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Multi-multifractal decomposition

of digraph recursive fractals

Dominique Simpelaere

Abstract. In many situations, both deterministic and probabilistic,

one is interested in measure theory in local behaviours, for example in

local dimensions, local entropies or local Lyapunov exponents. It has

been relevant to study dynamical systems, since the study of multifrac-

tal can be further developped for a large class of measures invariant

under some map, particularly when there exist strange attractors or

repelers (hyperbolic case). Multifractal refers to a notion of size, which

emphasizes the local variations of the weight of a measure, of the en-

tropy or the Lyapunov exponents. All these notions are explicited in

the case of digraph recursive fractal studied by Edgar & Mauldin where

some questions are given. We study the extremal measures and intro-

duce the notion of multi-multifractality which may be useful in problems

of rigidity.

1. Introduction.

In many situations implicated the dimension of measures, singular

measures are investigated, and more precisely how densely the singu-

larities of a measure are distributed.

Let (X; d) be a compact metric space and � be a Borel probability

measure. The decay rates of the measure � of small balls are determined

in order to de�ne local dimensions. The singularities of the measure �
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are speci�ed by

(1) d
�
(x) = lim

r!0

ln�(B(x; r))

ln r
and d�(x) = lim

r!0

ln�(B(x; r))

ln r
;

and when d
�
(x) = d�(x) = d�(x) , the measure � has pointwise di-

mension d�(x); and it is said that � is exact dimensional [Si1], [Y] if

for � almost every point x we have d�(x) = d� = constant.

Even for nice measures, it is not expected that this pointwise di-

mension exists or the measure � to be exact dimensional [LM], [S]. The

singularity sets are then de�ned for any real number � � 0 by

(2)

C�
�
= fx 2 X : d

�
(x) = �g ;

C+
�
= fx 2 X : d�(x) = �g ;

C� = C+
� \ C

�

� ;

which is called the multifractal decomposition.

This concept �rst appeared in a paper of physicists [HJKPS] where

it was suggested to study the so-called dimension spectrum f(�), i.e.

(3) f(�) = HD(C�) and f(�) � �1 ; if C� = ? :

There exist many de�nitions of dimension [F2], [P2]: Packing-dimen-

sion, Box-dimension : : : For theoretical purposes the Hausdor� dimen-

sion is prefered: for any Borel set A and any positive real number � ,

put

HD�;"(A) = inf
A�[Ai

jAij<"

nX
i�0

jAij
�

o
and

HD� (A) = lim
"!0

HD�;"(A) 2 [0;+1] :

We obtain �nally the Hausdor� dimension (which derives from a mea-

sure) by the following

HD(A) = sup f� : HD� (A) = +1g = inf f� : HD� (A) = 0g ;

and the Hausdor� measure of A is the value HDHD(A)(A) 2 [0;+1].

We de�ne the dimension of a Borel measure � by

HD(�) = inf fHD(A) : A a Borel set and �(A) = 1g :
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In fact it has been found relevant information in a large class of mea-

sures, namely dynamical systems (X;�; T ) where the map T : X  -

is ergodic and the measure � is T -invariant. The �rst rigorous re-

sult [CLP] was the multifractal analysis of C2 one-dimensional Markov

maps. Many articles appeared on this subject: [R] for Cookie-cutters,

[Lo] for hyperbolic Julia sets, [Si1] for Axiom A surface di�eomor-

phisms. Other models have been developped: multiplicative chaos (tree

structure) which is a model of the phase transition of a system with

random interactions in physics and chemistry, in polymers, turbulence,

thermodynamics, rainfall distribution { random measures with �xed

supports [HW] or with random supports [F1]; iterated function sys-

tems [BPS1], [BPS2], [BMP], [CM], [CLP], [EM], [K], [Lo], [O1], [O2],

[Si1]. There are now many references that may be found in particular

in [P2], especially in the very well-known case of self-similarity for sets

or measures [Mo], [MR].

One physical motivation is when ergodic-time averages along the

process converge to a measure � := limn!+1(1=n)
Pn�1

i=0 �T i(x) which

describes the occupation of the attractor under iterations of T . This

measure � is the one that can be seen on the screen when computing

the iterates of a point under the dynamical system. This is the case

for SBR (Sina��-Bowen-Ruelle) measures of di�eomorphisms of smooth

Riemannian manifolds which contain a compact hyperbolic attractor

� of T . The limit measure � has absolutely continuous conditional

measures on unstable manifolds [HY], and the measure � describes the

orbit distribution of points in a basin B � �. Clearly, one sees how

densely the singularities of � are distributied { areas are darker and

darker when there are more and more visits.

Most of the measures in the literature are equilibrium measures {

Gibbs measures { and therefore are very common and typical in physics.

In some cases explicit formulae can be obtained [BPS1], [BPS2], [R],

[Si1], and in all the cases the dimension spectrum f is proved to be real

analytic.

A new approach is suggested when looking at the distribution along

orbits. We de�ne for any x 2 X and any integer q � 2 the quantity

[GHP], [HP], [P1], [PT],

C(x; q; r; n) =
1

nq
#f(i1; : : : ; iq) : d(T

ij (x); T ik(x)) < r

for 0 � ij < ik < ng :
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If the measure � is ergodic, we have for � allmost every x,

lim
n!+1

C(x; q; r; n) =

Z
X

�(B(y; r))q�1 d�(y) :

Provided the limit exists, we de�ne the HP spectrum

(4)

(1� q)Cq(x) = lim
r!0

lim
n!+1

lnC(x; q; r; n)

ln r

� a.e.
=

ln
�Z

X

�(B(y; r))q�1 d�(y)
�

ln r
:

In [O1], [O2], [P1], [Si2] this function is generalized to real numbers and

is called the correlation dimension,

C(�) = lim
r!0

ln
�Z

X

�(B(y; r))� d�(y)
�

ln r
; for all � 2 R ;

provided the limit exists, which is for � = 1 the average of the singu-

larities of � [Si2].

This function can be seen in the following way (order two approach)

suggested by D. Ruelle and described in [P1]. Consider the product

metric space Y = X �X equipped with the metric

d0((x1; y1); (x2; y2)) = d(x1; y1) + d(x2; y2)

and de�ne the direct product measure � = �� �: De�ne the diagonal

D = f(x; x) 2 Y g and for r > 0 ; Dr = fy 2 Y : d0(y;D) < rg :

We then obtain

�(Dr) =

Z
X

�(B(x; r))�(dx) ;

and therefore we have

ln �(Dr)

ln r
=

ln

Z
X

�(B(x; r))�(dx)

ln r
�!
r!0

C(1) :

This function C plays an important role in the numerical investigation

of some models and the procedure is simple and runs fast [GHP], [P1].
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In multifractal analysis there are two methods: the �rst one comes

from the theory of operators (Perron-Froenius) and gives the existence,

uniqueness and regularity of the solution [EM]. The other one is based

on large deviations and thermodynamics, and leads to explicit formulae

[CLP], [Si1]. The latter is described in the following.

Using large deviations and under suitable assumptions, we have the

multifractal formalism, i.e. the dimension spectrum f is the Legendre-

Fenchel transform of a function F , called free energy function, concave

and at least C1; i.e.

(5) f(�) = inf
t2R
ft �� F (t)g ;

where F is derived from a sequence of partition functions fZngn�1

(6) F (�) = lim
n!+1

�
1

n
lnb(�;n) Zn(�) (:= Fn(�)) ; for all � 2 R :

These partition functions are de�ned by the following

(7) Zn(�) =
X
U2Qn

�(U)>0

�(U)� ; for all � 2 R ;

where fQngn�1 is a well chosen sequence of partitions (typically the

Markov partition fPngn�1 generated by the dynamics and the iterates

under T [Bo], [Ru]) whose diameters tend to 0 when n goes to +1 (for

b(n(�)) see (31) and (32)).

There is another intrinsic free energy function [CLP], [RU], [Si1]

associated to the Markov partition fPngn� 1 de�ned on R
2 by (see

Theorem A and (35))

(8) GD(x; y) = lim
n!+1

1

n
lnG

(n)

D
(x; y) ; for all (x; y) 2 R2 ;

with

G
(n)

D
(x; y) =

X
A2Pn

�(A)x jAjy ; for all (x; y) 2 R2 :

For these thermodynamic quantities it is proved that [O1], [O2], [Si2]

C(�) = F (�) + 1 ; for all � 2 R ;
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and this equality holds if and only if F can be associated to a sequence

of uniform partitions. It is also proved that [CLP], [Si2]

HD(�) = inf fHD(A) : A a Borel set and �(A) = 1g = d� = F 0(1) :

The main result in multifractal analysis is the following: f is smooth

(real analytic or C1) and strictly concave on an interval ]�min; �min[�

R
+� and is the Legendre-Fenchel transform of a function F of same

regularity, except in the degenerate case where it is de�ned at one point

(this case can be described).

There exist also multifractal decompositions for (Kolmogorov-Si-

na��) entropy and Lyapunov exponents { decompositions into level sets.

For the entropy spectrum, let f�g be a generating partition, i.e.

if B(X) is the Borel algebra, then B(X) =
W
i�0 T

�i(�)� mod0 (for

example the Markov partition) and �n(x) be the element of the partition

�n at rank n,

�n =

n�1_
i=0

T�i(�) ;

which contains the point x: Then de�ne local entropy,

(9) h�(x) = h�(x; �; T ) = lim
n!+1

�
1

n
ln�(�n(x)) ;

provided the limit exists (it exists for � almost every point x in the

ergodic case), and for � almost every point x, h�(x) = h� (� is exact

for the entropy in the ergodic case), the entropy of the dynamical system

(the exact value).

We de�ne the level sets for entropy for any real � � 0 by

(10) E(�) = fx : h�(x) = �g and En(�) = HD(E(�)) ;

which is the entropy spectrum.

For the local Lyapunov exponent, let M be a smooth manifold,

T : M  - a C2 conformal expanding map leaving invariant a compact

subset � of M: Let � be a T -invariant probability measure on �. We

have for any tangent vector
!
v 2 Tx(�),

(11) �
�
(x) = lim

n!+1

1

n
ln kdTnx (

!
v )k ;

provided the limit exists (it exists � almost everywhere), and for �

alomost every point x, �(x) = ��, the Lyapunov exponent of the dy-

namical system (the exact value).
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We de�ne the level sets for Lyapunov exponents: for any real # � 0,

consider

(12) L(#) = fx : �
�
(x) = #g and Ly(#) = HD(L(#)) ;

which is the Lyapunov spectrum.

We then have the following multifractal decompositions8>>>>><>>>>>:

� = fx : h�(x) does not existg [ fx : h�(x) = h�gS
�6=h�

fx : h�(x) = �g ;

� = fx : ��(x) does not existg [ fx : ��(x) = ��gS
�6=��

fx : �
�
(x) = �g ;

and the corresponding spectra. Notice that the existence of the exact

values for the di�erent spectra are given by: the Eckmann-Ruelle con-

jecture [BPS1] for dimension, the Shannon-McMillan-Breiman theorem

for entropy and the Kingman theorem for Lyapunov exponents.

Notice that in general we have

HD(fx 2 X : h�(x) does not existg) > 0

and similarly

HD(fx 2 X : ��(x) does not existg) > 0 (= dim(X)) :

Our aim is to answer to questions found in [EM]: completness of the

dimension spectrum (and �nally the other spectra), problems at the

bounds of the interval of de�nition of the spectra, case where the tran-

sition matrix is not irreducible : : :

Results found in [EM] are given in Section 2. We �nd again these

results and generalize them in a di�erent framework (Section 3). Then

using notations and results of Section 3, let us de�ne the following.

In the case of expanding Markov maps, a map T 2 C1+�(�) is

given, and for x 2 �, J(x) = � lnT 0(x) < 0 (2 C�(�)). The T -

invariant measure � is a Gibbs measure associated to the potential

� 2 C�(�) < 0. Since the set � is compact the functions � and J take

their values in compacts sets [a; b] and [c; d] since there are continuous.

For any real number � we de�ne a Gibbs measure �� associated to

the potential �� = � � � F (�)J (and ��1 are limits when � ! �1 ).
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Consider

(13) �min =

Z
�

� d�+1Z
�

J d�+1

= �+1 and �max =

Z
�

� d��1Z
�

J d��1

= ��1 :

We then have the following results.

Theorem A. For any (�; s; t) 2 R3 we have

G(s; t) = P (s � + tJ) ;

F (�) =

h�� + �

Z
�

� d��Z
�

J d��

;

G(�;�F (�)) = 0 ;

and

F (�) = � (�) :

In the degenerate case the di�erent spectra are reduced to points.

Otherwise we can associate a family of probability measures f��g�2R,

and we have the following.

Theorem B. We have in the general case

� C� 6= ? if and only if � 2 [�min; �max] where 0 < �min < �max <

+1.

� For all � 2 [�min; �max] there exists a unique � = f 0(�) 2 R such

that �� is exact dimensional, and

f(�) = HD(C�) = HD(��) = d�� =

Z
�

� � d��Z
�

� J d��

=
h�� (T )

��� (T )
:

� � is exact dimensional : HD(�) = d� = f(�(1)) where �(1) =

F 0(1).
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Theorem C. We have in the general case :

1) For the entropy spectrum (9) and (10) :

� E(�) 6= ? if and only if � 2 [�min; �max] where 0 < �min < �max <

+1.

� For all � 2 [�min; �max] there exists a unique � 2 R such that

� =
R
�
�� d�� = h�� (�� is exact dimensional ), and

En(�) = HD(E(�)) = HD(��) = d�� =

Z
�

� � d��Z
�

� J d��

=
h��
�
��

= f(�) ;

where � = F 0(�).

� � is exact dimensional : for � = h� (� = 1); we have �(E(�)) = 1

and

En(�) = HD(E(h�)) = d� =
h�

�
�

:

2) For the Lyapunov spectrum (11) and (12) :

� L(#) 6= ? if and only if # 2 [#min; #max] where 0 < #min <

#max < +1.

� For all # 2 [#min; #max] there exists a unique � 2 R such that

# =
R
�
�J d�� = �

��
(�� is exact dimensional ), and

Ly(#) = HD(L(#)) = HD(��) = d�� =

Z
�

� � d��Z
�

� J d��

=
h��
�
��

= f(�) ;

where � = F 0(�).

� � is exact dimensional : for # = �
�
(� = 1), we have �(L(#)) = 1

and

Ly(#) = HD(L(�
�
)) = d� =

h�

�
�

:

Theorem D. The extremal measures ��1 are uniform on their Can-

tor-like fractal supports.
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In Section 2 we de�ne the model and the results (theorems 1 and

2) obtained in [EM].

In Section 3 we give a short exposition concerning the thermody-

namic formalism that we use for our computations in the next sections.

In Section 4 we �nd again and generalize the results in [EM] by

proving theorems A and B.

Section 5 deals with the multifractal spectra, entropy and Lya-

punov exponents, which correspond to the level sets (10) and (12), and

we prove Theorem C.

In Section 6 we develop a new concept: multi-multifractality, which

allows us to give answers concerning extremal points (the points ��1)

in a quite simple fashion and we prove Theorem D. In particular we

give some graphs of the functions we have studied.

Section 7 is devoted to discussion and new questions.

2. The model and the operator theory.

We start from a directed multigraph (V;E) [EM]. The set E =

fe1; : : : ; ekg consists of the edges of the graph, and the elements of V =

fu; v; : : : ; wg are the vertices. This graph is supposed to be strongly

connected, that means there is a path from any vertex to any other along

the edges of the path (if not we decompose it into connex components).

Now we de�ne notions of length and measure (mass) in order to

compute local dimensions (1).

A path of length k in the graph is a �nite string

 = e1 e2 � � � ek ;

of edges, and to each edge e correspond a ratio r(e) 2 ]0; 1[ (parameter

of a homethety in Rn), and r() = r(e1) r(e2) � � � r(ek). The subset Euv,

the edges from u to v; is a partition of E for (u; v) 2 V 2. The set E
(k)
uv

is composed of all the paths of length k that start at u and end at v,

E
(k)
u is the set of paths of length k starting at u; and Eu is the set of

in�nite paths starting at u.

For any vertex u 2 V , let Ju be a nonempty compact subset of

R
n . Actually we may assume for simplicity that the diameter of the set

jJuj = 1 for any u 2 E.

A digraph recursive fractal, based on seed set Ju and ratios r(e),
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is the set

(14) Ku =
\
k�0

� [
2E

(k)
u

J()
�
;

where the sets J() are choosen recursively:

i) J(�u) = Ju where �u is the empty path from u to u.

ii) For  of length k with terminal vertex v; the set J() is geo-

metrically similar to Jv with reduction ratio r().

iii) For  of length k with terminal vertex v, the sets J( e), e 2

Ev, are nonoverlapping subset of J() (they intersect at most at their

boundaries: \open set condition").

There are many choices to place the sets J(e) in J(); and for

example consider the \self-similar graph" fractals using similaritiesHe :

R
n �! R

n ; one for each edge e 2 E. De�ne for any  = e1e2 � � � ek 2

E
(k)
uv

J() = He1
He2
� � �Hek

(Jv) ;

where the seed set Jv must be choosen such that iii) is satis�ed.

We now de�ne the measure of Markov type �u on Ku recursively:

we start with �u(Ju) = 1; and the mass is distributed among the subsets

J(e), e 2 E, so that J(e) has mass p(e). Once the mass of a set J() has

been assigned, then it is distributed among the subsets J( e) according

to the values of p(e). With (14) we get �nally a unique probability

measure depending on the choice of the number ((p(e))e2E. As for the

de�nition of r(), we get p() = p(e1) � � �p(ek) for  = e1e2 � � � ek.

It implies that p is de�ned on \cylinders", and then by the Kol-

mogorov consistency theorem a unique measure �u on Ku is de�ned.

Let for (�; k) = (e1e2 � � � ek) the �nite string of length k,

(15)

hu : Eu �! Ku

� 7�!
\
k�1

J(�jk)

(representation of the coding sequences of the trajectories, one-to-one

at least on a set of � measure 1 { the points with more than two

representations have no local dimension). We have � = �u � h
�1
u

where

�u is de�ned on Eu (it is de�ned on the cylinders).
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Let A be the transition matrix associated to the Markov partition

given by the iterations of the sets Jv, v 2 E, by the map H which de-

termines the distribution of the J(v e), e 2 E, inside J(v) (for example

in the case of \self-similar graph fractals", H is composed of similarities

Hv : R
n �! R

n , for each edge v).

De�ne the matrix B,

Buv(�; s) =
X
e2Euv

p(e)� r(e)s ; (�; s) 2 R2

(compare with (35) and the function G
(0)

D
(�; s)), and let �(�; s) be the

spectral radius of B. By the Perron-Frobenius theory of nonnegative

matrices, � is real analytic in both variables, and given any real number

�, there exists a unique real number s =  (�) such that �(�;  (�)) = 1.

We get in particular HD(Ku) =  (0) = d which is independant of u.

Here are the results obtained in [EM].

Theorem 1. The function  is real analytic, strictly decreasing from

+1 to �1 and convex.

Let for any real number �,

(16) � =  0(�) > 0 and f = � �+  (�) ;

and for  = e1e2 � � � ek,

�() =
ln p()

ln r()
=

ln (p(e1) p(e2) � � �p(ek))

ln (r(e1) r(e2) � � � r(ek))

and �min = inff�() :  is a simple cycleg (�max = sup).

Let fxvgv2V be the Perron numbers and consider the pairs

(�v; �v)v2V . We have, for all v 2 V , xv > 0 and for all u 2 V ,X
v2V

X
e2Euv

r(e)d xd
v
= xd

u
;

for all u 2 V , X
v2V

X
e2Euv

P (e) = 1 ;

where P (e) = ��1
u
p(e)� r(e) (�) �v. The real numbers �u de�ne a sta-

tionary distribution for the Markov chain: given Xk = u; the condi-

tional probability that Xk+1 = v is
P
e2Euv

P (e).
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These are the transition probabilities for some stationary measure

on Eu, �
(�)
u , a measure of Markov type de�ned on the cylinders of Eu.

With the map hu it corresponds to a measure �
(�)
u on Ku,

�(�)
u

() = ��1
u
p()� r() (�) �v and �(�)

u
= �(�)

u
� h�1

u
:

We then have de�ned for all u 2 V measures �
(�)
u , � 2 R, on the sets

Eu by its transition probabilities, and therefore measures �
(�)
u , � 2 R,

on the sets Ku, �
(�)
u = �

(�)
u � h�1

u
.

Consider for any u 2 V ,

(17)

8>><>>:
K

(�)
u =

n
x 2 Ku : lim

r!0

ln�u(B(x; r))

ln r
= �

o
;

E
(�)
u =

n
� 2 Eu : lim

k!+1

ln p(�jk)

ln r(�jk)
= �

o
;

then E
(�)
u = h�1u (K

(�)
u ). It is proved that we have for f given by (16)

�(�)
u

(K(�)
u

) = �(�)
u

(E(�)
u

) = 1

and

HD(K(�)
u

) = HD(E(�)
u

) = f = HD(�(�)) = HD(�(�)) :

Finally there are two cases for the multifractal analysis.

Theorem 2.

i) In the degenerate case : for all (u; v) 2 V 2
, for all e 2 Euv,

p(e) = (x�1u r(e)xv)
d
. Then  is linear and for all � 2 R,  (�) =

d (1� �), HD(Ku) = d = d�u and K
(�)
u 6= ? if and only if � = d.

ii) In the nondegenerate case : there exists e 2 Euv, p(e) 6=

(x�1u r(e)xv)
d
. Then  is real analytic and strictly convex ; � is a

strictly decreasing function of �, i.e. � : R �! ]�min; �max[ ; f is

a strictly concave function of � and K
(�)
u 6= ? if and only if � 2

[�min; �max].

3. Thermodynamic formalism.

This is a useful theory developped in [Bo], [Ru]. It allows to trans-

port some problems from the dynamical system (�; �; T ); where T is for
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example a picewise C1+� expanding Markov map [R], onto a symbolic

dynamical system (�+
A
; �; �) by a coding map.

3.1. Symbolic dynamics.

We introduce Markov partitions to make an analogy with the sym-

bolic dynamical systems. In a sense, we replace small balls in the de�-

nition of dimension by small elements of the iterations of this partition

by the expanding Markov map.

Let � be a basic set, a T -invariant compact metric set. A Markov

partition is a �nite cover of � : U0 = (U1; : : : ; Um); consisting of proper

rectangles (compact sets R such that R = int(R)) which satisfy

� int(Ui) \ int(Uj) = ? for i 6= j.

� Each T (Ui) is a union of rectangles Uj .

We can construct Markov partitions of arbitrary small diameter.

We then de�ne the partition at the rank n by

Un =

n�1_
i=0

T�i(U0) :

We associate to this partition the transition matrix A de�ned by

(18) Ai;j =

(
1 ; if T�1(

o

Uj) \
o

Ui 6= ? ;

0 ; otherwise ;
1 � i; j � p ;

which is irreducible (for all (i; j), there exists n such that (An)ij > 0:

you reach any Ui from any Uj).

Consider the subshift of �nite type associated to the matrix A

�+
A
= fx = fxngn�0 2 f1; : : : ;mg

N : Axi xi+1 = 1g ;

which is the set of admissible sequences.

We de�ne the metric on �+
A
(for 0 < � < 1)

d00(x; y) =

(
�k ; if k = sup fj : xi = yi; for all i; 0 � i < jg ;

0 ; if x = y ;
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which is a compact set, and the shift �(x) = y, where for all n 2 N ,

yn = xn+1.

We then de�ne a continuous (Lipschitz) surjection �,

� : �+
A
�! �

x 7�!
\
j�0

T�j(Uxj )

which is one-to-one on the set of points whose trajectories do not in-

tersect the boundaries of the elements of the Markov partition (if not

these points have no local dimension), a set of � measure 1 when �

is a Gibbs measure. Nevertheless, it is bounded-to-one and satis�es

� � �n = Tn � �.

3.2. Thermodynamics.

Let us de�ne the following sets.

� ConsiderM(�) (respectivelyM(�+
A
)) the set of Borel probability

measures de�ned on � (respectively M(�+
A
)).

� LetMT (�) (respectivelyM�(�
+
A
)) be the set of T -invariant Borel

probability measures on � (respectively �-invariant on �+
A
).

� Let C(�) (respectively C(�+
A
)) be the set of continuous functions

de�ned on � (respectively �+
A
) and C�(�) (respectively C�(�+

A
)) be the

set of �-H�older continuous functions.

The pressure of a function ' 2 C�(�) (respectively ' 2 C�(�+
A
))

is de�ned by

(19) P' = PT (') = sup
�2MT (�)

�
h�+

Z
�

'd�
�

(= P�(' � �) = P�(')) ;

and the measures which achieve this supremum are called equilibrium

measures. The entropy h�(T ) { the Kolmogorov-Sina�� entropy of the

map T { is the following: de�ne the set

B(x; n; r) = fy 2 � : d(T i(x); T i(y)) < r ; for 0 � i � n� 1g ;

the set of points that cannot be distinguished from x at the small dis-

tance r after (n� 1) iterations. Then we get for an ergodic T -invariant

probability measure �,

h�(T )
� a:s:

= � lim
r!0

lim
n!+1

1

n
ln�(B(x; n; r)) ;
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which is a nonnegative real number in our case. Notice that the larger

the entropy, the greater the rate of decrease of the indeterminacy of the

dynamical system.

In our case, there exists a unique measure �' (respectively �', �' =

���') which is the Gibbs measure of the potential ' (respectively ').

The map � : (�+
A
; �'; s) �! (�; �'; T ) is an isomorphism of dynamical

systems.

This means that the pullback of any Gibbs measure �' on � is

a Gibbs measure �' on �+
A
: Conversely the pushforward of any Gibbs

measure �' on �+
A
is a Gibbs measure �' on �; and their thermody-

namic quantities are equal: PT (') = P�(' � �); h�'(T ) = h�'(�).

The measure �' is well de�ned on the cylinders which generate the

topology of �+
A
. There exist nonnegative constants c and C such that

(20) c �
�' fy 2 �+

A
: y0 = x0; : : : ; yn�1 = xn�1g

exp
�
� nP' +

n�1X
k=0

'(�k(x))
� � C ;

uniformly in n.

The pressure function P : C�(�+
A
) �! R is real analytic (not true

for arbitrary symbolics). Consider for (�; �) 2 C�(�+
A
)2, the map

(21)
Q : R2 �! R

(x; y) 7�! P (x � + y �) :

It is real analytic in both variables, convex and strictly convex if and

only if the functions � et � are not conjugate to constants c and c0, i.e.

� 6= c+ '� ' � �, ' 2 C�(�+
A
) (respectively � and c0).

Let �
x0�+y0�

be the Gibbs measure of the function x0 � + y0 � 2

C�(�+
A
), then we have [M], [Ma], [MC], [R], [Ru], [Si1]

(22)

8>>><>>>:
@Q

@x
(x0; y0) =

Z
�+
A

� d�
x0�+y0�

;

@Q

@y
(x0; y0) =

Z
�
+
A

� d�
x0�+y0�

:
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4. Dimension spectrum and the thermodynamic theory.

4.1. Idea of the computation.

Consider the Markov partition

Pn =

n�1_
i=0

T�j(P) ;

where P = (K1; K2; : : : ; Kq) (see just below). The idea for computation

of local dimensions (1) is to replace small balls B(x; r) by elements

V = T�n(U) 2 Pn(U 2 P) which are in the set Bn
j(�;n)

(see (29))

which cover at the limit the singularity set C� for � = F 0(�). Those

elements generate a measure �� (of course singular to each other) which

is ergodic. We use the assumptions on T and �:

� For any V = T�n(U) := V (U) 2 Pn there exists an element

y(U) 2 U such that

(23)

jV (U)j = jT�n(U)j

= j(T�n)0(y(U))j jU j

= exp
� n�1X
j=0

J(T j(y(U)))
�
jU j|{z}
�1

(where the sign � expresses that the ratios of both sides are uniformly

bounded by constants), expression which controls the length of V (U):

� Since the measure � is a Gibbs measure we have following (20)

(24) �(V (U)) � exp
� n�1X
j=0

�(T j(y(U))
�
;

expression which controls the mass of V (U).

It follows from the Birkho�'s sums and the ergodicity of the dy-
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namical system that

ln�(B(x; r))

ln r
�

ln�(V (U))

ln jV (U)j

�

1

n

n�1X
j=0

�(T j(y(U)))

1

n

n�1X
j=0

J(T j(y(U)))

�� a:s:

�!
n!+1

Z
�

� d��Z
�

J d��

= �

= F 0(�) ;

which gives the existence and the value of the local dimension for points

covered by the sets of the type Bn
j(�;n) (29). Otherwise it su�ces to

prove for the points which do not have this property that they do not

have local dimension.

Note that it is not always possible to replace balls by elements of

the partition [O2].

4.2. Dimension spectrum.

The Markov measures that are used are in fact a special case of

Gibbs measures. These measures are associated to potentials ' depend-

ing only on the �rst coordinate, i.e. '(x) = g(x0) for x = (xi)i�0. For

this purpose, consider the transfer operator

L' : C�(�+
A
) �! C�(�+

A
)

f 7�!
X

y2��1(x)

exp ('(y) f(y)) ;

and the corresponding operator de�ned on measures L�
'
: M(�+

A
) �!

M(�+
A
).

Then there exist (see [Ru]):
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i) � > 0 (= exp(P ('))),

ii) h 2 C0(�+
A
) such that h > 0,

iii) � 2M(�+
A
),

such that L'(h) = �h, L�
'
(�) = � � and �' = h � 2 M�(�

+
A
)

(d�' = h(x0) d�) which is the Gibbs measure for ' and can be repre-

sented on the cylinder sets by

(25)
�'fy 2 �

+
A
: y0 = x0; : : : ; yn = xng

= R(x0; x1)R(x1; x2) � � �R(xn�1; xn) p(xn) ;

where we have

R(xi; xj) =
Aij h(xi) exp ('(xi))

�h(xj)

and p is an invariant probability vector:
P
i
pi = 1 and R(p) = p.

These equations de�ne all the Markov measures �u and a fortiori

all the measures �u.

We compute the partition functions (7) for any pair (k; s) 2 N��R,

Zk(s) =
X

V (U)2Pk

�(V (U))s =
X
u2E

p(u)>0

X
2E

(k)
u

p()s :

Let C(s) = maxu2E P(X0 = u)s and for any pair (k;m) of integers, we

have

Zk(s) =
X
u2E

X
2E

(k)
u

p()s P(X0 = u)s

and

Zm(s) =
X
v2E

X
02E

(m)
v

p(0)s P(X0 = v)s :

We then obtain

Zk(s)Zm(s)

=
X
u2E

X
v2E

X
(;0)2E

(k)
u �E

(m)
v

[p() p(0)]s [P(X0 = u)P(X0 = v)]s

� C(s)Zk+m(s)

= C(s)
X
u2E

X
v2E

X
002E

(k+m)
u

p(00)s P(X0 = u)s ;
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where 00 =  0 :  = u e2 � � � ek and 
0 = v e02 � � � e

0
m
. Finally we obtain

1

C(s)
Zk(s)

1

C(s)
Zm(s) �

1

C(s)
Zk+m(s) ;

which implies that the sequence fln (Zk(s)=C(s)gk�1 is subadditive,

and that the sequence flnZk(s)=kgk�1 converges to a concave function.

Following the same method we prove (8) that for any pair (s; t) of

real numbers the sequence

�
1

k
lnG

(k)

D
(s; t) �!

k!+1
G(s; t) ;

where

G
(k)

D
(s; t) =

X
u2E

X
2E

(k)
u

p()s P(X0 = u)s jJ()jt

(we haved assumed that jJuj = 1 for any u 2 E).

Framework. The dynamical systems (Ku; �u; H)u2E (respectively

(Eu; �u; �)u2E ) may be studied in the same way. De�ne (K; �; T ) (re-

spectively (E; �; �)) be one of these sets, where the map T is a picewise

C1 expanding Markov map (T = H�1, for all e 2 E, T�1
e

= He).

The measure � is the Gibbs measure of the potential � 2 C�(K) < 0

(respectively � 2 C�(E)), and J = � lnT 2 C�(K) < 0 (respectively

J 2 C�(E)). We have seen that for Markov measures the associated

potentials J and � depends only on the �rst coordinate.

We now prove theorem A.

Assume that P (�) = 0, if not take e� = � � P (�) which is cohomol-

ogous to the potential �, which implies the equality �
e�
= �� = �.

From the expressions (23) and (24) there exists for any set V (U) =

T�n(U) 2 Pn an element y(U) 2 U � P such that

(26)

1

n
ln�(V (U)) �

1

n

n�1X
j=0

�(T j(y(U))) ;

1

n
ln jV (U)j �

1

n

n�1X
j=0

J(T j(y(U))) :

Since the functions J and � are C�-H�older, they are continuous on the

compact set K and therefore take their values in compact sets [a; b] and

[c; d].
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Consider for any integer i 2 Z\ [a n; b n� 1] (linear scale) the set

(27) An
i
= fV (U) 2 Pn : ln�(V (U)) 2 [i; i+ 1[ g ;

and for any real number �, the integer i(�; n) such thatX
V (U)2An

i

�(V (U))� �
X

V (U)2An
i(�;n)

�(V (U))� :

Since there is a linear scale we have for any real number �,X
V (U)2An

i(�;n)

�(V (U))� �
X
i

X
V (U)2An

i

�(V (U))�

=
X

V (U)2Pn

�(V (U))�

= Zn(�)

� (b� a)n
X

V (U)2An
i(�;n)

�(V (U))� :

We get therefore for any real number � (7),

(28)

1

n
lnZn(�) �

1

n
ln
� X
V (U)2An

i(�;n)

�(V (U))�
�

� �
i(�; n)

n
+

ln#An
i(�;n)

n
;

since the elements of An
i(�;n) have same mass � exp (i(�; n)).

Among the elements of An
i(�;n) we make a new selection for the

length, in order to obtain elements of An
i(�;n)

with same mass and same

length.

Therefore consider in the same way for all integer j 2 Z\ [c n; d n�

1] (linear scale) the set

(29) Bnj = fV (U) 2 An
i(�;n) : ln jV (U)j 2 [j; j + 1[ g :

For any real number �; de�ne the integer j(�; n) such thatX
V (U)2Bn

j

�(V (U))� �
X

V (U)2Bn
j(�;n)

�(V (U))� :
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We then have for any real number �,X
V (U)2Bn

j(�;n)

�(V (U))� �
X
j

X
V (U)2Bn

j

�(V (U))�

=
X

V (U)2An
i(�;n)

�(V (U))�

� (d� c)n
X

V (U)2Bn
j(�;n)

�(V (U))� ;

which implies for any real number �,

1

n
ln
� X
V (U)2An

i(�;n)

�(V (U))�
�
�

1

n
ln
� X
V (U)2Bn

j(�;n)

�(V (U))�
�
:

Finally we have

(30)

�
1

n
lnb(n(�)) Zn(�) � �

1

n
lnb(n(�))

� X
V (U)2Bn

j(�;n)

�(V (U))�
�

� �
i(�; n)

j(�; n)
+

ln#Bn
j(�;n)

j(�; n)
:

Notice that the set Bn
j(�;n) � A

n

i(�;n) consists of elements of the partition

Pn with \same" measure exp (i (�; n)) and \same" length exp (j(�; n))

= b(n(�))�n (in the order (1=n) ln), where b(n(�)) is the logarithmic

basis in the expression of the free energy function (6),

(31)

(
�(V (U)) � exp (i(�; n)) ;

jV (U)j � exp (j(�; n)) ;
for all V (U) 2 Bn

j(�;n) :

In fact it is the set where the distribution of the mass �(V (U))� of the

function is the largest, and this is where large deviations occur.

The aim is to determine the measures �� whose supports are the

singularity sets C�. We consider for any real number � the following

probability measures

�n(�) =
1

#Bn
j(�;n)

X
V (U)2Bn

j(�;n)

�y(U) and �n(�) =
1

n

n�1X
j=0

T j �n(�)
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(We remark that a cluster point of the sequence f�n(�)gn�1 is T -inva-

riant.)

By our assumptions, the following sequences take their values in

compact sets

1

n
ln#Bn

j(�;n) 2 [�d;�c] ;
i(�; n)

n
2 [a; b] ;

j(�; n)

n
2 [c; d] ; �n(�) 2M(K) :

Then there exists a sub-sequence fnkgk�1; that we note for simplicity

fmgm�1 (m = m(�)), such that

(32)

8>>>>>>>>>><>>>>>>>>>>:

1

m
ln#Bm

j(�;m) �!
m!+1

(�) 2 [�d;�c] > 0 ;

i(�;m)

m
�!

m!+1
�(�) 2 [a; b] < 0 ;

j(�;m)

m
�!

m!+1
� b(�) 2 [c; d] < 0 ;

�m(�) 2M(K) �!
m!+1

�� 2MT (K) :

We get �nally with (30) for any real number �,

(33) �
1

m
lnb(m(�)) Zm(�) = Fm(�) �!

m!+1

�1

b(�)
((�) + � �(�)) ;

where (�) and ��(�) represent entropies and b(�) a Lyapunov expo-

nent.

Consider the functional

I :MT (K)� R �! R

(�; �) 7�!

h�(T ) + �

Z
K

� d�Z
K

J d�

:

We have the following fundamental result.
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Lemma 1 ([Si1]). We have for any real number �,

F (�) = inf
�2MT (K)

(I(�; �)) = inf
�2MT (K)

� ergodic

(I(�; �)) :

The proof is given in three steps (the three following expressions):

1) For all � 2 R, sup
�2MT (K)

� ergodic

(�I(�; �)) = sup
�2MT (K)

(�I(�; �)).

2) For all � 2 R, lim
n!+1

�Fn(�) � sup
�2MT (K)

� ergodic

(�I(�; �)).

3) For all � 2 R, lim
n!+1

�Fn(�) � sup
�2MT (K)

(�I(�; �)).

The functional I is semicontinuous since the (entropy) map � 7�!

h�(T ) is expanding, i.e. two orbits never stay "-close. Its in�mum is

attained since MT (K) is a compact set. Since the ergodic measures are

extremal and form a G� set in the convex set MT (K), we have the �rst

equality. The two others are much harder to prove.

For the second step we consider an ergodic Borel probability mea-

sure � 2MT (K). The ergodic theorem implies that for � allmost every

x,

1

n

nX
j=0

�T j(x) �!
n!+1

� :

We know that for � (where � $ �) allmost cylinders the ergodic mea-

sure � satis�es: �(Cn(x)) � e�nh�(�) and jCn(x)j � e�n��(�): For the

elements of the Markov partition (which correspond on the dynamical

system to the cylinders) V (U) 2 Pn, we have

�(V (U)) � e�nh�(T ) and jV (U)j � e�n��(T ) :

Using the sets Bj(�;n) (29) we see that (31)8>><>>:
i(�; n)

n
�!

n!+1

Z
K

� d� = �h�(T ) ;

j(�; n)

n
�!

n!+1

Z
K

J d� = ��
�
(T ) :
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According the Shannon-McMillan-Breiman theorem [DGS, p. 81] we

de�ne for " > 0 the set

H(�;�;n;") = fV (U) 2 Pn : �n��(T )� " < j(�; n) < �n�
�
(T ) + "g ;

for which there exists an integer N such that for any integer n � N ,

we get

�(H(�;�;n;")) � 1�" and #H(�;�;n;") � (1�") exp (n (h�(T )�")) :

We get therefore for any real number � and any element V (U) 2

H(�;�;n;"),

�(V (U))� � exp
�
� n
�Z

K

� d�� "
��

;

(�" according to the sign of the real number �), which gives for any

integer n � 1,

�Fn(�) =
1

n
lnb(n(�)) Zn(�)

�
1

n
lnb(n(�))

� X
V (U)2H(�;�;n;")

�(V (U))�
�

�
ln#H(�;�;n;")Z
K

�J d�+ "

+ �

Z
K

� d�+ "Z
K

�J d�+ "

�

h�(T ) + �

Z
K

� d�� 2 "Z
K

�J d�+ "

;

which implies that

lim
n!+1

�Fn(�) �

h�(T ) + �

Z
K

� d�Z
K

� J d�

= �I(�; �) ;

which ends the second step since the ergodic measure � is arbitrary.
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For the third step, using (23), (24) and (26), we compute for any

real number � the following integrals8>>>>>>>>>>><>>>>>>>>>>>:

Z
K

J d�m(�) =
1

#Bm
j(�;m)

X
V (U)2Bm

j(�;m)

� 1

m

m�1X
j=0

J(T j(y(U)))| {z }
= ln jV (U)j (23)

�
;

Z
K

� d�m(�) =
1

#Bm
j(�;m)

X
V (U)2Bm

j(�;m)

� 1

m

m�1X
j=0

�(T j(y(U)))

| {z }
= ln�(V (U)) (24)

�
:

Using (32) and (33) we have8>><>>:
i(�;m)

m
�!

m!+1
�(�) =

Z
K

� d�� ;

j(�;m)

m
= �b(�;m) �!

m!+1
� b(�) =

Z
K

J d�� :

We get �nally for any real number �,

(34)
1

m
lnb(m(�)) Zm(�) = �Fm(�) �!

m!+1

(�) + �

Z
K

� d��Z
K

� J d��

:

In this expression we do not know the value (�) which satis�es the

following.

Lemma 2. For all � 2 R, (�) � h�� .

This estimate uses a standard argument of Misiurewicz [DGS,

p. 145].

It implies that (34) becomes for any real number �,

�Fm(�) � (�I(��; �)) ;

which implies that

�Fm(�) � sup
�2MT (K)

(�I(�; �)) :
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Remember that the sequence f�Fm(�)gm�1 is a subsequence (32),

which implies that

lim
n!+1

�Fn(�) � sup
�2MT (K)

(�I(�; �)) ;

which ends the third step and the proof of Lemma 1.

By the same way we prove that for any pair (x; y) 2 R2 we have

(35)

GD(x; y) = P (x � + y J) = sup
�2MT (K)

�
h�(T ) +

Z
K

(x � + y J) d�
�
:

This function is real analytic in both variables, and by the way it is

computed we have

(35) GD(s; t) = ln�(s; t) :

Finally de�ne the Gibbs measure �� associated to the potential �� =

� � � F (�) J . We verify that we have for any real number �,

(36) P (��) = P (� � � F (�) J) = sup
�2MT (K)

�
h�(T ) +

Z
K

�� d�
�
= 0 :

It implies that the unique measure which achieves the value 0 is the

Gibbs measure �� . Replacing this result in the expression of the free

energy function, we obtain

(37) F (�) = inf
�2MT (K)

 h�(T ) + �

Z
K

� d�Z
K

J d�

!
=

h�� (T ) + �

Z
K

� d��Z
K

J d��

;

for all � 2 R. Since we have for any real number �,

(38) GD(�;  (�)) = ln�(�;  (�)) = 0 = GD(�;�F (�)) ;

we have F = � , which ends the proof of Theorem A.

Since the pressure is di�erentiable (36), by di�erentiating the fol-

lowing expression

P (� � � F (�) J) = 0 ;
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we get for any real number � (22),

@P

@x
(�;�F (�)) =

Z
K

� d�� < 0

and
@P

@y
(�;�F (�)) =

Z
K

J d�� < 0 :

We then obtain for any real number �,

(39) F 0(�) =

Z
K

� d��Z
K

J d��

> 0 :

Di�erentiating once more, we obtain for any real number � [M], [Ma],

[R], [Si1],

F 00(�) =

F 0(�)2
�@2P
@y2

�
� 2F 0(�)

� @2P
@x@y

�
+
�@2P
@x2

�
�@P
@x

� (�;�F (�)) � 0 :

We prove that F 00 < 0 if and only if the functions � et J are not

cohomologous to constants [Ru] (if not F is linear).

Consider the Legendre-Fenchel transform of F (5). Since F is at

least C1 (it is real analytic) and according to the theory of conjugate

functions [E], we have for the function f and any real number �,

(40) f(�) + F (�) = �� if and only if

(
� = F 0(�) ;

� = f 0(�) :

We then obtain (37) for any real number �,

(41) f(F 0(�)) = � F 0(�)� F (�) =
h�� (T )

�
��
(T )

=

Z
K

�� d��Z
K

J d��

= d�� :

In the degenerate case, the free energy function F is linear � 7�! d� (��

1), and the dimension spectrum f � d = d� = HD(�).
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If not the free energy function is strictly increasing and strictly

concave. This implies in particular that the dimension spectrum f is

real analytic on the interval ]�min; �max[ where

(42)

8><>:
�min = inf

�2R
F 0(�) = lim

�!+1
F 0(�) ;

�max = sup
�2R

F 0(�) = lim
�!�1

F 0(�) ;

and strictly concave since for any � = F 0(�) 2 ]�min; �max[ ,

f 00(�) =
1

F 00(�)
< 0 :

In the expression (32) and the existence of the limit F (�), we have for

any real number �, �� = �� . The sets Bn
j(�;n)

from (29) cover at the

limit the singularity set C� where � = �(�) = F 0(�) (see Section 4.1).

We can prove directly [CLP], [Si1] that f(�) = HD(C�). Here we

have parametrized all the fractal sets fC�(�)g�2R; and we have asso-

ciated to the Gibbs measure � a family of Gibbs measures f��g�2R
(respectively � and the family f��g�2R) where �� has the potential

� � � F (�) J 2 C�(K) (respectively � � � F (�) J 2 C�(E)).

Let ��1 (respectively �+1) be a cluster point of the �� when

� �! �1 (respectively � �! +1) { respectively ��1 and �+1 in

M�(E). It is clear with (13) that we obtain the extremal points ��1
given in (39) and the corresponding singularity sets C�

�1

: Remark that

the way there are given they may be not well de�ned. But in Section 6

we see that they are uniquely determined.

We have thus proved Theorem B which contains Theorem 2 (Sec-

tion 2).

Remarks. 1) We have:

� F (0) = �HD(K) = d; f(F 0(0)) = sup f(�) = d.

� F (1) = 0; f(F 0(1)) = F 0(1) and the tangeant of the graph � 7�!

f(�) at the point � = F 0(1) = d� is the line y = x. Moreover we have

�1 = �.

2) For any � 2 R and � = F 0(�) we have ��(C�) = 1 (therefore

the �� are singular to each other), the measure �� is exact dimensional

since d�� = HD(��) = f(�): The tangent of the graph � 7�! f(�)

at the point � = �(�) = F 0(�) is the line y = � x � F (�) (41). The

measure � is also exact dimensional since �1 = �.
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5. Multifractal spectra of entropy and Lyapunov.

The multifractal spectra of entropy, (9) and (10), and Lyapunov

exponents, (11) and (12), are given by the following.

Let us de�ne (there are same values when using the subshift E =

�+
A
)

(44)

�min = inf
�2R

Z
K

�� d�� = �+1 ;

�max = sup
�2R

Z
K

�� d�� = ��1 ;

#min = inf
�2R

Z
K

�J d�� = #+1 ;

#max = sup
�2R

Z
K

�J d�� = #�1 :

In the degenerate case for the dimension spectrum, the two spectra are

simultaneously degenerate: hence the functions � and J are cohomol-

ogous to constants. In this situation the two intervals [�min; �max] and

[#min; #max] are reduced to points h� and �
�
.

Otherwise at least one of the two spectra is not degenerate. This

means that at least two of the three spectra (plus dimension spectrum)

are not degenerate, and therefore one of the functions En (10) and Ly
(12) is real analytic on an open interval.

Proof of Theorem C. Suppose that for some � =2 [�min; �max] we

have E(�) 6= ? (10). The concentration of the measures �
�
and �

J
are

given on E by expansions of the type (26)

(45)

n�1X
j=0

�(�j(x)) and

n�1X
j=0

J(�j(x)) :

For any x 2 E(�) we have

�
1

n

n�1X
j=0

�(�j(x)) �!
n!+1

� ;
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and for any � 2 R , ��(E(�)) = 0 since � =2 [�min; �max] because the last

expression converges toZ
E

�� d�� 2 [�min; �max] :

We obtain in the same way the following convergence

�
1

n

n�1X
j=0

J(�j(x)) �!
n!+1

# =2 [#min; #max] :

We have on a set 
 the existence of local dimension : for all x 2 
,

d�(x) = �=#. On the other hand we have for any � 2 R , ��(
) = 0

implies E(�) � fx : d�(x) does not existg, which gives a contradiction.

In fact the sequences in (45) are in the domain of attraction of the

measure �� , and therefore we have

(�; #) =
�Z

E

�� d��;

Z
E

�J d��

� �
=
�Z

K

�� d��;

Z
K

�J d��

��
:

Then we obtain for � = F 0(�) the spectra (10) and (12)

E(�) = L(#) = C�

and

En(�) = Ly(#) = HD(C�) = f(�) = d��

which gives Theorem C.

6. Multi-multifractal, extremal measures and graphs.

In the multifractal analysis of a measure � the supportK is decom-

posed into fractal sets which represent the singularity sets (level sets

for local dimension or other spectra) and of course the sets of points

which do not have local dimension.

The idea for multi-multifractal analysis is to iterate in�nitely this

process and re�ne the decompositions. The interesting case is when

the dimension spectrum is nondegenerate (if not all the spectra are

degenerate and constants). We introduce multi-multifractal analysis

for dimension, but notice that the constructions for the other spectra

are similar.
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In the nondegenerate case we de�ne a set of Gibbs measures (we

omit the measures ��1 since we show that they are uniform on their

supports, and in particular �1 = �) M0(�) = f��g�2R where the sin-

gularity sets C� satisfy for � = F 0(�),

��(C�) = 1 and HD(C�) = f(�) = HD(��) = d�� :

Then multifractal analysis can be represented by the triple (�; F;

M0(�)).

In fact it is possible to de�ne many in�nite sequences of multifractal

spectra. Let us describe the second step.

First �x � 2 Rnf1g and realize the multifractal analysis for the

measure �� . De�ne for (�; �) 2MT (K)� R,

I1(�; �) =

h�(T ) + �

Z
K

�� d�Z
K

J d�

and F1(�; �) = inf
�2MT (K)

(I1(�; �)) :

We have the following:

� at the �rst step: � = ��  ! � 2 R, F (�) = I(��; �) ! �� =

�� � F (�)J , �� = ���  ! f(�) = d�� for � = F 0(�),

� at the second step: �� = ���  ! � 2 R, F1(�) = I1(��;� ; �) !

�� = ��� � F1(�)J , ��;� = ���  ! f1(�) = d��;� = HD(C�;�) for

� = F 01(�) and C�;� = fx 2 K : d�� (x) = �g. If M1(��) = f��;�g�2R,

we have then de�ned a new triple (�� ; F1;M1(��)).

We can iterate this construction step by step at any level.

Suppose that multifractal analysis has been de�ned at level n: We

have then for (�1; : : : ; �n�1) 2 R
n�1 a triple

(��1;:::;�n�1 ; F�1;:::;�n�1 ; f��1;:::;�n�1;�g�2R)

and

��1;:::;�n�1 = ���1;:::;�n�1

 ! �n 2 R ; F�1;:::;�n�1(�n)

 ! �n 2 R ; ��1;:::;�n�1;�n ; ���1;:::;�n�1;�n

 ! f(�) = HD(C�1;:::;�n�1;�) = HD(��1;:::;�n�1;�n) ;
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for � = F 0
�1;:::;�n�1

(�n) where we have

C�1;:::;�n�1;� =
n
x :

ln��1;:::;�n�1(B(x; r))

ln r
�!
r!0

�
o
:

We have then de�ned a new triple

(��1;:::;�n�1;�n ; F�1;:::;�n�1;�n ; f��1;:::;�n�1;�n;�g�2R) ;

where we omit the two extremal measures ��1;:::;�n�1;�n;�1.

If at the �rst level the spectrum is nondegenerate, then it is non-

degenerate at any level. We have seen that it is degenerate at the �rst

level if and only if the two potentials � and J are cohomologous to con-

stants. Since at any level it is a linear combination of the functions �

and J it is never degenerate.

Concerning local Lyapunov exponents this is the same behaviour

than for dimension. If the multi-multifractal spectrum is nondegenerate

at the �rst step (J is not cohomologous to a constant), then it is not

degenerate at any step.

The behaviour for local entropies is di�erent. For example at the

�rst level it may be degenerate (� is cohomologous to a constant), but

at the second level it may be not since for any real number � 6= 1,

�� = � � � F (�) J is not cohomologous to a constant, and in fact it is

not at any further level.

We omit at each step the extremal measures ��1;:::;�n�1;�n;�1 ob-

tained at the limits when j�j goes to +1. In fact at any level these

measures are uniform on their supports and then imply degenerate spec-

tra.

We will see it on a very simple example on the unit interval, namely

a linear Markov map modeled by the full shift on 3 symbols.

Let us describe this dynamical system by the following simple

model.

Figure 1. The measure � given by p1 + 2 p0 = 1.
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(for example p0 = 0:3 and p1 = 0:4), and

Figure 2. The measure � given at the second step (and so on : : : ).

In the computation of the partition functions (7), the di�erent sets

Bn
j(�;n)

that are selected (29) (= An
j(�;n)

(27) since J is constant: the

partitions are uniform, jV (U)j = 3�n) when � �! +1, are in fact

the intervals where the distribution of the mass �(V (U)) is the largest.

They are actually the central intervals [1=2�1=(2 � 3n); 1=2+1=(2 �3n)]

of measure pn1 which covers at the limit the set f1=2g. We have then

�+1 = �1=2 and d�+1 = 0.

When � �! �1, it is the set of intervals where the distribution

of the mass �(V (U)) is the smallest. In fact we select the sets

3n�1�1[
k=0

�h3 k
3n
;
3 k + 1

3n

i
[

h3 k + 2

3n
;
3 k + 3

3n

i�
composed of 2n intervals of measure pn0 , which cover at the limit the

tryadic Cantor set. We obtain therefore that ��1 is the uniform mea-

sure on the Cantor set for which the dimension spectrum is degenerate

at the point d�
�1

= ln 2= ln 3.

The multifractal analysis implies the following results.

1) HD(fx : d�(x) does not exists g) = 1: This set contains for

example the set of points obtained by iterations of the boundaries: for

these special points we have

d
�
(x) = �+1 = �

ln p1

ln 3
and d�(x) = ��1 = �

ln p0

ln 3
:

In higher dimension n � 2, this set contains iterates of the boundaries of

the Markov partition (countable in dimension 1) and then has Hausdor�

dimension greater or equal to 1 (equal to n in general).
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2) The dimension spectrum is real analytic on the interval ]�+1;

��1[ .

3) For all � 2 R, �� is exact dimensional and d�� = �F 0(�)�F (�)

where we have

F (�) = �
ln (2 p

�

0 + p
�

1 )

ln 3
and F 0(�) = �

2 p
�

0 ln p0 + p
�

1 ln p1

(2 p
�

0 + p
�

1 ) ln 3
:

For � = 1, �1 = � is exact dimensional.

We see that the extremal measures ��1 are uniform measures on

their supports. This phenomenon seems to be general, and it is quite

clear for linear Markov maps equipped with Gibbs measures. The next

step is for subshifts of �nite type where things are more complicated

(case of the digraph recursive fractals) in the nondegenerate case.

We have seen in (29) that for any real number � the set Bn
j(�;n)

consists of elements of the Markov partition Pn (of \same" measure

exp (i(�; n)) and \same" length exp (j(�; n)) � b(�; n)�n in the order

(1=n) ln) indicates at the step n the distribution of the mass �(V (U))�

of the partition function (7) and where the large deviations occur (6).

In the order (1=n) ln some small variations for the mass of the

elements of Bn
j(�;n) occur which imply the multifractality of the measure

�� (multi-multifractality at the second level).

The situation is di�erent for the extremal measures ��1 given by

the limits of the measures �� when j�j �! +1:

For the measure ��1 the elements of Pn which cover at the limit

the set K(�1) are those which satisfy the following:

0 < �(V (U)) = min
V (U)2Pn

�(V (U)) :

In the same way, for the measure �+1 the elements of Pn which cover

at the limit the set K(+1) are those which satisfy the following

0 < �(V (U)) = max
V (U)2Pn

�(V (U)) :

In our example these sets are respectively the 2n intervals of measures

pn0 and the central intervals of measures pn1 .

Therefore if we want to realize the multi-multifractality analysis of

the measures ��1 at the second level, we get for example ��1;�1 =

��1 and �+1;+1 = �+1 and �nally for any � 2 R , ��1;� = ��1
and �+1;� = �+1. This gives Theorem D.
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Here we present the di�erent graphs of the functions we have stud-

ied for the particular values: p0 = 0:3 and p1 = 0:4: Figure 3: the

function F ; Figure 4: the derivative F 0; Figure 5: the function which

represents the distribution of � 7�! d�� ; (see (41); Figure 6: the di-

mension spectrum : � 7�! f(�).

Figure 3. The free energy function F : R �! R; � 7�! F (�).

Figure 4. The derivative of the free energy function

F 0 : R �!]�+1; ��1[; � 7�! F 0(�).
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Figure 5. The parametrized dimension spectrum

f� : R �!]0; 1]; � 7�! �F 0(�)� F (�).
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y = βx − F (β)

HD(suppµ) = 1
HD(µ) = dµ = α1

Log2
Log3

α+∞ = 0, 834
α∞ = HD(µ) = 0, 991
α0 = 1, 009

α−∞ = 1, 096

α+∞ α α1 α0 α−∞

Figure 6. The dimension spectrum

f : [�+1; ��1] �! [0; 1]; � 7�! f(�).
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7. Discussion and questions.

We may summarize the di�erents results concerning the measure

�: The measure � is exact dimensional, i.e. d�(x) = h�=��� almost

everywhere, although we have the following

HD(fx : d�(x) does not existg) = n :

For � = F 0(1) = d�, we have �(K
(�)) = 1 which gives the completness

of the measure.

There are limiting constructions for the K(�) when � �! ��1.

The sets K(�
�1

) are the supports of the measures ��1 which are

uniform on their supports. Therefore their multifractal and multi-

multifractal are reduced to points

d�
�1

=
h�

�1

��
�1

and d�+1 =
h�+1
�
�+1

:

The disjointness conditions on the sets J() are those for Markov parti-

tions, i.e. the interiors are disjoints and they intersect at most at their

boundaries which are of measure 0 for any Gibbs measure. Like for the

example, all the points on the boundaries belong to the set

fx : d�(x) does not existg

which is not countable in dimension geater or equal to 2.

If the graph is not strongly connected, we analyse all the strongly

connected components of the graph, i.e. if the matrix A (see Section

3.1) is not reducible, we decompose it into irreducible components.

To each irreducible component A
(j)

1�j�p we associate in the same

fashion as in the digraph recursive fractal sets the singularity sets and

the di�erent dimension spectra which may or not intersect with the

others. For any value � 2 [�min; �max]; there are at most p di�erent

singularity sets where C
(j)
� = fx : d�(x) = �g (which may be = ?),

and therefore we de�ne

f(�) = max
1�j�p

HD(C(j)
� ) (� �1 if all the singularity sets are ?)

= max
1�j�p

f (j)(�) ;

where f (j) is the dimension spectrum of the measure � restricted to the

set generated by the j-th strongly connected component.
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The result means that we get for any positive real number �, f(�)

to be the greatest Hausdor� dimension of the singularity sets C
(j)
� (since

we have the following: HD(E [ F ) = max fHD(E);HD(F )g).

We have seen in (43) in the nondegenerate case that F 00 < 0 (if and

only if the H�older continuous functions � and J are not cohomologous

to constants), and we get �nally that f 00 < 0 on ]�min; �max[ since we

have f 00(�) = 1=F 00(�). Then we have for any real number � 2 R and

� 2 ]�min; �max[ , F
00(�) < 0 and f 00(�) < 0, and the value 0 is never

achieved.

The challenging question at this moment comes from the concept of

rigidity and the conjecture that the dimension spectrum is an invariant

for dynamical systems modeled by subshifts of �nite type.

Rigidity deals with an important problem which is to know if we

can restore the dynamics of a dynamical system by recovering infor-

mation from the di�erent spectra. The aim is to obtain a physical

classi�cation of dynamical systems given by maps and Gibbs measures.

Let (X;�; T ) and (Y; �; S) be two topologically equivalent dynam-

ical systems, i.e. there exists a homeomorphism h : X �! Y: The

problem is to know if some of their multifractal spectra coincide then

they are smoothly equivalent and h is a di�eomorphism. If there exists

a topological conjugacy � between T and S, we want to �nd in all the

class of conjugacies a homeomorphism � preserving the di�erentiable

structure, T = S � �, and also measure preserving, � = � � �.

This has been proved in [BPS2] in a very particular case, namely

one-dimensional (and two-dimensional) linear Markov maps of [0; 1] (or

[0; 1]2) modeled by the full shift on two symbols (where all the things

work). We believe that this assertion is true for linear Markov maps of

the unit interval (or [0; 1]2) modeled by the full shift on p � 2 symbols.

The generalization of this statement will be for arbitrary subshifts of

�nite type �+
A
.

We believe that multifractal dimension spectrum is only needed

to recover information, but if necessary one can use multi-multifractal

analysis.
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