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Harmonic analysis in value

at risk calculations

Claudio Albanese and Luis Seco

Abstract. Value at Risk is a measure of risk exposure of a portfolio

and is de�ned as the maximum possible loss in a certain time frame,

typically 1-20 days, and within a certain con�dence, typically 95%. Full

valuation of a portfolio under a large number of scenarios is a lengthy

process. To speed it up, one can make use of the total delta vector and

the total gamma matrix of a portfolio and compute a Gaussian integral

over a region bounded by a quadric. We use methods from harmonic

analysis to �nd approximate analytic formulas for the Value at Risk

as a function of time and of the con�dence level. In this framework,

the calculation is reduced to the problem of evaluating linear algebra

invariants such as traces of products of matrices, which arise from a

Feynmann expansion. The use of Fourier transforms is crucial to re-

sum the expansions and to obtain formulas that smoothly interpolate

between low and large con�dence levels, as well as between short and

long time horizons.

1. Introduction.

The notion of Value at Risk (VaR), introduced in the J. P. Morgan

RiskMetrics document [JPM], captures the risk exposure of a portfolio

in terms of the largest possible loss within a certain con�dence interval.

In the RiskMetrics framework, one deals with portfolios subject

to a number of risk factors whose evolution is a geometric Brownian

motion with a given covariance matrix. The full valuation method
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consists of repricing the portfolio under a number of scenarios by calling

all the relevant pricing functions. This procedure is computationally

very intensive. In typical applications with portfolios that consist of

several hundred thousand instruments, not more than a few thousand

scenarios can be priced overnight with current technologies. The small

number of scenarios results in large inaccuracies in the Value at Risk

measurement. The use of rather unsophisticated pricing models can

speed up the calculation but is also at the origin of uncontrollable errors.

An alternative that has been advocated in the RiskMetrics tech-

nical document is to use the quadratic approximation for the portfolio

variation as a function of the underlying risk factors. To obtain this

representation, the knowledge of the total delta vector and of the total

gamma matrix is required. This leads to the problem of evaluating an

integral of the form

(1.1) I0(K) =

Z
�x+(1=2)(x;�x)�K

exp (��(x; A x)) ;

for certain vectors � and matrix �. To our knowledge, the problem

of estimating (1.1) was �rst considered by Ruben [Rub] (in the case of

positive de�nite � and zero �), and then extended by a number of other

authors, see [KJB] and references therein. An asymptotic expansion in

the large con�dence limit has been obtained by Quintanilla (see [Q]).

The notion of Value at Risk owes its popularity to the fact that it

captures, with just one parameter of intuitive meaning, the risk expo-

sure of a portfolio. However, the Value at Risk evolves with time and

is subject to stochastic uctuations which reect the evolution of the

risk factors and the evolution of the composition of the portfolio itself.

The sensitivity of the Value at Risk with respect to the dynamics of the

underlying risk factors depends on the relative importance of delta and

gamma risks. To capture this e�ect, it is useful to use dual variables

which give the sensitivity to the total delta and the total gamma risk

of a given portfolio.

In our setting, duality transformations involve Fourier transforms.

After an initial simultaneous diagonalization of the covariance matrix

A and of the total gamma of the portfolio, we reduce the calculation to

an integral of a Gaussian over a high dimensional quadric. This integral

is computed using techniques from harmonic analysis, which reduce all

calculations to the Fourier transform of quadrics. In the case of positive

de�nite Gammas, this reduces to explicit Bessel functions; the general

case is not much more di�cult. The Paley-Wiener theorem guarantees
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that our formulas have adequate computational properties. This re-

sult can be strengthened by deriving analytic formulas which give the

asymptotic behaviour and determine the relevant Fourier transforms up

to smooth multipliers. The moments of these transforms can be com-

puted by means of a technique related to Feynmann diagrams. This

gives rise to matrix invariants such as traces and determinants, which

yield analytic formulas for the Value at Risk as a function of the time

horizon and of the con�dence level. In this context, the use of Fourier

transforms is crucial to resum the expansions and to obtain formulas

that smoothly interpolate between low and large con�dence levels, as

well as between short and long time horizons.

By changing coordinates, the integral in (1.1) can be reduced to a

convolution of integrals of the same form but with a positive �. In this

case, Fourier transforms give rise to the two following representations:

�rst,

I0(K(R)) = Rn=2
� Z 0

�1

Jn=2
�
2R�

p
jb�j �G(b�)

(2 jb�jn=4) db�
+ � i

Z 0

�1

Z 0

b� tan�1 kvk2

Jn=2
�
2R�

p
jb�j �F (b�; b�)

(2 jb�j)n=4
�
cos (2�

q
2 b� )� 1

2�2b� db�db�� ;
for a certain function K(R) and for suitable functions G and F , which

arise as Fourier transforms of certain determinant functions. The in-

teger n represents the number of risk factors (or underlyings) in the

portfolio under consideration.

In this expression, the �rst term corresponds to the VaR of a per-

fectly �-hedged portfolio, while the second captures the VaR of hedging

imperfections. In fact, we will also obtain a second expression, as an

asymptotic expansion of the form

I0(K(R)) = Rn=2

1X
j=0

1

j!

Z 0

�1

Jn=2
�
2R�

p
jb�j �

(2 jb�j)n=4 H(j)(b�) db� ;
for suitable functions H(j). Each term in this expansion corresponds to

increasing degrees of delta-hedge slippage. It is obtained by expanding

the �rst in powers of the � vector and is convenient in the limit of
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small � or of large time horizon. The functions G(b�), F (b�; b�) and
H(j)(b�) admit an integral representation that allows one to �nd their

asymptotic behaviour at the boundaries of their support. Moreover,

the Fourier transform of these functions can be computed explicitly

and the moments admit an expansion in Feynmann diagrams. This

expansion can be used jointly with the asymptotic analysis to �nd an

approximation scheme to e�ciently interpolate between large and small

values of the arguments based on the knowledge of linear invariants of

the matrix D and the vector v, such as TrDk, kvk and (v;Dkv).

The interest of analytical formulas for VaR of the type presented

in this paper is manifold, and not unrelated to the interest of analytical

expressions for traditional pricing theories. First, they allow for further

analysis and calibration for di�erent portfolio parameters. Second, they

allow for VaR calibration techniques based on historical P&L data.

This article is organized into seven sections. In the next one, we

present the general framework and the main formulas in our analysis.

In the third, fourth and �fth sections, which are rather technical, we

provide all the details that justify our approach and the formulas it

gives rise to. Based on these results, in the sixth section we derive an

e�cient approximation scheme for value at risk calculations. The last

section contains concluding remarks.

2. Value at Risk.

Consider a portfolio of price � consisting of a combination of un-

derlying securities Sj , for j = 1; : : : ; n, which we assume to be log-

normally distributed with covariance matrix V. The Value at Risk of

the portfolio is de�ned to be the number K such that

(2.1) Prob (�(0)� �(t)) � K = " ;

where " is a small number (typically 0.05), and t is a small time window

(i.e., 1 day).

In this paper we consider only portfolios that are smooth over

time horizons of interest. This includes most traded securities with

some exceptions as, for instance, barrier options when the price of the

underlying is near the barrier. To apply our methods, a split of the

portfolio into a regular and a singular sub-portfolio is necessary if such

singular securities are present.
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To leading order in time, we approximate the value of the portfolio

by today's deltas and gammas,

�0 = rS� =
� @�
@S1

; : : : ;
@�

@Sn

�
;

and

�0 = HessS� =
n @2�

@Si @Sj

o
;

in the sense that, in the near future t,

(2.2) �(t) � �(0)+�0�(S(t)�S(0))+
1

2
(S(t)�S(0))��0�(S(t)�S(0))y :

Our assumption on log-normality means that

S(t) = (S1(0) e
�1 ; : : : ; Sn(0) e

�n) ;

with E = (�1; : : : ; �n) a normally distributed random vector,

(2.3) Prob fE 2 
g = ��n=2
Z



e�(x�m)V�1(x�m)t dx
p
detV

:

Taylor-expanding the exponential, (2.2) becomes

(2.4)

�(t) = �(0) +

nX
i=1

Si(0)�
i

0

�
�i +

1

2
�2i

�
+
1

2

X
i;j

Si(0)Sj(0) �i �j �
i;j

0 +O(jEj3)

= �(0) + � �E +
1

2
E � � �Et ;

where

(2.5) �i = Si(0) ��i

0 ; �i;j =

(
Si(0)Sj(0) �

i;j

0 ; if i 6= j ;

S2
i
(0) �

i;i

0 +�i ; if i = j :

According to this approximation, the Value at Risk K of the portfolio

(2.1) can be approximated by the number K 0 such that

Prob
n
� �E +

1

2
E � � �Et � �K 0

o
= " ;
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which, using (2.3), becomes

��n=2
Z
x��+(1=2)x�xy��K0

e�(x�m)V�1(x�m)t dx
p
detV

= " ;

or

��n=2
Z
x��0+(1=2)x�xy�K00

e�xV
�1

x
t dx
p
detV

= " ;

for

�0 = �+m� ;

K 00 = �K 0 �m ���
1

2
m�mt :

Hence, the goal of this paper is to produce an e�cient scheme to com-

pute multidimensional integrals of the type

(2.6) I0(K) =

Z
x��+(1=2)(x;�x)�K

e��(x;Ax) dx :

Here, A is a symmetric positive de�nite matrix, while � is just symmet-

ric. We shall assume that � is non-singular as this is the generic case;

the singular case can be reduced to this, plus explicit erf terms.

3. Diagonalizations.

Lemma 1. We have that

p
det A I0(K) = 1�

s
det
� A

j�j

�
I(K) ;

where

I(K) =

Z
jx+j2�jx�j2�K

e��((x�v);D(x�v)) dx ;

with K, v and D de�ned below.

Proof. The matrices A and � are as follows. A is symmetric positive

de�nite, with diagonal form given by

A = Q�1 M Q ;



Harmonic analysis in value at risk calculations 201

where Q is orthogonal and

M =

0@ a1
. . .

an

1A :

We have that

(x; A x) = (Q x; M Q x) :

� is symmetric non-singular. The matrix and the vector

�0 = M �1=2 Q �Q�1 M �1=2 ; �0 = M �1=2 Q�1 � ;

are such that

(x;�x) = (M 1=2 Q x;�0 M 1=2 Qx) ; � � x = �0 M 1=2 Q x :

In terms of these matrices, the integral in (2.6) is given by

I0(K) =
1

p
detA

Z
�0x+(1=2)(x;�0x)�K

exp (�� kxk2) dx :

Let S be the orthogonal transformation which diagonalizes �0, i.e.

�0 = S�1L S

and let �00, D be such that

(x; x) = (
p
jLj Sx; D

p
jLj Sx) ; �0 � x = �00

p
jLj Sx ;

i.e.

D = jLj�1 ; �00 = jLj�1=2 S�1�0 = jLj�1=2 S�1M �1=2 Q�1 � :

We have that

I0(K) =
1

p
det�

Z
�00�x+(x;(L=jLj)x)�K

exp (�� (x; D x)) dx :

Setting

v =
1

2

L

jLj
�00 ; K = K � (v; v) + �00v ;
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and shifting coordinates, we arrive at an integral of the form

I0(K) =
1

p
det�

Z
jx+j2�jx�j2�K

exp (�� (x� v; D (x � v))) dx :

where the vector x = (x�; x+) is split into the components along the

eigenspaces of L=jL j.

4. The positive de�nite case.

The goal is to compute the integral

(4.1) I(R2) =

Z
jxj2�R2

e��(x�v)D(x�v)
t

dx ;

when D is an d � d positive de�nite matrix. We denote its (positive)

diagonal elements by j , j = 1; : : : ; d.

The expansion of the Bessel function

Jd=2(2 z)

jzjd=2
cos (2w) =

X
k;j

ak;j z
2k w2j :

has coe�cients

ak;j =
(�1)k+j 22j

k! (2 j)! �
�
k + 1 +

d

2

� :
Note that we haveX

k;j

jak;jj z2k w2j =
Id=2(2 z)

jzjd=2
cosh (2w) ;

where In=2 denotes the modi�ed Bessel function. We will also need the

related hypergometric functions

B(z; w) =
X
k;j

jak;jj zk wj =
Zd=2(2 z)

jzjd=4
C(2w) ;

where

Zd=2(2 z) =

(
Id=2(

p
2 z ) ; if z > 0 ;

Jd=2(
p
2 jzj ) ; if z < 0 ;

C(2 z) =

(
cosh (2

p
z) if z > 0 ;

cos (2
p
jzj) if z < 0 ;
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and eB(z; w) =X
k;j

jak;j+1j zk wj =
Zd=2(2 z)

jzj
d

4

C(2w)� 1

w
:

The only property we will use for these functions is that they are

bounded for negative arguments and grow at most exponentially for

positive arguments.

Lemma 2. De�ne

N(�; �) = 1+ i � D + i � D 1=2 vt v D 1=2 ;

f(�; �) =

Z
Rd

e���N(�;�)�
t

d� = (detN(�; �))�1=2 :(4.2)

We have

I(R2) = �d=2
X
k;j=0

Rn+2k (� i)k+j akj
@k

@�k

���
�=0

@j

@�j

���
�=0

f(�; �) :

The Fourier transform of the characteristic function of a ball is a

Bessel function. Therefore, using Parseval's identity, in dimension n we

have

I(R2) =

Z
jxj�R

e��(x�v)D(x�v)
t

dx

= Rd

Z
Rd

Jd=2(2�R j�j)
jR�jd=2

e��(�;D
�1

�) cos (2� � � v)
d�

p
det� D

=

1X
k;j

Rd+2k �k+j akj

Z
Rd

j�j2k (� � v)2j e��� D
�1

�
d�

p
det� D

:

Since

(v � �)2 = �t vt v � ;

we have thatZ
Rd

j�j2k (� � v)2j e��� D
�1

� d�

= (�i)�k�j
@k

@�k

���
�=0

@j

@�j

���
�=0

Z
e���(D

�1+i�+i�vtv)� d�

= �d=2 ik+j
@k

@�k

���
�=0

@j

@�j

���
�=0

(det (D �1 + i �+ i � vt v))�1=2 :
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The function f is smooth since the real part of N is positive. f can easily

be computed using the following elementary result in linear algebra.

Lemma 3. Let j > 0 be the eigenvalues of D , for j = 1; : : : ; d, and

v 2 Rd . Then, for �, � 2 C we have

det (1 + � D + � D 1=2 vt v D 1=2) =
� dY
j=1

(1 + �j)
��

1 +

dX
j=1

� j jvj j2

1 + �j

�
:

Proof. For w 2 Rd , we have

det (1+ wt w) = 1 + jwj2:

This follows simply by rotating v with a unitary U so it is of the form

(jwj; 0; : : : ; 0), for which the claim is obvious.

We �nd

det (1+ � D + � D 1=2 vt v D 1=2)

= det (1+ � D ) det (1+ � (1+ � D )�1=2 D 1=2 vt v D 1=2 (1+ � D )�1=2)

=
� dY
j=1

(1 + �j)
��

1 +

dX
j=1

� jjvj j2

(1 + �j)

�
:

Lemma 4. The function f(�; �) can be extended as an analytic func-

tion to the domain

Q = f(�; �) 2 C 2 : Im�maxj + Im� vD vt < 1g :

Proof. Modify (4.2) to

(4.3) f(�; �) =

Z
Rd

exp (�� � � (1+ i � D + i � D 1=2 vt v D 1=2) � �t) d� ;

for complex � and �. Since

� D �t � j�j2 max
j

j ; � D 1=2 vt v D 1=2 �t � j�j2(v D vt) ;

we see that the integral de�ning f in (4.3) is absolutely convergent for

all � and � in Q.
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Lemma 5.

jf(�; �)j � jRe�j�(d�1)=2 (det D )�1=2 (jRe�j+ jRe �j jvj2)�1=2 ;

where (�; �) 2 D.

Proof. Let A and B be positive de�nite matrices.Z
Rd

e���A �
t

e�i�B �
t

d� =
e�id=4p
det (A B )

Z
Rd

e���A
�1

�
t

e�i�B
�1

�
t

d� :

Hence,

(4.4)

��� Z
Rd

e���A�
t

e�i�B�
t

d�
��� � (det(A B ))�1=2

Z
Rd

e���A
�1

�
t

dx

= (det B )�1=2 :

We apply this to (4.3) with

A = 1� (Im�) D � (Im�) vt v ;

B = � D + t vt v ;

� = Re� ; t = Re � ;

to obtain

jf(�; �)j � (det (j�j D + jtj vt v D ))�1=2

= j�j�d=2 (det D )�1=2 det
�
1 +

jtj
j�j

vt v
��1=2

:

We use Lemma 3 to compute the last determinant above and conclude

that

jf(�; �)j � j�j�d=2 (det D )�1=2
�
1 +

jtj
j�j

jvj2
��1=2

;

as claimed.

It can easily be seen using stationary phase estimates that the

bound in the lemma above is sharp. An immediate consequence of this

result is that the function f is integrable in � but not in �.
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Lemma 6. Fix constants T < kD k�1 , and U , V such that U kD k +
V v D vt < 1. then,Z 1

�1

jf(�+i T; 0)j d� <1 ;

Z 1

�1

Z 1

�1

���@f
@�

(�+i U; t+i V )
��� d� dt <1 :

Proof. It is enough to establish the integrability of f and f� at in�nity,

since they are bounded inside D. Thus the �rst bound follows from

Lemma 5. For the second, just note that by Lemma 3 the determinant

function is linear in �. Hence,

(4.5)

@f

@�
= �

i

2
f3(�; �)

dY
j=1

(1 + i � j)

dX
j=1

j jvj j2

1 + i � j

=
i

2

dY
j=1

(1 + i � j)
�1=2

dX
j=1

j jvj j2

1 + i � j�
1 + i �

dX
j=1

j jvj j2

1 + i � j

�3=2 :

Therefore,

���@f
@�

��� � jf j3 v D vt

2min j1 + i � jj

dY
j=1

j1 + i � jj

�
1

2
jf j3 vDvtmax j1 + i � jjd�1

�
v D vt

2 (detD)3=2
max j1 + i � jjd�1

j�j3(d�1)=2 (j�j+ jtj jvj2)3=2
;

which is clearly integrable at in�nity.

Our next target is to rewrite Lemma 2 using the Fourier transform

of f . De�ne

F (b�; b�) = Z
R2

e�2�i(b��+
b��) @f

@�
(�; �) d�d� ;

G(b�) = Z
R

e�2�ib�� f(�; 0) d� :
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Both are well de�ned due to Lemma 6.

Lemma 7 (Paley-Wiener). Let " > 0.

jF (b�; b�)j � C" e
�2�(c1jb�j+c2jb�j) ; jG(b�)j � C" e

�2�(c1jb�j) ;

where

c1 =

(
kDk�1 � " ; if b� < 0 ;

arbitrarily large ; if b� > 0 ;

c2 =

(
v D vt � " ; if b� < 0 ;

arbitrarily large ; if b� > 0 :

Proof. Let �; � 2 Q, with � = �1 + i �2 and � = �1 + i �2. By

Cauchy's formula,

F (b�; b�) = Z +1+i�2

�1+i�1

Z +1+i�2

�1+i�1

e�2�i(�b�+�
b�) @f

@�
(�; �) d�d�

= e2�(�2 b�+�2
b�)

Z +1

�1

Z +1

�1

e�2�i(�1b�+�1
b�)

�
@f

@�
(�1 + i �2; �1 + i �2) d�1 d�1 :

Therefore,

jF (b�; b�)j � e2�(�2 b�+�2
b�)

Z
R2

���@f
@�

(�1 + i �2; �1 + i �2)
��� d�1 d�1 :

If b� < 0, we use Lemma 6, with any 0 � �2 < kDk�1. If b� > 0, we

can use the previous argument with any negative �2. Same thing for

�. Same thing for G.

Lemma 8. G(b�) = 0 when b� � 0. Also,

(4.6) G(b�) = (�2 b�)d=2�1
p
det D

Z
n2Sd�1

exp (2� b� (n; D�1n)) d� ; b� < 0 ;

where d� denotes the usual surface measure on Sd�1.
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Proof. First G. Let � 2 C1
0

I �
Z
R

G(b�)�(b�) db�
=

Z
R

Z
R

e�2�i�b� f(�; 0) d�db�
=

Z
R

Z
R

Z
Rd

e��j�j
2

e�2�i�b� e��i��D�
t

�(b�) d� d� db�
=

Z
R

Z
Rd

e��j�j
2

e��i��D�
t b�(�) d� d�

=

Z
Rd

e��j�j
2

�
�
�
1

2
� D �t

�
d� :

The substitution � = � D 1=2 leads to

I =
1

p
det D

Z
e��(�;D

�1
�) �

�
�
1

2
j�j2

�
d�

=
1

p
det D

Z 1

0

Z
n2Sd�1

do(n) e��r
2(n;D�1n) �

�
�
1

2
r2
�
rd�1 dr :

By substituting r with � = r2=2, we �nd that

I =
1

p
det D

Z 1

0

Z
Sd�1

e�2��(n;D
�1
n) �(�b�) (2 b�)(d�1)=2 d�(n) db�

p
2 b� :

Let us introduce the polar coordinate in the (b�; b�) plane
b� =qb�2 + b�2 ; b� = � + tan�1

� b�b�� ;
where the arc-tangent is taken with values in (��=2; �=2) and the angleb� is de�ned with a shift of � to keep notation simple in what follows.

Lemma 9. The function F (b�; b�) has support in the sector

0 � b� � tan�1 kvk2 :

Inside this sector, we have that

(4.6) F (b�; b�) = �
4� i

p
det D

b� d (2 cos b�)d�1s tan b�
kvk2 � tan b� m(b�; b�) ;
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where

(4.7) m(b�; b�) = Z
�
b�

e�2�b� cos
b�(n;D�1n) d��

b�

;

�
b�
is the sphere

(4.8) �
b�
=
�
n : knk2 = 1 and v � n =

p
tan b� 	 ;

and d��
b�

is the surface measure on ��.

Proof. Denote w =
p
D v.

I �
ZZ

F (b�; b�)�(b�; b�) db�db�
= �� i

Z
(� � w)2e��j�

2j e�2�i(�b�+�
b�) e��i�(�D+�w

t

w)�t

� �(b�; b�) db�db� d�d� d�
= �� i

Z
(� � w)2e��j�

2j e��i�(�D+�w
t

w)�t b�(�; �) d�d� d�
= �� i

Z
(� � w)2 e��j�

2j �
�
�
1

2
� D �t ;�

1

2
(w � �)2

�
d�

In terms of the new coordinate � = � D 1=2 , we �nd that

I = �
� i

p
det D

Z
Rd

(v � �)2 e��(�;D
�1

�)�
�
�
1

2
�2;�

1

2
(v � �)2

�
= �

� i
p
det D

Z 1

0

dr

Z
n2Sd�1

d�(n) rd+1 (v � n)2 e��r
2(n;D�1n)

� �
�
�
1

2
r2;�

1

2
r2 (v � n)2

�
:

In polar coordinates,

b� = 1

2
r2
p
1 + (v � n)2 ; b� = tan�1(v � n)2 ;

and the function

 (b�; b�) = �(b�(b�; b�); b�(b�; b�)) :
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We have that

I = �
� i

p
det D

Z 1

0

dr

Z
n2Sd�1

d�(n) rd+1 (v � n)2 e��r
2(n;D�1n)

�  (b�; tan�1(v � n)2) :
The unit sphere Sd�1 = fn : jnj2 = 1g intersects the plane of equation
v � n =

p
tan b� on a codimension 2 sphere �

b�
, (which might degenerate

to a point or be empty). The points of �
b�
have the form

n =
p
tan b� v

jvj2
+ � ;

with

� � v = 0 :

Hence, the radius is s�
1�

tan b�
kvk2

�
+
;

and the (d� 2)-dimensional volume of such set is

2�d=2�1

(d� 2) �
�d
2
� 1
� �1� tan b�

kvk2
�d=2�1
+

:

The co-area formula (see Chavel [Cha]) for spheres reads as follows

Z
n2Sd�1

f(n) d�d�1 =

Z 1

�1

Z
n�v0=t

n2Sd�1

f(n) dAt

dt
p
1� t2

; v0 2 Sd�1 ;

where dAt is the (d � 2)-dimensional surface measure on that sphere.

In our context, v0 = v=kvk and this formula implies that

Z
n2Sd�1

f(n) d�d�1 =

Z kvk

0

d
p
tan b�q

kvk2 � tan b�
Z
�
b�

f(n) d��
b�

:
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Thus,

I = �
�i

p
det D

Z 1

0

dr rd+1
Z kvk

0

tan b� d
p
tan b�q

kvk2 � tan b�
�  (b�; b�) Z

n2�
b�

e��r
2(n;D�1n) d�

b�

= �
� i

p
det D

Z 1

0

db�Z kvk

0

d
p
tan b�q

kvk2 � tan b�
� (2 b� cos b�)d+1 tan b�m(b�; b�) (b�; b�)

= �
�i

p
det D

Z 1

0

db�Z tan�1 kvk2

0

db� (2 b� cos b�)d+1ptan b�
cos2 b�qkvk2 � tan b�

�m(b�; b�) (b�; b�) ;
where m(b�; b�) is the function de�ned in the statement of the lemma.

Since

I =

Z 1

0

Z
�

��

F (b�; b�) (b�; b�) b� db�db� ;
we conclude that F is supported on the sector

suppF = f(b�; b�) : jb�j � tan�1 kvk2g ;

and

F (b�; b�) = �
4� i

p
det D

b� d (2 cos b�)d�1s tan b�
kvk2 � tan b� m(b�; b�) :

Lemma 11.

I(R2) = Rd=2
�Z 0

�1

db� Jd=2(2R�pjb�j )G(b�)
(2 jb�j)d=4

+ � i

Z 0

�1

db� Z 0

b� tan�1 kvk2
db� Jd=2(2R�pjb�j )F (b�; b�)

(2 jb�j)d=4
�
cos (2�

q
2 b�)� 1

2�2b�
�
:



212 C. Albanese and L. Seco

Proof. Lemma 7 allows us to continue Lemma 2 as

I(R2) = �d=2
X
k

Rd+2k (� i)k ak;0

Z
R

(2� i b�)kG(b�) db�
+ �d=2

X
k;j

Rd+2k (� i)k+j+1 ak;j+1

�
Z
R2

(2� i b�)k (2� i b�)j F (b�; b�) db�db� :
= �d=2

Z
R

X
k

Rd+2k (�2�2)k ak;0 b�k G(b�) db�
+ �d=2

Z
R2

X
k;j

Rd+2k (�2�2)k+j+1 ak;j+1 b�k b�j F (b�; b�) db�db�
= Rd �d=2

Z
R

X
k

(�2R2 �2 b�)k ak;0 F (b�; b�) db�
+Rd �d=2

Z
R2

X
k;j

(�2R2 �2 b�)k (�2�2 b�)j ak;j+1 F (b�; b�) db�db�
= Rd �d=2

Z
R

X
k;0

(2R2 �2 b�)k jak;0jG(b�) db�
+Rd �d=2

Z
R2

X
k;j

(2R2 �2 b�)k (2�2 b�)j jak;j+1jF (b�; b�) db�db� :
= Rd �d=2

�Z
R

Z(4R2 �2 b�)G(b�) db�
+

Z
R2

eB(4R2 �2 b�; 4�2 b�)F (b�; b�) db�db��
and the last integral converges unconditionally due to the growth prop-

erties of B, in conjunction with Lemma 7.

Lemma 12. We have that

I(R2) = Rd=2

1X
j=0

1

j!

Z 0

�1

Jd=2(2R�
p
jb�j)

(2 jb�j)d=4 H(j)(b�) db� ;
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where

H(j)(b�) = (2�)2j (�2 b�)(d+j)=2�1
p
det D

�
Z
n2Sd�1

(n � v)j exp (2� b� (n; D�1n)) d�(n) ;
with b� < 0.

Proof. We have that

H(j)(b�) = i 23j�1 �2j�1
Z 0

b� tan�1 kvk2
db� F (b�; b�) b�j�1 :

Hence

Ij �
Z 1

�1

db�H(j)(b�)�(b�) = (2�)2j
Z
d� (� �w)2j e��j�

2j �
�
�
1

2
� D �t

�
:

where w =
p
D v. Proceeding as in the proof of Lemma 10, we make

the substitution � =
p
D � and obtain

Ij =
(2�)2j
p
det D

Z
(� � v)j e��(�;D

�1
�) �

�
�
1

2
j�j2

�
d�

=
(2�)2j
p
det D

Z 1

0

rj+d�1 dr

Z
n2Sd�1

d�(n) (n � v)j

� e��r
2(n;D�1n) �

�
�
1

2
r2
�
:

By substituting r with � = r2=2, we �nd that

Ij =
(2�)2j
p
det D

Z 1

0

Z
Sd�1

(n � v)je�2��(n;D
�1
n)

� �(�b�) (2 b�)(j+d�1)=2 db�
p
2 b� d�(n) :
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5. The hyperbolic case.

The hyperbolic case can be reduced to the positive de�nite case,

via spherical convolutions.

We will use the following elementary identities

d

dr

Z
jxj�r

f(x) dx =

Z
jxj=r

f(�) d� ;

andZZ
jxj2�jyj2�R

'(x; y) dx dy =

Z 1

0

Z
jyj=r

Z
jxj�R+r2

'(x; y) dx d�(y) dr :

We apply these identities to I with the notation of Lemma 1 (namely

n = n1 + n2), to obtain

I(K) =

Z
jx�v1j2�jy�v2j2�K

e�(x;D1x)�(y;D2y)

=

Z 1

0

Z
jy�v2j2=r2

e�(y;D2y)
Z
jx�v1j2�r2+K

e�(x;D1x) dx d�(y) dr

=

Z 1

0

I1(r
2 +K)

@

@r
I2(r

2) dr :

(5.1)

Here, the integrals I1 and I2 are both of the positive de�nite type,

with matrices D 1 and D 2 respectively, and o�set vectors v1 and v2,

in dimension n1 and n2. We can therefore deal with the methods in

the preceeding section. In particular, let H
(j)
1 (b�) and H(j)

2 (b�) be the
functions associated to the integrals I1 and I2, respectively, and let

Hi(b�) = 1X
j=0

1

j!
H

(j)

i
(b�) :

where i = 1; 2, so that

Ii(R
2) = Rni=2

Z 0

�1

Jn1=2(2�R
p
jb�j)

(2 jb�j)ni=4 H(b�) db� :
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Equation (5.1) then implies that

I(K) =

Z 1

0

I1(r
2 +K)

@

@r
I2(r) dr

=

Z 1

0

ZZ
R2
�

(r2 +K)n1=4
Jn1=2(2�

p
(r2 +K) jb�1j )

(2 jb�1j)n1=4 (2 jb�2j)n2=4
� @r(rn2=2 Jn2=2(2� r

p
jb�2j ))H(b�1)H2(b�2) db�1 db�2

= 2�n=4
Z

�(b�1; b�2)H1(b�1)H2(b�2) db�1 db�2 ;
where

�(b�1; b�2) = Z 1

0

(r2 +K)n1=4
Jn1=2(2�

p
(r2 +K) jb�1j )

jb�1jn1=4 jb�2jn2=4
� @r(rn2=2 Jn2=2(2� r

p
jb�2j )) :

6. Feynmann expansion for moments.

It will su�ce to consider the positive de�nite case. To compute

the functions H(j)(b�) one can make use of the following ans�atze which

satisfy the asymptotic properties of the exact functions

(6.1) H(j)(b�) � (�2 b�)d=2�1P (j)(b�) e�mb� ;

where m = 2� inf �(D�1) and the P (j)(b�) are polynomials of the form
(6.2) P (j)(b�) = nX

k=0

c
(j)

k
b�j :

To estimate the coe�cients in the polynomials, one can match moments.

Let

B = i � D + i � kvk2 D 1=2 Pv D 1=2 :
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To compute the determinant det (1 + B ), we can use a Feynmann ex-

pansion.

(6.3)

det(1 + B ) = exp (Tr log (1 + B ))

= exp (Tr

1X
k=1

(�1)k�1

k
B k )

= exp
� 1X
k=1

(�1)k�1

k
Tr B k

�

=

1X
n=0

1

n!

� 1X
k=1

(�1)k�1

k
Tr B k

�n
= 1 + Tr B +

�
�
1

2
Tr B 2 +

1

2
(Tr B )2

�
:

+
�2
3
Tr B 3 � (Tr B )(Tr B 2) +

1

3
(Tr B )3

�
+
�
�
3

2
Tr B 4 +

3

4
(Tr B 2)2 + 2Tr B Tr B 3

�
3

2
(Tr B )2 Tr B 2 +

1

4
(Tr B )

�
+ � � �

Traces of powers of B are given by

(6.4) Tr (B k ) = ik
� (v; D kv)

kvk2
((�+ � kvk2)k � �k) + �k Tr D k

�
;

where we use the fact that the projection operator Pv is nilpotent.

Here are some moments computed by means of this formulaZ
db�H(0)(b�) = 1 ;

Z
db� b�H(0)(b�) = �

1

2
Tr D ;

Z
db� b�2H(0)(b�) = 1

2
Tr D 2 +

1

4
(Tr D )2 ;Z

db�H(1)(b�) = �
1

2
Tr D ;
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db� b�H(1)(b�) = 1

4
Tr D (v; D v) +

1

2
(v; D 2v) ;

Z
db� b�2H(1)(b�) = �

19

8
Tr D (v; D v)2 �

3

2

(v; D 2v)� Tr D (v; D v))

(v; D v)

�
3

4
Tr D ((v; D 2v) kvk � (v; D v)2)

+
1

2
(v; D 2v) kvkTr D + (v; D v) (v; D 2v)

� (v; D 3v) kvk :

The coe�cients c
j

k
in (6.2) can be computed by matching the momenta

above. This involves solving a linear system. In fact, based on the

ansatz in (6.1) we have thatZ
db� b�nH(j)(b�) � Z db� (�2 b�)d=2�1P (j)(b�) emb�

=

nX
k=0

c
(j)

k

Z
db� (�2 b�)d=2�1 b�j emb�

= �
nX

k=0

c
(j)

k
2d=2�1m�d=2�j

Z 1

0

dx xj+d=2�1 e�x

= �
nX

k=0

c
(j)

k
2d=2�1 �

�
j +

d

2

�
m�d=2�j :

7. Conclusions.

In this article, we develop a resummed perturbation expansion for

the calculation of high dimensional Gaussian integrals on sets bounded

by quadrics. Such integrals arise in the calculation of Value at Risk for

large portfolios in the quadratic approximation.

After an initial simultaneous diagonalization of the covariance ma-

trix and of the total gamma of the portfolio, we reduce the calculation

of the Value at Risk to an integral of a Gaussian over a high dimen-

sional quadric. This integral is computed using techniques from har-

monic analysis, which reduce all calculations to the Fourier transform

of quadrics. In the case of positive de�nite Gammas, this reduces to
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explicit Bessel functions; the general case is not much more di�cult.

The asymptotic behaviour of the relevant functions can be computed

analytically up to factors which are smooth and bounded. The mo-

ments of these transforms can be computed by means of a Feynmann

expansion and can be expressed in terms of linear invariants such as

traces and determinants. This yields analytic formulas for the Value at

Risk as a function of the time horizon.

Possible applications of this Fourier transform method that we can

envisage include:

i) Performing real time monitoring of Value at Risk.

ii) Finding the impact of the sale of one single contract to the

global risk exposure in real time, thus permitting to price against the

current holdings.

iii) Identifying the risk factors which are mostly responsible for

large Value at Risk.

iv) Visualizing and monitoring the risk exposure in terms of few

parameters. (The Fourier transform we compute captures all the risk

exposure e�ects in just two variables and contains information about

the interplay between delta risk and gamma risk.)

v) Estimating \Bayesian" Value at Risk by integrating the covari-

ance matrix over the Wishart distribution.

vi) VaR calibration from historical P&L data.

These applications and extensions will be covered in forthcoming

papers.
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