conclude that an NTA domain whose boundary

is Ahlfors regular and satis�es b) must be a ball. So in particular if f

is a bilipschitz mapping of Rn with f(S(0; 1)) = @D and b) holds, then

D = ball. Thus pseudospheres can be nice (quasispheres) but not too

nice (Lipschitz).

To point out some of the di�erences between Theorem 1 and The-

orem A we need to recall some details from [LV]. Suppose a = 1 in the

de�nition of a pseudosphere. To construct D, let D0 = B(0; �0) and let

G0(x) = (n (n� 2)�(n))�1(jxj2�n � �2�n0 ) ; x 2 B(0; �0) ;

be Green's function for B(0; �0), where �0 is chosen so that if x 2
@B(0; �0), then

(1.2) jrG0(x)j = (n�(n))�1�1�n0 = 2 :

By induction, if Dm has been de�ned for m = a nonnegative integer,

we added certain smooth bumps to @Dm to get Dm+1 with Dm �
Dm+1. ThenD =

S
Dm. To obtain f we modi�ed the identity mapping

slightly in a neighborhood of each bump, to get hm+1 a homeomorphism

from R
n into Rn , with hm+1(@Dm) = @Dm+1; hm+1(Dm) = Dm+1; for

m = 0; 1; : : : . Put h0(x) = �0 x and set fk(x) = hk � hk�1 � � � � �
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h0(x): Then f = limk!1 fk uniformly in Rn . The problem with our

construction in [LV] was that the distortion (i.e. K) could build up

under successive iterations. In the present paper we overcome this

di�culty by using the so called \mickey mouse" construction which is

apparently due to Thurston (oral communication to the �rst author

by Seppo Rickman). Under this construction hm+1 is de�ned in such

a way that it is 1 quasi-conformal (i.e. the restriction of a M�obius

transformation) in a neighborhood of Hn�1 almost every point of @Dm.

To getDm+2 we then only allow bumps to be added that lie in the image

of the above neighborhoods. It turns out for Hn�1 almost every point

x 2 Rn that we can arrange it so that all functions in the composition

de�ning fk(x); with one exception, are 1 quasiconformal, while the

remaining function can be chosen K quasiconformal for �xed K > 1:

We note that the construction of a pseudosphere in R2 given in [P] also

uses circles, but for a di�erent reason. To carry out the above program

we have had to overcome certain problems not encountered in [LV]. For

example in this paper we added C1 bumps to @Dm and consequently

were able to use Schauder type theorems to make the desired estimates

on the Green's function of Dm+1: However, to get hm+1; as above, we

are forced to add non smooth spherical bumps to @Dm: Hence we have

to argue that our earlier program can still be used. Also in [LV] we used

an important lemma of Wol� [W, Lemma 2.7] for the Green's function

of a domain obtained by adding a C1 bump to a half space. Again

we have to verify that Wol�'s lemma remains valid for spherical bumps

(whose radius is large). As for the proof of Theorem 1 we follow closely

the proof of Theorem A in [LV] so the reader is advised to have this

paper at hand. In Section 2 we discuss adding spherical bumps to a

domain and show inequality (1.1) in [LV] (see (2.3)) is still valid. In

Section 3 we use the \mickey mouse construction" to get D and f . In

Section 4 we add a spherical bump to a half space and show that the

conclusion of Wol�'s lemma remains true. We then use this lemma

in Section 5 to show that (1.3) in [LV] (see (3.14)) still holds. (1.2),

(1.3), and (1.9) of [LV] imply that (1.1) b) is valid (see the discussion

in Section 3 following (3.11)).

2. Spherical bumps.

We assume throughout this section that 
 is a bounded domain

with 0 2 
. Moreover we assume 
 is locally Lipschitz. That is given
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y 2 @
 there exists s > 0 such that B(y; s)\ @
 is a part of the graph

of a Lipschitz function de�ned on a hyperplane in Rn and B(y; s) \ 


lies above the graph. We also assume that @
 is connected and the

union of a �nite number of closed spherical caps with centers in 


and the property that each point of @
 lies in at most two spherical

caps. Thus either two caps are disjoint or their intersection is an n� 2

dimensional \circle" (intuitively cut out by the smaller sphere from

the larger sphere). Let T denote the set of points in the union of

these \circles". Finally we assume that F � R
n is a compact set with

F \ @
 � T: We remark that in our construction F will be the set

of points where a certain iterate is not 1 quasiconformal. Intuitively

we want to avoid this set in modifying 
 to get 
0 so that successive

iterations will not increase K. Let G be Green's function for 
 with

pole at 0. By de�nition,

G(x)� (n (n� 2)�(n))�1jxj2�n ; x 2 Rn ;

is harmonic in 
 and G has boundary value 0 in the sense of Perron-

Wiener-Brelot. Using the Kelvin transformation (see [H]) we see that

each component of

rG(x) =
� @G
@x1

; : : : ;
@G

@xn

�
extends to a C1 function on 
 n (T [ f0g). Under this assumption

suppose that

(2.1) jrGj > 1 ; on @
 n T :

Given �, 0 < � � 10�20, we shall add smooth spherical bumps to @
 by

\pushing out" @
 along certain small surface elements in fx 2 @
 nT :

jrGj(x) > 1+�g of approximate side length r0. Let 
0; G0 be the domain

and Green's function with pole at 0, obtained from this process. Then

@
0 will have the same properties as @
; i.e. it is locally Lipschitz,

connected, and the union of a �nite number of closed spherical caps

with centers in 
0 and the property that each point of @
0 lies in at

most two spherical caps. De�ne T 0 relative to 
0 in the same way that

T was de�ned relative to 
: Then 
 � 
0; T � T 0 and we shall choose

the spherical bumps so that

(2.2) jrG0j > 1 ; on @
0 n T 0 :
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Also for t � �; we shall have

(2.3) Hn�1(@
0) � Hn�1(@
) + �(t)Hn�1(fx : jrG(x)j > 1 + tg) ;

where � is a nondecreasing positive function on (0;1) which is inde-

pendent of 
;
0.

Let 0 < �0 < 10�3 be a small positive number to be chosen in

Section 5 and let l be the largest nonnegative integer such that 2�l�0 >

� > 0: Put �k = 2�k�0, for k = 0; 1; : : : and set

Ek = fx 2 @
 : 1 + �k < jrG(x)j � 1 + �k�1g ; 1 � k � l+ 1 ;

E0 = fx 2 @
 : jrG(x)j > 1 + �0g :

Let d(E1; E2) denote the Euclidean distance between the sets E1; E2

and put

U = fy 2 @
 : d(fyg; T ) < 108 br0g ;
where br0 > 0 is so small that

(2.4) Hn�1(Ek \ U) �
1

4
Hn�1(Ek) ; for 0 � k � l + 1 ;

which is possible since Hn�1(T ) = 0: Next if 0 < br1 < 1 is the smallest

radius of the spheres whose caps form @
 we also choose

(2.5) br0 � �� br1
10

�20
:

Let

V = fy 2 
 : d(fyg; T ) � 104 br0g \ ny 2 
 : d(fyg; f0g) � �0

2

o
;

where �0 is as in (1.2) and set

M1 = max
x2V

X
j@�G(x)j ;

where � = (�1; �2; : : : ; �n), 0 � j�j � 2, is a multiindex and @� denotes

the corresponding partial derivative with respect to x� , x 2 V:We �rst

choose r00; 0 < r00 � br0; so that

(2.6) r00 �
1

(10nM1)10
:
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Given y 2 @
 n U let B(y; r0) denote the reection of B(y; 104 r00)

with respect to the sphere whose spherical cap � @
 contains y: From

our assumptions on @
 we can choose r00 > 0 so small that for any

y 2 @
 n U;

(2.7)
B(y; 104 r00) intersects exactly one spherical cap � @
;

and (B(y; 104r00) [B(y; r0)) \ F = ? :

From compactness and a standard covering argument it follows for each

r0, 0 < r0 � r00; that there exists, y
1; y2; : : : ; yN 2 @
 n U , such that

(2.8)
@
 n U �

N[
i=1

B(yi; 100 r0) \ 
 � V

and B(yi; 10 r0) \ B(yj; 10 r0) = ? ; i 6= j :

We now construct 
0. Let L be the set of all y 2 fyigN1 for which

B(y; 100 r0) \
� l+1[
k=0

Ek

�
6= ? :

Let �k � 2; k = 0; : : : be an increasing sequence of positive numbers

to be speci�ed later and set rk = r0=�k for k = 0; : : : ; l + 1: For �xed

y 2 L, let j = j(y) be the smallest nonnegative integer with

(2.9) B(y; 100 r0) \ Ej 6= ? :

We draw a sphere S(ey; er) of radius er; center ey 2 
 with the following

properties

(2.10)

a) S(ey; er) \ @
 = S(y; �2
j
rj) \ @
 ;

b) The angle between the normals to S(ey; er)
and @
 at points of intersection is �2

j
;

c) B(ey; er) � 
 [B(y; �2
j
rj) :

Existence of S(ey; er) as in (2.10) follows from (2.5) and elementary ge-

ometry. De�ne 
0 by

(2.11)

i) 
 n
� [
z2L

B(z; �2j rj)
�
= 
0 n

� [
z2L

B(z; �2j rj)
�
;

ii) @
0 \B(y; �2j rj) = S(ey; er) n 
 whenever y 2 fyigN1 ;

iii) 
0 \B(y; �2j rj) = B(ey; er) \ B(y; �2jrj) :
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From (2.10), (2.11), and (2.7) it is clear that @
0 is locally Lipschitz,

connected, and the union of a �nite number of closed spherical caps with

centers in 
0 and the property that each point of @
0 lies in at most

two spherical caps. We now prove (2.2). If x 2 @
0\@
, then it follows
from (2.1) and the Hopf boundary maximum principle that (2.2) is true.

Otherwise, x 2 S(ey; er)\(@
0nT 0) for some y 2 fyigN1 ; S(ey; er); satisfying
(2.7)-(2.11). Using (2.5), (2.10) a), b) and high school geometry it is

easily seen for �0 small enough that

(2.12)
er
2
� rj � 2 er :

From (2.12), (2.5) we deduce that S(ey; er)\
 � V and thereupon from

(2.6), (2.1) as well as Taylor's theorem with remainder that

(2.13) (1� (r00)
1=2) jrG(y)j h�; z� yi � G(z) ;

whenever z 2 S(ey; er) and h�; z � yi � 8�4
j
rj : Here � denotes the inner

unit normal to @
 at y and h�; �i denotes the inner product on Rn : Let
� be a C1 function on R with � = 0 in (�1; 8�4

j
rj), �(x) � x, for

x � 0; with equality when x � 16�4
j
rj and

(�4
j
rj)

i�1
��� di
dxi

(�(x)� x)
��� � 104 ;

whenever x � 0 and 0 � i � 2. Let h be the harmonic function in

B(ey; er) which is continuous in B(ey; er), with boundary values h(x) =

�(h�; x� yi) whenever x 2 S(ey; er): Let
H(z) = h(ey + er z)� h�; ey � y + er zi ; for z 2 B(0; 1) :

Using (2.12) and Schauder type estimates (see [GT]), or direct estimates

by way of the Poisson integral for B(0; 1) we �nd that

jrHj(z) � c(n) er �3=2
j

;

whenever ey + er z 2 @
0. Transferring back we get

(2.14) jrh� �j � c(n)�
3=2

j
;

in S(ey; er) \ @
0, where c(n) � 1 as in the sequel is a constant which

only depends on n; not necessarily the same at each occurence. Since

G � G0 in 
; we see from (2.13) and the boundary values of h that

(2.15) (1� (r00)
1=2) jrG(y)jh � G0 ;
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on S(ey; er): Using the Hopf boundary maximum principle and (2.14),

(2.15) it follows that

(2.16) jrG0j � (1� (r00)
1=2) (1� c(n)�

3=2
j

) jrG(y)j ;

on S(ey; er) \ @
0. Now from (2.5), (2.6), (2.9) we deduce that

jrG(y)j � 1 +
�j

2
:

Putting this inequality in (2.16) we see for �0 = �0(n) > 0 small enough

that (2.2) is true for x 2 S(ey; er) \ @
0: Hence (2.2) is true on @
0 n T 0:
Next we prove (2.3). To do this observe from (2.5) that since

r0 � br1 we have
(2.17)

Hn�1(@
 \ B(y; �2
j
rj))

� � (n� 1) (�2j rj)
n�1 � c(n) br�21 (�2j rj)

n+1 :

Note from (2.5), (2.12), and elementary trigonometry, that the solid

angle � subtended by B(ey; er) \ @
 with respect to ey satis�es

(2.18.a) j� � �2
j
j � 4 er �2

jbr1 ;

and

(2.18.b) er sin � � �2j rj �
(�2

j
rj)

3

100 br 21 ;

for �0 = �0(n) > 0 small enough. Now using spherical coordinates and

(2.18.a) it is easily seen that

Hn�1(S(ey; er) n 
) � � (n� 1)
�
1 +

�4
j

c(n)

�
(er sin �)n�1 :

From this inequality, ( 2.18.b), and once again (2.5) we conclude that

(2.19) Hn�1(@
0 \B(y; �2j rj)) �
�
1 +

�4
j

c(n)

�
� (n� 1) (�2j rj)

n�1 :
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Combining (2.17), (2.19), and using �j rj = r0, we �nd for some c(n) � 1

that

(2.20)

Hn�1(@
0 \ B(y; �2
j
r0=�j))

�
�
1 +

�4
j

c(n)

�
Hn�1

�
@
 \B

�
y; �2j

r0

�j

��
:

Let �(t) = �2n+2
i

�1�n
i

=c1(n) for �i+1 � t < �i, i = 0; 1; : : : and set

�(t) = �2n+20 �1�n0 =c1(n) for t � �0. Then from (2.20), (2.4), and (2.8)

we conclude for c1(n) large enough that (2.3) is true for t � �.

3. The Mickey mouse construction.

We continue with the same notation introduced in sections 1-2. Let


;
0; y 2 fyigN1 ; r0; er = er(j); S(ey; er); �j ; and �2
j
be as in (2.7)-(2.12).

Suppose that B(y; 100 r0) \ @
 � S(w; ��) with B(w; ��) � 
. Choose

a M�obius transformation L so that

(3.1)

�) L(B(w; ��)) = H = fx 2 Rn : x2 > 0g ;
�) L(S(w; ��) \ S(ey; er)) = fx 2 Rn : x1 = x2 = 0g ;
) L(B(ey; er)) = eH and L( eH nH) � fx : x1; x2 < 0g ;
�) The angle between the normals to H; eH

at points of eH \H is �2
j
:

(3.1) is easily proven using (2.10) b), as well as the fact that M�obius

transformations preserve angles and map balls into hyperplanes or balls

(see [Re, Chapter 3]). We introduce polar coordinates x1 = r cos �,

x2 = r sin �, r � 0, 0 � � < 2�. If x = (x1; x2; : : : ; xn) we put bx =

(x3; : : : ; xn) and write x = (x1; x2; bx). Next we de�ne a quasiconformal

mapping q of Rn as follows

q(x) = x; when 0 � � � �2
j
;

q(x) = (r cos (� (� � �2
j
) + �2

j
); r sin (� (� � �2

j
) + �2

j
); bx)

for �2
j
< � � � � �2

j
with � = (� � �2

j
)=(� � 2�2

j
) ;

q(x) = (r cos (� + �2
j
); r sin (� + �2

j
); bx); for � � �2

j
< � � � + �2

j
;
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q(x) = (r cos (�� (� � � � �2
j
) + � + 2�2

j
);

r sin (�� (� � � � �2
j
) + � + 2�2

j
); bx);

for � + �2
j
< � � 2� � �2

j
; with �� = (� � 3�2

j
)=(� � 2�2

j
) ;

q(x) = x; for 2� � �2
j
< � < 2� :

From the above de�nition of q we note that

(3.2)

i) q maps H onto H [ eH ,

ii) q is the identity mapping on�
x : x1=

q
x21 + x22 � cos (�2

j
)
	
;

iii) q is a rotation on
�
x : x1=

q
x21 + x22 � � cos (�2

j
)
	
;

iv) q is 1 + 10�2
j
quasiconformal on Rn :

Put g(x) = L�1 � q � L(x) when x 2 Rn . From (2.7), (2.12), (3.1) we

note that if

eF = L�1 � q
�n
x : � cos(�2

j
) � x1p

x21 + x22
� cos (�2

j
)
o�

;

then

(3.3)
( eF [ g�1( eF )) � B(y; 104 r00) [B(y; r0)
and ( eF [ g�1( eF )) \ F = ? ;

where the last line follows from (2.7). From (3.2) we also conclude that

(3.4)

a) g is the identity transformation

on the unbounded component I of Rn n g�1( eF ) ;
b) g is a M�obius transformation

on the bounded component J of Rn n g�1( eF ) ;
c) g is 1 + 10�2

j
quasiconformal on Rn :

We do this construction for each y 2 fyigN1 obtaining functions g1; : : : ;

gN and sets eF1; I1; J1; : : : ; eFN ; IN ; JN ; corresponding to y1; y2; : : : ; yN ;
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in such a way that (3.3), (3.4) hold with g = gi; 1 � i � N . De�ne

� : Rn �! R
n by

(3.5) �(x) =

(
x ; when x 2 I1 \ I2 � � � \ IN ;

gi(x) ; when x 2 g�1
i
( eFi) [ Ji; 1 � i � N :

We note that � is well de�ned since from (3.3), (2.8), and (2.12) it

follows that the sets g�1
i
( eFi) [ Ji, 1 � i � N , are pairwise disjoint.

Using this note and (3.5) we conclude that

(3.6)

�) �(
) = 
0 and � is a 1 + 10�2j quasiconformal mapping

of Rn onto Rn ;

��) � � a M�obius transformation in each component

of Rn n ��1( bF ) where bF =

N[
i=1

eFi ;
���) ( bF [ ��1( bF )) \ F = ? and F 0 = bF [ F

is compact with F 0 \ @
0 � T 0 :

We now construct D; f: Let D0 = B(0; �0) be as in Section 1 where �0
is as in (1.2) and set F = F0 = T = T0 = ?. Let � = �0 = 10�20�0
and put 
 = D0. We use the results in Section 2 to get 
0 = D1 satis-

fying (2.2), (2.3) and �1 = � satisfying (3.6) with �1(D0) = D1. Let

F1 = F 0; T1 = T 0 be the sets obtained from this construction. We now

proceed by induction. Suppose Dk;�k; Tk; Fk have been constructed

using the results in Section 2 for m � 1 with

(3.7)
Dk � Dk+1; Tk � Tk+1; Fk � Fk+1 ;

and Fk+1 \ @Dk+1 � Tk+1; for 0 � k � m� 1 ;

in such a way that

jrGkj > 1 ; on @Dk n Tk ;(3.8)

Hn�1(@Dk+1) � Hn�1(@Dk)

+ �(t)Hn�1(fx : jrGk(x)j > 1 + tg) ;
(3.9)
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whenever t � �k = 10�20�k, 0 � k � m � 1. Here Gk denotes the

Green's function for Dk with pole at 0. We also assume that

(3.10)
(3.6) holds with �; F; F 0 replaced by �k+1; Fk; Fk+1;

respectively, for 0 � k � m� 1 :

We put 
 = Dm, F = Fm, T = Tm, and note from the induction

hypothesis, (3.7), that F \ @
 � T . If � = �m = 10�20�m; then we can

apply the results in Section 2 to get 
0 = Dm+1, T
0 = Tm+1, for which

(3.8), (3.9) hold when k = m + 1: Also using (3.6) we get F 0 = Fm+1,

� = �m+1, satisfying (3.10) with k = m. By induction we conclude

that (3.7)-(3.10) holds, for each nonnegative integer k.

Put D =
S1
0 Di: We note that fm = �m � � � � � �1 maps D0 onto

Dm: From (3.6) ���), (3.7), and (3.10) it is clear for given x 2 Rn nTm�1
that each function in the composition de�ning fm; with at most one

exception, is a M�obius transformation in a neighborhood of x:Moreover

such an exception is 1 + 10�20 quasiconformal in a neighborhood of

x. Thus fm is 1 + 10�20 quasiconformal on R
n and fm(D0) = Dm

for m � 1: Now ffmg11 is a locally bounded sequence of 1 + 10�20
quasiconformal mappings on Rn , so a subsequence (see [Re, Chapter 9]

or [R, Chapter 6]) of this sequence either converges uniformly to a

1 + 10�20 quasiconformal bf from R
n to Rn or to a constant. Clearly a

constant is ruled out. Put f(x) = bf(�0 x): Then from our construction

we conclude that f(B(0; 1)) = D, f(S(0; 1)) = @D: Thus if 10�20 < K,

then (1.1) a) in Theorem 1 is true.

For the reader's convenience we outline the proof of b) given in

[LV]. Using (2.5)-(2.12) it is intuitively clear for �0 small enough that

D is NTA in the sense of Jerison and Kenig [JK] with constant 1000

(see [LV, Section 4] for details). Also from Green's theorem and (3.8)

we see that

(3.11) Hn�1(@Dk) �
Z
@Dk

jrGkj dHn�1 = 1 :

From (3.11) we see that D is of �nite perimeter in the sense of Federer

(see [GE]). Thus as k �!1,

(3.12) Hn�1j@Dk �! Hn�1j@�D = Hn�1j@D :

Here the convergence is weak convergence as measures. Also @�D is the

reduced boundary of D: To get the last inequality, we note that @�D
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agrees Hn�1 almost everywhere with the so called measure theoretic

boundary of D; de�ned as the set of points where the Lebesgue lower

n densities of D;Rn n D are positive. Using the fact that D is NTA,

it is easily seen that @D equals the measure theoretic boundary of D:

Hence (3.12) is true (for a more direct proof see [LV, Section 4]). Also

observe from (3.9) that

(3.13) lim
k!1

Hn�1(fx 2 @Dk : jrGk(x)j > 1 + �g) = 0 ;

for each � > 0; since otherwise we could use (3.9) and iteration to get

a contradiction. Finally we shall show in Section 5 that

(3.14)

Z
Dk

jrGkj log jrGkj dHn�1 � c <1 ; for k = 0; 1; : : :

From (3.14) we deduce for � > 1, k = 0; 1; : : :

(3.15) log�

Z
fjrGkj>�g

jrGkj dHn�1 � c < +1 :

Let g � 0 be a harmonic function in D which is continuous on D. Then

from (3.8), (3.12), and Green's theorem we get

(3.16)

g(0) =

Z
@Dk

g jrGkj dHn�1

�
Z
@Dk

g dHn�1 �!
Z
@D

g dHn�1 ;

as k �! 1. To obtain the reverse inequality for �xed � < 10�3 and

� > 103, put

Pk = fx 2 @Dk : 1 � jrGk(x)j � 1 + �g ;

Qk = fx 2 @Dk : 1 + � < jrGk(x)j � �g ;

Lk = fx 2 @Dk : jrGk(x)j > �g ;

for k = 0; 1; 2; : : : Then

g(0) =

Z
@Dk

gjrGkj dHn�1 =

Z
Pk

� � � +
Z
Qk

� � � +
Z
Lk

� � � = I1+I2+I3 :
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Clearly,

jI1j � (1 + �)

Z
@Dk

g dHn�1 :

Also from (3.13) we �nd that

jI2j � � kgk1Hn�1(fx 2 @Dk : 1 + � � jrGkjg) �! 0 ;

as k �!1. Here, kgk1 denotes the maximum of g in D. Using (3.15)

we get

jI3j � kgk1
Z
fjrGkj>�g

jrGkj dHn�1 � c (log�)�1 kgk1 :

Letting k �!1 we obtain from the above estimates and (3.12) that

g(0) � (1 + �)

Z
@D

g dHn�1 + c (log�)�1 kgk1 :

Finally letting � �! 0, � �!1, we have

g(0) �
Z
@D

g dHn�1 :

In view of (3.16) we conclude that

(3.17) g(0) =

Z
@D

g dHn�1 ;

when g � 0 is continuous on D and harmonic in D. From (3.17) with

g � 1 we note that, Hn�1(@D) = 1. If g1 is continuous on D, harmonic

in D, and g1 �m � 0 in D, then from (3.17) and the above note we

deduce

g1(0) = (g1 �m)(0) +m =

Z
@D

(g1 �m) dHn�1 +m =

Z
@D

g1 dH
n�1 :

Finally from a simple barrier estimate it is easily seen that for each

y 2 T1,
1 = lim sup

x!y

jrG1j(x) � lim sup
x!y

jrGj(x) :

From this inequality we conclude that D 6= ball.
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Thus D is a pseudosphere and Theorem 1 is true once we have

proved (3.14).

4. Lemma of Wol�.

If x = (x1; : : : ; xn) 2 R
n we write x = (x0; xn); where x0 =

(x1; : : : ; xn�1): For given " > 0, 0 < " < 1=10, de�ne �(�; ") on Rn�1 by

�(x0; ") =

8>>><>>>:
"�1
�
1�

p
1 + "2 (1� jx0j2)

�
;

when x0 2 Rn�1 and jx0j � 1 ;

0 ;

when x0 2 Rn�1 and jx0j > 1 :

Put K = fx 2 Rn : xn > 0g and set K(") = fx = (x0; xn) 2 Rn : xn >

�(x0; ")g. We note that @K(") n @K consists of the part of the sphere

with center (0; : : : ; 0; "�1) and radius,
p
"�2 + 1 which lies outside K:

Thus K(") is obtained by adding a spherical bump to K. Let g(�; ") be
the Green's function for K(") with pole at 1. That is, g(x; ")� xn is

a bounded harmonic function in K(") and g(�; ") is continuous on K(")

with g(�; ") � 0 on @K("). Set

I(") =

Z
@K(")

jrg(�; ")j ln jrgj(�; ") dHn�1 :

Next let b�(x0) = (1 � jx0j2)+, x0 2 Rn�1 , where a+ = max fa; 0g. Let
� denote the bounded harmonic function on K which is continuous on

K with � = b� on @K = R
n�1 . Put

�(�) =

Z
Rn�1

((�xn)
3 � 3 jr0�j2 �xn) dHn�1 ;

where r0 denotes the gradient in x0 only. We prove

Lemma 4.1. If �(�) > 0; then there exists c� = c�(n) � 1, such that

I(") � �"3 �(�)=100, for 0 < " � c�(n)�1min f�(�); 1g.

Proof. The proof is essentially the same as [W, Lemma 2.12]. However

this lemma was proved under the assumption that @K(") is smooth

(C1) where in our case @K(") is just Lipschitz. Therefore we include
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some details. We shall show that I has continuous fourth derivatives

and jI 0000j � c(n) on (0; "0) for "0 = "0(n) > 0, su�ciently small. Also

it will turn out that the derivatives of I can be found by di�erentiating

under the integral sign as in [W] and I(0) = I 0(0) = I 00(0) = 0; while

I 000(0) = �(1=8)�(�): Using Taylor's theorem with remainder we then

get Lemma 4.1.

To begin, let y 2 @K(") and suppose for some r > 0 that w is

harmonic in K(") \ B(y; 2 r) with continuous boundary values zero on

@K(")\B(y; 2 r) and jwj �M <1 in B(y; 2 r)\K("): From a barrier

type argument we �nd for 0 < " � "0 � 1=100, su�ciently small, that

(4.2) jwj(x) � c(n)M
� jx� yj

r

�9=10
;

for x 2 K(") \ B(y; r): With "0 now �xed let g(�; z; ") denote Green's
function for K(") with pole at z 2 K(") for 0 < " � "0. We note

that g(x; z; ") � c(n) jx � zj2�n since the righthand side is a constant

multiple of the Green's function for Rn . Let S = f(x0; 0) 2 Rn : jx0j =
1g and let bx; bz 2 @K(") \ (B(0; 2) n S). Let x 2 B(bx; j1 � jbxj j=2),
z 2 B(bz; j1�jbzjj=2), with j1�jbxj j � j1�jbzj j=16. Then from (4.2) with

r = jx� zj=2, y = bx, w = g(�; z; "), and the above note it follows that

(4.3) g(x; z; ") � c j1� jxj j9=10 jx� zj1�n+1=10 :

Next suppose that v is harmonic in K(") with

v(x) =

Z
@K(")\B(0;1)

(1� jzj)4=5 jrg(x; z; ")j dHn�1z ; x 2 K(") ;

where derivatives of g(�; �; ") are with respect to z: Under these assump-

tions we prove for x 2 B(bx; j1�jbxj j=2)\K("), and bx 2 @K(")\B(0; 2)
that there exists bc (n) � 1 with

(4.4) jv(x)j � bc (n) j1� jxj j4=5 :
Now from Green's formula,

(4.5) jv(x)j � c(n) j1� jxj j4=5 +
Z
J

(1� jzj)4=5 jrg(x; z; ")j dHn�1z ;

where J = fz 2 @K(")\B(0; 1) : j1�jxj j < (1=100) (1�jzj)g. From the

Kelvin transformation (see [H]), it is easily seen that g(x; �; ") extends
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to a harmonic function in B(z; j1� jzj j) whenever x is not in this ball

and z 2 @K(") n S. We shall also denote this extension by g(x; �; ").
Using this fact, (4:3), and interior estimates for harmonic functions we

see that

jrg(x; z; ")j � c(n) j1� jxj j9=10 jx� zj�n+1=10 ; whenever z 2 J :

Putting this estimate in (4.5), using 2 jx � zj � j1 � jzj j when z 2 J

and integrating we get (4.4).

Again from the Kelvin transformation, (4.2) with w = g, and inte-

rior estimates for harmonic functions we observe that

(4.6)
��� @kg
@x�

���(x; ") � c(k; n) j1� jxj j�k+9=10 ; x 2 B
�bx; 1

2
j1� jbxj j� ;

whenever bx 2 @K(") \ (B(0; 2) n S), 0 < " � "0, and k = 0; 1; : : : Here

� = (�1; : : : ; �n) is a multi index with j�j = k and x� = x�11 � � �x�nn .

Also we have

(4.7) g(x0; �(x0; "); ") � 0 ; x0 2 Rn�1 ; 0 < " � "0 :

Next observe for k = 0; 1; : : : , that @k�(�; ")=@"k is uniformly Lipschitz

for x0 2 Rn�1 , 0 < " � "0; with

(4.8)

i)
���r @k�(x0; ")

@"k

��� � c(n; k) ;

ii)
���@k�(x0; ")

@"k

��� � c(n; k) (1� jx0j)+ ;

iii)
@�(x0; 0)

@"
= � (1� jx0j2)+

2
;
@2�(x0; 0)

@"2
� 0 :

We claim that (4.6)-(4.8) imply g(�; ") has continuous mixed partials

in x; " of all orders whenever, x 2 B(bx; j1 � jbxj j=2), 0 < " � "0 andbx 2 @K(") n S: Moreover if also jbxj < 2,

(4.9)
���@k+lg(x; ")
@x� @"l

��� � c(k; l; n) j1� jxj j�k+4=5 ;

for k; l = 0; 1; : : : , while

(4.10)
���@k+l (g(x; ")� xn)

@x� @"l

��� � c(k; l; n) j1+ jxj j�k�n+1 ;
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with x 2 @K("), jxj � 2. (4.9) for l = 0, k = 0; 1; : : : is implied by

(4.6). (4.10) follows from the fact that g(�; ")�xn extends to a bounded
harmonic function in Rn n B(0; 3=2) which is zero on f(x0; 0) : x0 2
R
n�1 ; jx0j > 3=2g and the Poisson integral formula for such functions.

Thus (4.9), (4.10) are true for l = 0, k = 0; 1; : : : We can now proceed

by induction to get (4.9), (4.10). We do only the case l = 1; k = 0; : : : ;

in detail. From (4.7), (4.8) ii), the mean value theorem from elementary

calculus, and (4.6) for k = 1 we see that

(4.11)

jg(x0; �(x0; "2); "2)� g(x0; �(x0; "2); "1)j
= jg(x0; �(x0; "2); "1)� g(x0; �(x0; "1); "1)j

� c(n)max
n��� @g
@xn

���(x0; �(x0; "); ") : 0 < " � "0

o
� j�(x0; "2)� �(x0; "1)j

� c(n) j"2 � "1j ((1� jx0j)+)4=5 ;

for x0 2 @K("2) n S, 0 < "1, "2 � "0. From (4.11) we deduce that

f("2 � "1)
�1 (g(�; "2) � g(�; "1))g is uniformly bounded and has a con-

tinuous extension to @K("2) whenever 0 < "1, "2 � "0 and "1 6= "2.

From the maximum principle for harmonic functions and the Kelvin

transformation, it follows that this sequence is harmonic and uniformly

bounded in L("2) = K("2)
SfB(bx; j1�jbxj j) : bx 2 @K("2)nSg: Letting

"1 �! "2 it follows that @g=@" is uniformly continous and bounded in

L("2) whenever 0 � "2 � "0. Moreover,

(4.12)
@g

@"
(x; ") = � @g

@xn
(x; ")

@�

@"
(x0; ") ;

with x = (x0; �(x0; ")) 2 @K(") n S. Using (4.8) ii) and (4.6) with

k = 1 we get j@g=@" (�; ")j � c(n) ((1� jxj)+)4=5 on @K("): Using this

inequality and the maximum principle for bounded harmonic functions

in K(") we conclude �rst that j@g=@"j � c(n) v; and thereupon from

(4.4), the Kelvin transformation, and interior estimates for harmonic

functions that (4.9) is true when l = 1, k = 0; 1; : : : (4.10) follows for

l = 1 by the same reasoning as when l = 0: Finally since a uniformly

convergent sequence of harmonic functions has derivatives which also

converge uniformly, it follows that the mixed partial derivatives consist-

ing of one partial derivative in " and k partial derivatives in the space

variable x are independent of the order of di�erentiation.
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Next we use (4.12) and argue as in (4.11) to obtain that

@2g

@"2
(x; ") = �2 @2g

@" @xn
(x; ")

@�

@"
(x0; ")

� @g

@xn
(x; ")

@2�

@"2
(x0; ")� @2g

@x2
n

(x; ")
�@�
@"

�2
(x0; ") ;(4.13)

whenever x 2 @K("). Using (4.8) ii) and (4.9) with l = 0; 1, k = 1; 2; we

conclude �rst that j@2g=@"2(x; ")j � c(n) ((1�jxj)+)4=5 when x 2 @K(")

and thereupon from (4.4), the Kelvin transformation, and interior esti-

mates for harmonic functions, that (4.9) is true when l = 0; 1; 2: (4.10)

follows by the same reasoning as when l = 0; 1: As above we see that

the mixed partial derivatives consisting of two partial derivatives in "

and k partial derivatives in the space variable x are independent of the

order of di�erentiation. Continuing by induction we get (4.9), (4.10).

Finally observe from a barrier argument that

(4.14) c(n) jrg(�; ")j � 1 ; on @K(") n S ;
for 0 < " � "0. Using (4.9), (4.10), (4.14) we deduce that derivatives of

I with respect to " of all orders can be found by di�erentiating under the

integral sign de�ning I: Doing this and letting " �! 0 we �nd that the

argument of Wol� [W, pp. 360-362] can be used essentially verbatim.

One only needs to check that the second and third partial derivatives of

� with respect to " do not add additional terms in the calculations when

" = 0: In fact from (4.8) iii) we see that the second partial of � with

respect to " vanishes identically. Moreover all terms involving the third

partial of � with respect to " vanish at " = 0 (since all second partials

of g(x; 0) = xn are identically zero and jrg(x; 0)j � 1). Lemma 4.1 now

follows from Wol�'s argument in the way mentioned at the beginning

of the proof.

In order to apply Wol�'s lemma we need to show that �(�) > 0:

In fact we shall show in [LVV] that if b � 0; is a radial, nonincreasing,

Lipschitz function on R
n�1 with compact support and b 6� 0; then

�( ) > 0. As usual,  denotes the bounded harmonic extension of b 
to K which is continuous on K with  = b on @K. Clearly this result

implies

(4.15) �(�) > 0 :

Here we outline a direct method for establishing (4.15) which gives a

numerical lower bound for the integral when n � 5. Using separation
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of variables or the Poisson integral formula for harmonic functions in a

half space one can show for r = jx0j that

�xn(x
0; 0) = �cn F

�n
2
;�1

2
;
n� 1

2
; r2
�
; 0 < r < 1 ;

where F (a; b; c; z) is the usual hypergeometric function,

cn =
2�
�n
2

�
�
�n� 1

2

�
�
�3
2

� ;
and � is the Euler gamma function. Writing the hypergeometric func-

tion in a series it is easily seen that

�F
�n
2
;�1

2
;
n� 1

2
; r2
�
� �1 + n

n� 1
(1� (1� r2)1=2) :

Using this estimate and doing some arithmetic we �nd thatZ 1

0

�3
xn
rn�2 dr � c3

n
(n� 1)�3

Z 1

0

(�1 + n (1� r2)1=2)3 rn�2 dr

= c3
n
(n� 1)�3

� 1

n� 1
+

6n2

n2 � 1

�
� 6 c2

n
(n� 1)�3

�
1 +

n2

n+ 2

�
(4.16)

= bn :

Also we note that

3

Z 1

0

�xn jr0�j2 rn�2 dr = �12 cn
Z 1

0

F
�n
2
;�1

2
;
n� 1

2

�
rn dr

=
48 (n� 2)

(n+ 2)� n
:

The last equality is obtained by writing out the series for the integrand

and integrating term by term. The series one gets after evaluating

at 1 can be written as the sum of several hypergeometric functions

evaluated at 1. Using tables one then gets the last equality. Finally

using Stirling's formula and making some more estimates one can show
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that bn+48 (n�2)=((n+2)�n) � 0 for n � 5, which in view of (4.16),

the above equality, and the fact that �xn(r; 0) � 0 for r 2 (1;1) (by

positivity of � ) implies (4.15) for n � 5. The cases n = 3; 4 can be

done separately. A more involved argument using estimates also forR1
1

�3
xn
rn�2 dr can be used to show that for some absolute constant c

one has �(�) � c=n, n = 3; 4; : : : (more details will be supplied upon

request).

Next we introduce some notation in order to state some conse-

quences of Lemma 4.1 and (4.15). Let 
1 be a bounded domain with

diameter � 1 and NTA constant 1000. Then by de�nition,

i) (corkscrew condition) For each x 2 @
1,

0 < r < 1, there are points Pr(x) 2 
1, Qr(x) 2 Rn n 
1,

with jPr(x)� xj � 1000 r, jQr(x)� xj � 1000 r, and

dist (Pr(x); @
1) � 1000�1r, dist (Qr(x); @
1) � 1000�1r,

ii) (Harnack chain condition) For each x; y 2 
1 there is a path

 : [0; 1] �! 
1 with (0) = x, (1) = y; and with

length � 1000 jx� yj: Also
dist ((t); @
1) � 1000�1min fj(t)� xj; j(t)� yjg for t 2 [0; 1].

Next suppose that 
1 is Lipschitz on scale t with constant 1000. That

is assume for each z 2 @
1, there exists a coordinate system such that

@
1 \B(z; t) is the graph of a Lipschitz function de�ned on Rn�1 with

Lipschitz norm � 1000: Moreover, 
1 \ B(z; t) lies above the graph of

this function. Finally assume for some w 2 @
1 and t > 0 that after a

possible rotation of coordinates,

(4.17)
@
1 \ B(w; t) = fx : xn = wng \B(w; t)

1 \ B(w; t) = fx : xn > wng \ B(w; t) :

Let �(�; ") be as de�ned at the beginning of Section 4, � � 2, and de�ne


2(") � 
1 for 0 < " � "0, as follows:

a) 
1 nB(w; t) = 
2(") nB(w; t),
b) @
2(") \ B(w; t) = f(x0 + w0; wn + t ��1 �(t�1�x0; ")) : x0 2

R
n�1g \ B(w; t),
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c) 
2(")\B(w; t) = f(x0+w0; xn) : xn > wn+t �
�1 �(t�1 �x0; ")g\

B(w; t).

We assume

(4.18) B(0; �0) � 
1 � B(0; 1) ;

where �0 is as in (1.2). Denote Green's functions for 
1;
2("), with

pole at 0, by G1; G2(�; ") respectively, and let !1 be harmonic measure

on 
1 with respect to 0. With this notation we state

Lemma 4.19. Let 
1 be NTA and Lipschitz on scale t with constant

1000: Suppose 
1 satis�es (4:17), (4:18), and 
2 is obtained by adding

a spherical bump to 
1 as in a)-c). Let "0 = (2 c�(n))�1min f�(�); 1g,
where c� is as in Lemma 4:1. If 0 < b" � "0; then there exists �� =

��(b"; n), c = c (b"; n) � 2, such that for � � ��,Z
@
2(")

jrG2(�; ")j log jrG2j(�; ") dHn�1

�
Z
@
1

jrG1j log jrG1j dHn�1 � 1

c �n�1
!1(B(w; t)) ;

whenever b" � " � "0.

Proof. In view of Lemma 4.1 and (4.15) we can essentially apply

[W, Lemma 2.7] to get Lemma 4.19 in R3 : The proof in Rn ; n > 3; is

unchanged.

5. Proof of Theorem 1.

Armed with Lemma 4.19 we can use the argument in [LV, Section 3]

to prove (3.14) and hence complete the proof of Theorem 1. Unfortu-

nately, in [LV, Section 3] Schauder estimates for smooth domains were

again used, whereas our boundaries are only locally Lipschitz. Thus

for the reader's convenience we sketch the argument in [LV, Section 3]

indicating the necessary changes. We wish to apply Lemma 4.19 to

Dm; Dm+1 constructed in Section 3, but in order to do so we need to

introduce intermediary domains with at bumps as in Lemma 4.19 and

make some estimates. We shall use the same notation as in Section

2. Note that in Section 3 we constructed Dm+1 from Dm by adding
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spherical bumps as in (2.9)-(2.11). Thus we work with 
;
0 as in Sec-

tion 2. We assume, as we may, that �20 � "0=100 where �0 is yet to

be �xed and "0 is as in Lemma 4.19. We now de�ne (�k) introduced

above (2.9). Let br0; br1; �;M1; r
0
0; r

0; (Ek); L; l; rj be as in Section 2. For

�xed y 2 L recall from (2.9) that j was the least postive integer such

that B(y; 100 r0) \ Ej 6= ?; 1 � j � l + 1. Let T be the tangent

plane to @
 at y 2 @
. From the above restriction on �0; (2:5); we

see as in (2.18) a) that the central angle, say �j = �j(y); subtended by

B(ey; er)\T (relative to ey) satis�es 2�1 �2
j
� �j � 2�2

j
� "0=4, regardless

of the choice of �j � 2, y 2 L or r0. Put "j = tan (�2
j
=2), ��

j
= ��("j ; n)

and set �
0

j
= max f��2

j
; bj; �

�
j
g, j = 0; 1; : : : ; where bj = c("j ; n): Let

�k = max0�j�k �
0

j
, k = 0; 1; : : : ; and observe that (�k)

1
0 depends only

on n once �0 is �xed.

We add at bumps to 
;
0 as follows. Let y; j be as above and

as in (3.1) let S(w; ��) be such that B(y; 100 r0) \ @
 � S(w; ��) and

B(w; ��) � 
: After a rotation if necessary we may assume that y =

(w0; wn���); where w = (w0; wn): Let A = ���
p
(��)2 � (r0 + (r0)3=2)2

and de�ne  : Rn�1 �! R by

 (x0) =

8>>>>>><>>>>>>:

wn � �� ; for jx0 � w0j � r0;

(r0)�3=2A (jx0 � w0j � r0) + wn � �� ;

for r0 � jx0 � w0j � r0 + (r0)3=2 ;

wn �
p
(��)2 � jx0 � w0j2 ;

for r0 + (r0)3=2 � jx0 � w0j � �� :

Note that the graph of  coincides with the tangent plane T to S(w; ��)

at y when jx0 � w0j � r0 and \linearly" connects this tangent plane

with S(w; ��) when r0 � jx0 � w0j � r0 + (r0)3=2: Suppose that L =

fz1; z2; : : : ; zpg and put Lk = fz1; : : : ; zkg, 1 � k � p.

De�ne b
k, 1 � k � p, by

bI ) b
k n � [
z2Lk

B(z; 10 r0)
�
= 
 n

� [
z2Lk

B(z; 10 r0)
�
;

bII) @b
k \B(y; 10 r0) = f(x0;  (x0))g \ B(y; 10 r0) ;cIII) b
k \ B(y; 10 r0) = f(x0; xn) : xn >  (x0)g \B(y; 10 r0) ;

whenever y 2 Lk: Next we de�ne e
k � b
p, 1 � k � p; relative to b
k
in the same way that 
0 was de�ned by adding spherical bumps to 
:



On pseudospheres that are quasispheres 245

That is,

eI) b
k n � [
z2Lk

B(z; �2
j
rj)
�
= e
k n � [

z2Lk

B(z; �2
j
rj)
�
;

fII) @e
k \B(y; �2j rj) = B(y; �2
j
rj) \ (@b
k nB(ey; er) [ S(ey; er) n b
k);

whenever y 2 Lk ;gIII) e
k \ B(y; �2j rj) = (B(ey; er) [ b
k) \B(y; �2j rj) whenever y 2 Lk :
Here ey; er are de�ned as in (2.10) relative to y: From the de�nition of


;
0 we see that b
k � 
, e
p � 
0 for 1 � k � p. Also from the

de�nition of  and (2.5) it can be shown as in [LV, Section 4] thatb
k; e
k, 1 � k � p, are NTA and Lipschitz on scale r0 with constant

1000. Let b
0 = 
, e
0 = b
p. From the de�ninion of f�kg and our

restriction on �0 we deduce after a possible rotation and translation

that Lemma 4.19 can be applied with 
1 = e
0, 
2 = e
1. Next by

the same reasoning we can apply Lemma 4.19 with 
1 = e
1 and 
2 =e
2; : : : ; etc. Let bGk; eGk; b!k; e!k, be the Green's functions and harmonic

measures relative to 0 for b
k; e
k. Applying the above argument p times

we obtain an inequality for bGp = eG0 and eGp. Using the de�nition of

f�kg10 , we conclude

(5.1)

Z
@e
p

jr eGpj log jr eGpj dHn�1

�
Z
@b
p

jr bGpj log jr bGpj dHn�1

� c(n) (�l+1)
�(n�1)

p�1X
k=0

e!k(B(zk+1; 2 r0)) :
To prove (3.14) we must show that bGp, eGp, in (5.1) can be replaced by

G;G0, with a manageable error term. To do so we introduce 

0

k
; 0 �

k � p, de�ned by 

0

0 = 
0, and for 1 � k � p,

I0) 
0k n
� [
z2Lk

B(z; 10 r0)
�
= 
0 n

� [
z2Lk

B(z; 10 r0)
�
;

II0) @
0
k
\ B(y; 10 r0) = @e
k \B(y; 10 r0) ;

III0) 
0
k
\ B(y; 10 r0) = e
k \B(y; 10 r0) ;
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for each y 2 Lk. Denote the corresponding Green's functions and har-

monic measures relative to 0, by G
0

k
; !

0

k
, 1 � k � p. We shall also

need the following facts about the NTA domain 
1 with constant 1000

satisfying (4.18). If z 2 @
1 and 0 < � � 10; then

(5.2)

!1(B(z; �)) � c(n) �n�2 max
B(z;�)\
1

G1

� c(n) �n�2G1(P�) � c(n)!1(B(z; �)) ;

where P� = P�(z): Moreover,

(5.3) !1(B(z; 2 �)) � c(n)!1(B(z; �)) :

(5.3) is called the doubling inequality for harmonic measure. Also, there

exists � = �(A) > 0 so that for z; P�, as above, and x 2 B(z; �) \ 
1,

(5.4) G1(x) � c(n)
� jx� zj

�

��
G1(P�) :

From Harnack's inequality, it follows that there exists � = �(n), 1 <

� <1, with

(5.5) c(n)�1�� � !1(B(z; �)) � 1 ; 0 < � � 1 :

Next we note that if z 2 @
1 and u; v, are two positive harmonic

functions in 
1 which vanish continuously on @
1 n B(z; �), and P� =
P�(z), then for x 2 
1 nB(z; 2 �)

(5.6) c(n)�1
u(P�)

v(P�)
� u(x)

v(x)
� c(n)

u(P�)

v(P�)
:

Moreover, (5.6) is valid when u; v, vanish on @
1 \ B(z; 2 �), and

x 2 B(z; �) \ 
1. (5.6) is called the rate inequality. Next since 
1

is Lipschitz on scale t; we have for 0 < t1 � t;

(5.7) t1�n1

Z
B(z;t1)

jrG1j2 dHn�1 � c(n) (t1
1�n!1(B(z; t1)))

2 ;

which is called an L2 reverse H�older inequality. Using (5.7) and H�older's

inequality one easily deduces the following A1 type condition. If E �
B(z; t1) is a Borel set, then

(5.8)
!1(E)

!1(B(z; t1))
� c(n)

� Hn�1(E)

Hn�1(B(z; t1))

�1=2
:



On pseudospheres that are quasispheres 247

Also using (5.5), (5.7) and Jensen's inequality one deduces,

(5.9)

Z
B(z;t1)

jrG1j j log jrG1j j dHn�1 � �c(n) log t1 !1(B(z; t1)) :

For the proof of (5.2)-(5.6) see [JK, sections 4 and 5]. (5.7) follows from

(5.6) and a result of Dahlberg (see [D]). Using (5.2)-(5.5) it follows as

in [LV, (3.10)] that

(5.10)

p�1X
k=0

!�
k
(B(zk+1; 6 r

0)) � c(n) ;

whenever � is an element of f^;�;0 g. We show for 0 � k � p� 1 that

Z
@


0

k

jrG0

k
j log jrG0

k
j dHn�1 �

Z
@


0

k+1

jrG0

k+1j log jrG
0

k+1j dHn�1

+ c(n) (r0)1=8 !
0

k
(B(zk+1; 3 r

0)) ;(5.11)Z
@b
k+1

jr bGk+1j log jr bGk+1j dHn�1 �
Z
@b
k

jr bGkj log jr bGkjdHn�1

+ c(n) (r0)1=8 b!k(B(zk+1; 3 r0)) :(5.12)

Summing (5.11) and using (5.10), it then follows that

(5.13)

Z
@
0

jrG0j log jrG0j dHn�1

�
Z
@e
p

jr eGpj log jr eGpjdHn�1 + c(n) (r0)1=8 ;

where we have used the fact that 

0

0 = 
0, 

0

p =
e
p. Summing (5.12)

and using (5.10), we �nd

(5.14)

Z
@b
p

jr bGpj log jr bGpj dHn�1

�
Z
@


jrGj log jrGj dHn�1 + c(n) (r0)1=8 ;
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since b
0 = 
. Putting (5.13), (5.14) into (5.1) we get

(5.15)

Z
@
0

jrG0j log jrG0j dHn�1

�
Z
@


jrGj log jrGj dHn�1 + c(n) (r0)1=8 :

Using this inequality in the de�nition of Dm+1 we obtainZ
@Dm+1

jrGm+1j log jrGm+1j dHn�1

�
Z
@Dm

jrGmj log jrGmj dHn�1 + c(n) (r0)1=8 ;(5.16)

where r0 = r0(m): From (2.5) and the de�nition of �k following (3.9) we

see that
P1

m=0(r
0(m))1=8 < 1. Hence (3.14) is true and the proof of

Theorem 1 is complete after we prove (5.11), (5.12).

We prove only (5.11) for k = 0, since the proof of all the other

inequalities is the same. To prove (5.11) for k = 0 let y = z1 in the

de�nition of 
01 and let  be as de�ned earlier relative to y. If ey; er are
as in (2.10), put

�(x0)

=

(
min

�
 (x0); eyn �p(er)2 � jw0 � x0j2

	
; for jx0 � w0j � er ;

 (x0) ; for er � jx0 � w0j � �� :

Then

@
01 \ B(y; 10 r0) = f(x0; �(x0))g \ B(y; 10r0) ;


01 \ B(y; 10r0) = f(x0; xn) : xn > �(x0)g \B(y; 10 r0) :

Also if

�(x0) =

8>>><>>>:
min

�
wn �

p
(��)2 � jx0 � w0j2; eyn �p(er)2 � jx0 � w0j2

	
;

for jx0 � w0j � er ;
wn �

p
(��)2 � jx0 � w0j2 ;

for er � jx0 � w0j � �� ;
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then

@
0 \B(y; 10 r0) = f(x0; �(x0))g \ B(y; 10 r0) ;


0 \B(y; 10 r0) = f(x0; xn) : xn > �(x0)g \B(y; 10 r0) :

Next let

K1 = fx0 : (x0; xn) 2 S(ey; er) \ S(w; ��)g ;
K2 = fx0 : (x0; wn � ��) 2 S(ey; er)g ;

K3 = fx0 : r0 � jx0 � w0j � r0 + (r0)3=2g :

Let K be the set of all x0 2 R
n�1 whose distance from [3

i=1Ki is at

most 1000 (r0)3=2 and set

H = fx0 : jx0 � w0j < 3 r0g nK ;

K 0 = f(x0; xn) 2 @
0 \B(z1; 3 r0) : x0 2 Kg ;

K 0

1 = f(x0; xn) 2 @
01 \ B(z1; 3 r0) : x0 2 Kg :

We have

(5.17)

��� Z
@
0\B(z1;3r0)

jrG0j log jrG0j dHn�1

�
Z
@
0

1
\B(z1;3r0)

jrG01j log jrG01j dHn�1
���

�
��� Z

K0

jrG0j log jrG0j dHn�1 �
Z
K0

1

jrG01j log jrG01j dHn�1
���

+
��� Z

(@
0nK0)\B(z1;3r0)

jrG0j log jrG0j dHn�1

�
Z
(@
0

1
nK0

1
)\B(z1;3r0)

jrG01j log jrG01j dHn�1
���

= T1 + T2 :

To estimate T1 we cover K
0 by balls of radius 10 (r0)3=2 with centers in

K 0 and the property that the balls with the same centers and radius
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(r0)3=2 are disjoint. Using (5.9) in each ball and (5.3), (5.8) with E =

K 0, t1 = 3 r0 we deduce after summing that��� Z
K0\B(z1;3r0)

jrG0j log jrG0j dHn�1
��� � �c(n) log r0!0(K 0)

� c(n) (r0)1=8 !0(B(z1; 3 r
0)) :

This inequality also holds with K 0; G0; !0 replaced by K 0
1; G

0
1; !

0
1: Next

we observe that it follows in the same way as (5.10) that !01(B(z1; 3 r
0))

� !0(B(z1; 3 r
0)) where � means the two quantities are constant multi-

ples of each other (depending only on n). From the above inequalities

we conclude

(5.18) T1 � c(n) (r0)1=8 !0(B(z1; 3 r
0)) :

To begin the estimate of T2 we write x for (x
0; �(x0)) and bx for (x0; �(x0))

in the following integrals.

T3 =
��� Z

(@
0nK0)\B(z1;3r0)

jrG01j log jrG01j dHn�1

�
Z
(@
0

1
nK0

1
)\B(z1;3r0)

jrG01j log jrG01j dHn�1
���

�
Z
H

j jrG01j(x) log jrG01j j(x)j

�
p
1 + jr�(x0)j2 �

p
1 + jr�(x0)j2 j dx0

+

Z
H

j jrG01j(bx)� jrG01j(x)j j log jrG01j j(x)p1 + jr�(x0)j2 dx0
(5.19)

+

Z
H

jrG01j(bx)j log jrG01(x)j � log jrG01(bx)j jp1 + jr�(x0)j2 dx0

= U1 + U2 + U3 :

From the de�nition of �; �; and (5.9) we �nd that

(5.20) U1 � c(n) (r0)1=8 !01(B(z1; 3 r
0)) � c(n) (r0)1=8 !0(B(z1; 3 r

0)) :

To estimate U2; U3 let bx = (x0; �(x0)), x = (x0; �(x0)), x0 2 H, be as in

(5.19). Then bx 2 @
01 n K 0
1 and using the Kelvin transformation it is
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easily seen that G01 extends to a harmonic function in B(bx; 2 (r0)3=2 ):
If � = (r0)3=2; then from standard estimates for harmonic functions in

balls, (5.2), and the fact that jx� bxj � c(n) (r0)2=��, we obtain

(5.21)

jrG01(x)�rG01(bx)j � c(n) jx� bxj ��2 max
B(bx;�)

G01

� c(n) (r0��)�1G01(P�(bx))
� c(n) (r0��)�1 �2�n !01(B(bx; �)) :

Using positivity of G01 and (5.3) we also �nd that

(5.22) c(n)�1 �1�n !01(B(bx; �)) � jrG01(bx)j � c(n) �1�n !01(B(bx; �)) :
Putting (5.22) in (5.21) we �nd in view of (2.5) that

(5.23) jrG01(x)�rG01(bx)j � c(n) (r0)1=4 jrG01j(x) ;

where x = x or bx. From (5.23) and (5.9) we see that

(5.24) U2 + U3 � c(n) (r0)1=8 !0(B(z1; 3 r
0)) :

Using (5.24), (5.20) in (5.19) we deduce

(5.25) T3 � c(n) (r0)1=8 !0(B(z1; 3 r
0)) :

If x 2 @
0 nK 0; bx; and � = (r0)3=2; are as above, then again using the

Kelvin transformation we deduce �rst that G0 � G01 has a harmonic

extension to B(x; 2 �) and second that

(5.26) jrG0 �rG01j(x) � c(n) ��1 max
B(x;�)

jG0 �G01j :

We claim that

max
B(x;�)

jG0 �G01j � c(n) max
B(x;�)\
0

jG0 �G01j+ c(n)
(r0)1=2

��
G0(P�(x))

� c(n) max
B(x;�)\
0

jG0 �G01j+ c(n)
�
(r0)1=2

�

��

�
jrG0j(x) :(5.27)

The second line of (5.27) follows from the �rst line, (5.2), (5.3), and the

same argument as in (5.22). To prove the �rst line of (5.27) observe that

if x 2 S(ey; er) \K 0; then this inequality is obvious since both functions
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are extended by essentially reecting across S(ey; er). Otherwise suppose
z 2 B(x; �) and ez; bz denote the reection of z with respect to the plane

fu 2 Rn : un = wn � ��g and the sphere S(w; ��); respectively. Then

jez � bzj � c(n) (r0)1=2
�

��
:

Using this fact, the de�nition of the Kelvin transformation, and stan-

dard estimates for functions vanishing on B(x; �) \ S(w; ��) we obtain
(5.27). As noted earlier we have

!0(B(z1; 3 r
0)) � !01(B(z1; 3 r

0))

so from (5.2), we have

G0(Pr0(x)) � G01(Pr0(x)) :

Now if �0 = �0(n) > 0 is small enough, then from this note and a

barrier type estimate using interior and exterior cones, we deduce for

r0 � t � 2 jx� bxj that
(5.28.a)

c(n)�1
� t
r0

�11=10
max fG0(Pr0(x)); G01(Pr0(x))g

� min fG0(Pt(x)); G01(Pt(x))g

and

(5.28.b)

maxfG0(Pt(x)); G01(Pt(x))g

� c(n)
� t
r0

�9=10
min fG0(Pr0(x)); G01(Pr0(x))g :

We observe that every point of @
0\B(z1; 3 r0) lies within c(n) (r0)2=��
of a point of @
01: From this observation, the maximum principle for

harmonic functions, (5.28) and (2.5) we see that

(5.29)

max
B(x;�)\
0

jG0 �G01j � c(n) max
@
0\B(z1;3r0)

jG01j

� c(n)
� r0
��

�9=10
G0(Pr0(x))

� c(n) (r0)1=4G0(P�(x))

� c(n) (r0)1=4 � jrG0(x)j :
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Using (5.27), (5.29) in (5.26) we get

(5.30) jrG0 �rG01j(x) � c(n) (r0)1=4 jrG0(x)j :

Finally from (5.30), (5.25) we conclude that

T2 �
��� Z

(@
0nK0)\B(z1;3r0)

jrG01j log jrG01j dHn�1

�
Z
(@
0nK0)\B(z1;3r0)

jrG0j log jrG0j dHn�1
���+ T3

�
Z
H

j jrG01j(x)� jrG0j(x)j j log jrG01j j(x)
p
1 + jr�(x0)j2 dx0

+ c(n) (r0)1=8 !0(B(z1; 3 r
0))

(5.31)

+

Z
H

jrG0j(x)j log jrG01(x)j � log jrG0(x)j j
p
1 + jr�(x0)j2 dx0

� c(n) (r0)1=8 !0(B(z1; 3 r
0)) :

From (5.18), (5.31) and (5.17) we conclude that

(5.32)

��� Z
@
0

1
\B(z1;3r0)

jrG01j log jrG01j dHn�1

�
Z
@
0\B(z1;3r0)

jrG0j log jrG0j dHn�1
���

� c(n) (r0)1=8 !0(B(z1; 3 r
0)) :

Next we note that the argument in [LV] from (3.26) to (3.28) uses only

NTA estimates (primarily (5.4) and (5.6)) so is also valid for our current

domains. Thus

(5.33)

��� Z
@
0

1
nB(z1;3r0)

jrG01j log jrG01j dHn�1

�
Z
@
0nB(z1;3r0)

jrG0j log jrG0j dHn�1
���

� c(n) (r0)1=8 !0(B(z1; 3 r
0)) :
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From (5.32), (5.33) we �nd that (5.11) is valid for k = 0: Fix

�0 = �0(n) > 0 subject to the stipulations in sections 2-5. From our

earlier remarks we conclude �rst (3.14) and thereupon that Theorem 1

is valid.
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