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The maximal quartile operator

Christoph Thiele

1. Introduction.

Let C�(R) denote the set of all functions f : R �! R that are �nite

linear combinations of characteristic functions of dyadic intervals, i.e.,

intervals of the form [2kn; 2k(n+1)) with k; n 2 Z. We de�ne theWalsh

function Wl 2 C�(R) for l 2 N0 by the following recursive formulas

W0 = 1[0;1) ;(1)

W2l = Wl(2x) +Wl(2x� 1) ;(2)

W2l+1 = Wl(2x)�Wl(2x� 1) :(3)

For k; n 2 Z, l 2 N0 we de�ne the Walsh wave packet wk;n;l by

wk;n;l(x) = 2�k=2Wl(2
�k x� n) :

The quartile operator HW and the maximal quartile operator Hmax
W are

then de�ned by

HW (f; g) :=
X
k;n2Z

l2N0

2�k=2 hf; wk;n;4li hg; wk;n;4l+1iwk;n;4l+2 ;

Hmax
W (f; g)(x)

:= sup
K2Z

���� X
k;n2Z

l2N0
k�K

2�k=2 hf; wk;n;4li hg; wk;n;4l+1iwk;n;4l+2(x)

���� :
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In this paper we prove the following theorem:

Theorem 1. Let p; q; r satisfy

(4)
1

p
=

1

q
+

1

r
;

2

3
< p <1 ; 1 < q ; r � 1 :

Then there is a constant C such that for all functions f; g 2 C�(R)

kHW (f; g)kp � C kfkq kgkr ;

kHmax
W (f; g)kp � C kfkq kgkr :

Only the estimates for Hmax
W are new, but our approach gives the

estimates for HW without extra work.

The quartile operator has been introduced in [11] as a discrete

model for the bilinear Hilbert transform. The bilinear Hilbert transform

H is de�ned as a bilinear operation from S(R) � S(R) into C(R) by

H(f; g)(x) := p.v.

Z
f(x� t) g(x+ t)

dt

t
:

It has been shown in [5] and [7], see also [6] and [8] for a survey and

[11] for a condensed proof, that the bilinear Hilbert transform satis�es

the a priori estimates

(5) kH(f; g)kp � Cq;r kfkq kgkr

provided p; q; r satisfy (4). More recently, M. Lacey has shown (see [4])

that also the maximal truncation of the bilinear Hilbert transform,

Hmax(f; g)(x) := sup
">0

��� Z
Rn[�";"]

f(x� t) g(x+ t)
dt

t

��� ;
satis�es estimates as in (5), (4). By the same method he has observed

that the maximal operator

M(f; g)(x) := sup
">0

���1
"

Z
[�";"]

f(x� t) g(x+ t) dt
���

satis�es estimates as in (5), (4). For the operator M , these estimates

are nontrivial only if p � 1.
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The current paper is an adaption of the ideas in [4] to the discrete

model of the quartile operator. As in [4], the main ingredient that is

needed to pass from estimates for HW to estimates for Hmax
W is a version

of a lemma by Bourgain (see [1]) for certain maximal averages.

We use analysis in the Walsh phase plane as in [11]. We give all

the necessary de�nitions, but at some places we refer to results in [11].

2. The main lemma.

The main issue in proving Theorem 1 is to e�ciently make use of

orthogonality of wave packets. For this we have to identify appropriate

large sets of pairwise orthogonal wave packets. We will associate to each

wave packet a rectangle in the half plane, so that disjoint rectangles

correspond to orthogonal wave packets. Then the combinatorial issue

is to identify sets of pairwise disjoint rectangles. This is the main idea

behind the following Lemma 1. In the proof of this lemma one has to

identify sets of pairwise disjoint rectangles so that we can use the second

hypothesis of the lemma. This lemma already appears implicitly in [7].

p1(P )

p2(P )

p3(P )

p4(P )

IP

!P

Table 1. Subdivision of quartiles.

A tile p is a rectangle p = Ip � !p of area one in the upper half

plane, such that Ip and !p are dyadic. Hence for each tile p there are

integers k; n; l with l � 0 such that

Ip = [2kn; 2k(n+ 1)) ; !p = [2�kl; 2�k(l + 1)) :

Similarly, a quartile P is a rectangle IP � !P of area four in the upper

half plane, such that IP and !P are dyadic. Each quartile P is the

union of four tiles p1(P ), p2(P ), p3(P ), and p4(P ), as in Figure 1.
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If p; q are two tiles, then we write p < q if Ip � Iq and !q � !p.

This de�nes a partial ordering of the set of tiles. Let { 2 f1; 2; 3g. A set

T of quartiles is called a tree of type {, if fp{(P )gP2T contains exactly

one element which is maximal in fp{(P )gP2T . If p{(PT ) is this maximal

element, we write p{(PT ) = IT � !T = pT and call pT the top of the

tree.

Lemma 1. Assume that we are given exponents 1 � s| < 1 for

| 2 f1; 2; 3g such that 1=s1 + 1=s2 + 1=s3 > 1, and we are given a

constant B > 0. Then there is a constant C > 0 such that the following

holds :

Let P be a �nite set of quartiles. For each | 2 f1; 2; 3g let

a| : P �! R
+

be a function such that the following two hypotheses are satis�ed :

1) Let { 6= |. If T � P is a tree of type {, then




� X
P2T

a|(P )
2

jIP j
1IP

�1=2



1
� B jIT j :

2) Let { 6= |, m 2 Z. Let P0 � P be a disjoint union of trees of

type {

P0 :=

:[
T2F

T ;

such that the set fp|(P ) : P 2 P0g is a set of pairwise disjoint rectangles

and, for each T 2 F , we have




� X
P2T

a|(P )
2

jIP j
1IP

�1=2



1
� 2m=s|

jIT j :

Then X
T2F

jIT j � B 2�m :

Then we have the estimateX
P2P

jIP j
�1=2 a1(P ) a2(P ) a3(P ) � C :
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We prove the lemma. Let m 2 Z and {; | 2 f1; 2; 3g with { 6= |. We

say that a tree T satis�es the size condition (m; {; |), if T is of type {

and

(6)



� X

P2T

a|(P )
2

jIP j
1IP

�1=2



1
� 2m=s|+3

jIT j :

We say that a tree T satis�es the size condition (m; {; {), if T is of type

{ and

(7)
a{(P )p
jIP j

� 2m=s{ ;

for all P 2 T .

The size of a tree T is the maximal m 2 Z such that T satis�es a

size condition (m; {; |) for some {; | 2 f1; 2; 3g.

We partition the set P into trees T0; : : : ; TN as follows. Let � 2 N0
and assume by induction that T�0 is already chosen for all �

0 with �0 � �.

De�ne

P� := P n

[
�0��

T�0 :

We can assume P� is not empty. Let m� be the maximal integer for

which there exists a tree T � P� of size m� , and let F� be the set of

all trees T � P� of size m� . De�ne Fmax
� to be the set of trees in F�

which are maximal in F� with respect to set inclusion. Let F�;< be

the set of all trees in Fmax
� which satisfy a size condition (m; {; |) with

{ < |. If F�;< is nonempty, choose T�+1 2 F�;< such that the center of

!T�+1 is maximal. If F�;< is empty, choose T�+1 2 F
max
� such that the

center of !T�+1 is minimal.

Since P is �nite, the algorithm stops with a �nite partition of P

into fT1; : : : ; TNg. De�ne F := fT1; : : : ; TNg.

In the following estimates, C will denote a constant depending on

s| and B. The precise value of C may change from line to line.

Lemma 2. If T 2 F and the size of T is m, then, for { 6= |,� X
P2T

a|(P )
2
�1=2

� C 2m=s|
jIT j

1=2 ;

and

sup
P2T

a{(P )p
jIP j

� C 2m=s{ :
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Proof. Let T 2 F be of size m. De�ne

f :=
� X
P2T

a|(P )
2

jIP j
1IP

�1=2
:

To prove the �rst estimate of the lemma, we have to bound the L2-

norm of f . We prove kfkBMO� � C 2m=s| , which gives the appropriate

bound on kfk2, because f is supported on IT .

Let J be a dyadic interval. We have to show

(8) inf
c

1

jJ j

Z
J

(f(x)� c) dx � C 2m=s| :

We split the sum in the de�nition of f into the sum over those P with

IP � J and the sum over those P with IP 6� J . The second sum is

constant on the interval J . Hence, using the inequality

(a+ b)1=2 � b1=2 � a1=2 ;

which holds for any two positive numbers a; b, we can estimate the left

hand side of inequality (8) by

1

jJ j

Z
J

� X
P2T :IP�J

a2| (P )

jIP j
1IP (x)

�1=2
dx :

By passing to subintervals, if necessary, one observes that it su�ces to

bound this expression under the assumption that there is a P 0 2 T such

that IP 0 = J . But then the set TJ := fP 2 T : IP � Jg is a tree of

type {. The size of this tree is at most m by construction of the tree T .

The size estimate for TJ then shows that (9) is bounded by C 2m=s|.

This �nishes the desired BMO estimate and therefore the proof of the

�rst estimate of the lemma. The second estimate follows immediately

from the observation that the set fPg is a tree of type { for all P 2 T

and has size less than or equal m. This �nishes the proof of Lemma 2.

Lemma 3. Let Fm be the set of trees in F with size m. Then

X
T2Fm

jIT j � C 2�m :
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Proof. Fix {; | 2 f1; 2; 3g. It su�ces to show the desired estimate

for the sum over the set Fm;{;| of those T 2 Fn which satisfy the size

condition (m; {; |) but no size condition (m; {; |0) with | < |0. We �rst

consider the case { = |. Pick {0 6= { and consider the set pm;{;| of all

tiles which are tops of trees in Fm;{;|. Then pm;{;| is a set of pairwise

disjoint rectangles. To see this assume to the contrary that the tops

of two trees T; T 0 2 Fm;{;| intersect. We can assume that T has been

selected before T 0. Then the union T [T 0 is a tree containing T , which

contradicts the maximality of T at the time it was selected. Since each

set fPg with P 2 P0 is both a tree of type {0 and of type {, we can

apply (7) and the second hypothesis of the proposition to conclude the

desired estimate.

Now assume { < |. For a tree T de�ne T red to be the set of P 2 T

such that IP is not minimal in fIP 0 : P 0 2 Tg. If T red is nonempty, it

is again a tree. De�ne TRed = (T red)red. If T 2 Fm;{;|, then


� X
P2TRed

a|(P )
2

jIP j
1IP

�1=2



1

�




� X
P2T

a|(P )
2

jIP j
1IP

�1=2



1
�




� X
P2TnTRed

a|(P )
2

jIP j
1IP

�1=2



1
:

Since the size of each tree fPg with P 2 T n TRed is less than or

equal m and the intervals IP with P 2 T n T red as well as those with

P 2 T red
n TRed are pairwise disjoint, we can bound this expression by

� 2m=s|+3
jIT j � 2m=s|+1

jIT j � 2m=s|+1
jIT j � 2m=s|

jIT j :

The desired estimate now follows from the second hypothesis of the

proposition as soon as we prove that for any T; T 0 2 Fm;{;| and any

P 2 T red, P 0 2 T 0
red

with P 6= P 0 we have that p|(P ) and p|(P
0) are

disjoint. To prove this assume to the contrary that !p|(P ) � !p|(P 0),

!p|(P ) 6= !p|(P 0). Since { < |, it is easy to see that the center of !p{(P )
is greater than the center of !p{(P 0). Hence T has been selected before

T 0. Pick P 00; P 000 2 T 0 n T 0
Red

such that p{(P
00) < p{(P

000) < p{(P
0).

Then we have

!p{(P ) � !p{(P 00) ; Ip{(P 00) � Ip{(P ) :

Hence P 00 quali�es to be in the tree T , a contradiction to the maximality

of T . This �nishes the proof of Lemma 3, since the case { > | is done

similarly to the case { < |.
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The size of a tree in F is bounded by a constant C. This is im-

mediate in the case of size conditions (m; {; |) with { 6= | from the �rst

hypothesis of the lemma. For { = | we apply, as we have done before,

the �rst hypothesis of the lemma to trees containing just one element.

Hence we have

X
P2P

1p
jIP j

a1(P ) a2(P ) a3(P )

=
X
m2Z

m�C

3X
{;|=1

X
T2Fm;{;|

X
P2T

1p
jIP j

a1(P ) a2(P ) a3(P ) :

Applying H�older's inequality gives

� � � �

X
m�m0

3X
{;|=1

X
T2Fm;{;|

sup
P2T

a{(P )p
jIP j

Y
l6={

� X
P2T

al(P )
2
�1=2

:

Now Lemma 2 gives

� � � �

X
m�C

3X
{;|=1

X
T2F(m;{;|)

C 2(1=s1+1=s2+1=s3)m jIT j :

Finally Lemma 3 gives

�

X
m�C

3X
{;|=1

C 2(1=s1+1=s2+1=s3�1)m :

This is a convergent geometric series and hence bounded by a constant

C. This �nishes the proof of Lemma 1.

3. The maximal quartile operator.

If p is the tile [2kn; 2k(n+ 1))� [2�kl; 2�k(l+ 1)), then we denote

by wp the Walsh wave packet given by

wp(x) := wk;n;l(x) = 2�k=2Wl(2
�k x� n) :
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The signi�cance of this identi�cation is that if p and p0 are two disjoint

tiles, then wp and wp0 are orthogonal. Moreover if a p < q for two

tiles p and q, then then on the interval Ip the functions wp and wq are

multiples of each other. For a proof of these easy facts see [11].

Let P denote the set of all quartiles. Then the maximal quartile

operator Hmax
W can be written as

Hmax
W (f; g)(x)

:= sup
k2Z

��� X
P2P:jIP j�2k

1p
jIP j

hwp1(P ); fi hwp2(P ); giwp3(P )(x)
��� :

Now let � 2 C�(R). Then the linearized maximal quartile operator

H�
W is de�ned by

H�
W (f; g)(x) :=

X
P2P:jIP j�2�(x)

1p
jIP j

hwp1(P ); fi hwp2(P ); giwp3(P )(x) :

By standard arguments, an Lp-bound on H�
W that does not depend on

the function � implies the corresponding bound for Hmax
W . We �x the

function � and write

H�
W (f; g)(x) =

X
P2P

1p
jIP j

hv1;P ; fi hv2;P ; gi v3;P (x) ;

where

v1;P := wp1(P ) ; v2;P := wp2(P ) ;

v3;P (x) :=

(
wp3(P )(x) ; if jIP j � 2�(x) ;

0 ; if jIP j < 2�(x) :

By integrating against a third function f3, we obtain a trilinear form

T�
W : C�(R) � C�(R) � C�(R) �! R ;

T�
W (f1; f2; f3) =

X
P2P

1p
jIP j

hv1;P ; f1i hv2;P ; f2i hv3;P ; f3i :

For each permutation � of the set f1; 2; 3g we obtain the bilinear oper-

ator H
�;�
W de�ned byZ
H
�;�
W (f1; f2)(x) f3(x) dx = T�

W (f��1(1); f��1(2); f��1(3)) :
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We will prove Theorem 1 in two steps: The �rst step is to prove the

following proposition:

Proposition 1. Let 1 < r1; r2 < 2 and assume

1

r
:=

1

r1
+

1

r2
>

3

2
:

Then there is a constant C such that for all �, � as above and all

f1; f2 2 C�(R)

(10) kH
�;�
W (f1; f2)kr � C kf1kr1 kf2kr2 :

The second step consists of an interpolation argument which is

given in the appendix.

4. Proof of Proposition 1.

By Marcinkiewicz interpolation (see [3]) it su�ces to prove the

corresponding weak type estimate instead of (10). By homogeneity {

here we use that � was arbitrary { and linearity it su�ces to prove that

for kf1kr1 = kf2kr2 = 1 we have

jfx : H
�;�
W (f1; f2)(x) > 1gj � C :

Fix such f1 and f2 and de�ne

E := fx : max fM�
r1
f1(x);M

�
r2
f2(x)g � 1g :

Here we have set

M�
p f(x) :=

�
sup

I:dyadic;x2I

1

jIj

Z
I

jf(x)jp dx
�1=p

:

By the maximal theorem the measure of E is bounded by a universal

constant, hence it su�ces to prove a weak type estimate outside the

set E; i.e., since each v{;P is supported on IP , it su�ces to prove a

universal bound on the measure of the set

F :=
n
x :

X
P2P:IP 6�E

1p
jIP j

hv�(1);P ; f1i hv�(2);P ; f2i v�(3);P (x) > 1
o
:
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For this we can assume that the measure of F is larger than 1. Let f3
be the characteristic function of F , divided by jF j1=2. It is easy to see

that f3 2 C�(R) and we have

jF j1=2 �
X

P2P:IP 6�E

1p
jIP j

hv�(1);P ; f1i hv�(2);P ; f2i hv�(3);P ; f3i :

Now the following lemma, applied with r3 := 2 and f1, f2, f3, r1, r2
as above, implies that jF j is bounded. Observe that for these data

E3 = ?, hence the set E in the lemma coincides with the set E above.

Lemma 4. Let 1 < r1; r2; r3 � 2 with

1 <
1

r1
+

1

r2
+

1

r3
< 2 :

Then there is a constant C such that the following holds : Let f1; f2; f3 2

C�(R) with

kf1kr1 = kf2kr2 = kf3kr3 = 1 :

De�ne

E{ := fx : M�
r{
f{(x) � 1g

and E := E1 [E2 [E3. Then

X
P2P:IP 6�E

1p
jIP j

jhv�(1); f1i hv�(2); f2i hv�(3); f3ij � C :

It remains to prove this lemma. By symmetry we can assume that

� is the identity. First observe that under the hypotheses of the lemma

it su�ces to prove that for any �nite subset Q � fP 2 P : IP 6� Eg,

such that hv1;P ; f1i hv2;P ; f2i hv3;P ; f3i 6= 0 for all P 2 Q, we have

X
P2Q

jIP j
�1=2

jhv1;P ; f1i hv2;P ; f2i hv3;P ; f3ij � C :

This inequality is the conclusion of Lemma 1 applied to the set Q and

the functions a| de�ned by

a|(P ) = jhv|;P ; f|ij :
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It remains to verify the two hypotheses of Lemma 1 with s| := r|
0 + " for

some small ", and B some number which will evolve from the estimates

below.

5. Veri�cation of Lemma 1.1).

Let { 6= |. Fix a tree T as in Hypothesis 1. It su�ces to prove




� X
P2T

jhf; v|;P ij
2

jIP j
1IP

�1=2



t
� C kfkt ;

for all 1 < t � 2. Namely, if this is true, we apply it to f = f| 1IT and

obtain with H�older's inequality

(11)



� X

P2T

jhf; v|;P ij
2

jIP j
1IP

�1=2



1
� C jIT j inf

z2IT
M�

t f(z) :

If we set t := r|, then the right hand side is bounded by C jIT j, since

IT 6� E. Hence Hypothesis 1 is satis�ed.

By standard square function techniques it su�ces to prove the

estimate

(12)



 X
P2T

"(P ) hf; v|;P iwp|(P )





t
� C kfkt

uniformly for all functions " : T �! f�1; 1g and all functions f 2

C�(R).

First we assume that | 6= 3 and prove this estimate by real inter-

polation. For t = 2 it follows simply from the fact that the rectangles

fp|(P ) : P 2 Tg are pairwise disjoint. It remains to prove the weak

type estimate

(13)
���nx :

X
P2T

"(P ) hf; wp|(P )iwp|(P )(x) � �
o��� � C kfk1 �

�1 :

We �x � > 0 and split f into a good function g and a bad function b

as follows: Let E be the set where the maximal function M�
1 f is larger

than �. Let fIng
N
n=1 be the set of maximal dyadic intervals contained

in E. De�ne

bn := 1In (f � �nwpT ) ;
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where pT is the top of the tree T and �n is chosen so that bn is orthog-

onal to wpT . De�ne b =
PN

n=1 bn and g = f � b. It su�ces to prove

estimate (13) for g and b separately. Since g is obviously bounded

by Cmin f�;M�
1 f(x)g, the estimate for g follows from the previously

proved L2 estimate.

On the other hand,X
P2T

"(P ) hbn; wp|(P )iwp|(P )

is supported on 4 In. This is because if Ip|(P ) is larger than 4 In, then

there is a tile q with Iq = In, q < p|(P ), and q < p|(PT ). Hence wp|(P )
and wpT are multiples of each other on the interval Iq, and therefore

wp|(P ) and bn are orthogonal.

This proves the weak type estimate for the bad function and thus

�nishes the proof of Hypothesis 1 in the case | 6= 3.

Now assume | = 3. Instead of (12) we prove the dual estimate


 X
P2T

"(P ) hf; wp|(P )iv|;P





t0
� C kfkt0 :

If we replace f by X
P2T

"(P ) hf; wp|(P )iwp|(P ) ;

which by the ideas used in the case | 6= 3 satis�es


 X
P2T

"(P ) hf; wp|(P )iwp|(P )





t0
� C kfkt0 ;

we see that it su�ces to prove


 X
P2T

hf; wp|(P )i v|;P





t0
� C kfkt0 :

This in turn follows by the maximal theorem from the pointwise esti-

mate ��� X
P2T

hf; wp|(P )i v|;P (x)
��� � CM�

2 f(x) :

To prove this pointwise estimate, it su�ces to prove

(14) jfkj � CM�
2 f ;
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for all k 2 Z, where

fk :=
X

P2T :jIP j�2k

hf; wp|(P )iwp|(P ) :

Fix x 2 R and k 2 Z. Let Ik and Ik�2 be the dyadic intervals containing

x of length 2k and 2k�2 respectively. Then the functions wp|(P ) with

I � IP , jIP j � 2k are multiples of each other on the interval Ik�2.

Hence fk is of constant modulus on Ik�2, and we have

(15) jIkj
1=2

jfk(x)j � C kfkkL2(Ik) :

It is easy to see that fk is orthogonal to f�fk on the interval Ik. Hence

the right hand side of (15) can be estimated by kfkL2(I). This proves

(14) and completes the veri�cation of Lemma 1.1).

6. Veri�cation of Lemma 1.2).

Let P0 � Q be a set of quartiles as in Hypothesis 2, i.e., P0 is a

disjoint union of trees of type {

P0 :=

:[
T2F

T ;

such that the set fp|(P ) : P 2 P0g is a set of pairwise disjoint rectangles

and, for each T 2 F , we have

(16)



� X

P2T

jhf|; v|;P ij
2

jIP j
1IP

�1=2



1
� 2m=s|

jIT j :

Here | 6= { and m 2 Z. De�ne the counting function

N :=
X
T2F

1IT :

We have to estimate the L1-norm of the counting function N . Fix � � 0

and consider the set

E� := fx : M�
r|��

f|(x) � 
 �1=r| and N(x) � �g ;
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for some small constants 
 = 
(m; s|) > 0 and � > 0 to be speci�ed

later. The set E� is clearly contained in the set

F� :=
n
N(x) �

�

4

o
:

Let I be a maximal dyadic interval contained in F� and assume I\E� 6=

?. De�ne

NI =
X

T2F :IT�I

1IT :

Then N �NI is constant on I and bounded by �=4, since otherwise the

double of I was also contained in F�, a contradiction to the maximality

of I.

We assume the following inequality, which we will prove later

(17)
���nNI(x) �

�

4

o��� � C jIj (2�m=s| ��1=s| inf
x2I

M�
r|��

f(x))r|�� :

Since I \ E� 6= ?, the in�mum on the right hand side is bounded by


 �1=r| . Moreover it is bounded by 1, since otherwise I was contained

in the set where the maximal function M�
r|
f is larger than 1, and hence

NI = 0, which is impossible because I \ E� 6= ?.

Maximizing the expression on the right hand side of the previous

inequality over � gives���nNI(x) �
�

4

o��� � C jIj (2�m=s| 
r|=s|)r|�� :

Now we pick 
 smaller than C 2m=r| for an appropriate small constant

C, then we have ���nNI(x) �
�

4

o��� � jIj

100
:

Taking unions we obtain

jE�j �
jF�j

100
:

Now we have

kNk1 =

Z
1

�=0

jfN(x) � �gj d�

�

Z
jfM�

r|��
f|(x) � 
 �1=r|gj d�+

Z
jE�j d�

� 
�r|



M�

r|��
f|




r|
r|
+

1

100

Z ���nN(x) �
�

4

o��� d�
� C 2�m kf|kr| +

1

10
kNk1 :
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This gives the appropriate bound on the counting function. Therefore

it remains to prove (17).

Pick a � � 1 and de�ne

E� := fx : NI(x) � �g :

De�ne

FI;� := fT 2 F : IT � I; IT 6� E�g ;

PI;� :=
[

T2FI;�

T ; NI;� :=
X

T2TI;�

1IT :

It is easy to see from the dyadic property of all intervals IP that

kNI;�k1 � �.

We introduce some measure spaces: The �rst one is the set PI;�

endowed with counting measure. The second one, I, is as a set the

abstract disjoint union of the sets IT , T 2 FI;�, where each of the IT is

endowed with Lebesgue measure normalized such that IT has measure

1. The third one is FI;� with counting measure. The fourth space is

simply R with Lebesgue measure.

Now we consider functions on the cartesian product of these mea-

sure spaces,

f : R � FI;� � I �PI;� �! R

and de�ne norms on these functions by

kfkp;q;r;s := k k k kfkLs(PI;�)kLr(I)kLq(FI;�)kLp(R) :

De�ne the linear operator S mapping functions on R to functions on

R � FI;� � I �PI;� by

Sf(y; T; x; P ) =

8><
>:

hf; wp|(P )i

jIP j1=2
; if y 2 IT ; P 2 T; and x 2 IP � IT ;

0 ; otherwise :

Here the condition x 2 IP � IT means that x is contained in the piece

IT of I and in addition x 2 IP , where IP is naturally identi�ed with a

subset of this piece IT . We have

kSfk2;2;2;2=
�Z

R

X
T2FI;�

1IT (y)
1

jIT j

Z
IT

X
P2T

jhf; v|;P ij
2

jIP j
1IP (x) dx dy

�1=2

=
� X
P2PI;�

jhf; v|;P ij
2
�1=2

(18)

� C log (1 + �)2 kfk2 :
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If | 6= 3, then the last inequality follows simply from the orthogonality

of the v|;P = wp|(P ). We postpone the proof of inequality (18) in the

case | = 3 to the next section.

Moreover we have for small � > 0

kSfk1+2�;1;1;2

=
�Z

R

sup
T2FI;�:y2IT

� 1

jIT j

Z
IT

� X
P2T

jhf; v|;P ij
2

jIP j

� 1IP (x)
�1=2

dx
�1+2�

dy
�1=(1+2�)

:

Using (11) with t = 1 + � we can bound this by

� C
�Z

R

sup
T2FI;�:y2IT

( inf
z2IT

M�
1+� f(z))

1+2� dy
�1=(1+2�)

� C
�Z

R

(M�
1+�f(y))

1+2� dy
�1=(1+2�)

� C kfk1+2� :

The last line followed from the maximal theorem.

Interpolation and H�older's inequality in the third exponent gives

for a di�erent small �

(19) kSfkr|��;s|��;1;2 � C log (1 + �)2 kfkr|�� :

We replace in this inequality f by f 1I , which does not change the left

hand side of this inequality. With the assumption (16) this gives

�Z
R

� X
T2F

(1IT (y) 2
m=s|)s|��

�(r|��)=(s|��)
dx
�1=(r|��)

= kN
1=(s|��)
I;� kr|�� 2

m=s|

� C log (1 + �)2 kf 1Ikr|�� :

This gives the weak type estimate

jfx : NI � �gj = jfx : NI;� � �gj

� C (��1=(s|��) log (1 + �)2 2�m=s|
kf 1Ikr|��)

r|��

� C (��1=s| 2�m=s|
kf 1Ikr|��)

r|�� :
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Since � � 1 was arbitrary and NI takes only integer values, this proves

(17) and �nishes the veri�cation of Lemma 1.2).

It remains to prove inequality (18) in the case | = 3.

Proof of inequality (18) in the case | = 3. It su�ces to prove

for all functions f 2 C�(R)

(20)



 X
P2PI;�

hf; wp|(P )i v|;P





2
� C log (1 + �)2 kfk2 :

Namely, this implies by duality


 X
P2PI;�

hf; v|;P iwp|(P )





2
� C log (1 + �)2 kfk2 :

which implies (18) by orthogonality of the wp|(P ).

We prove (20). Let I be the set of intervals IT with T 2 FI;�. Let

I1 be the set of maximal intervals in I with respect to set inclusion,

and de�ne I� for � = 2; 3; : : : to be the set of maximal intervals in

I n

[
�0<�

I�0 :

From the dyadic property of the intervals IT with T 2 FI;� we conclude

that for every J 2 I� , � > 1, there is a J 0 2 I��1 with J � J 0. Since

the counting function NI;� is bounded by �, we conclude that I� is

empty for � > �.

Let P� be the set of all tiles p 2 PI;� with Ip � J for some J 2 I� ,

but Ip 6� J 0 for all J 0 2 I�+1. De�ne �(x) so that the left hand side of

(20) is bounded by




 sup
�

��� �X
n=1

� X
P2Pn

hf; wp|(P )iwp|(P )

���� 



2

+



 X
P2P�(x):jIpj�2�(x)

hf; wp|(P )iwp|(P )





2
:

By Rademacher-Menshov, the �rst term in this sum is bounded by

C log (�+1) kfk2, which is the desired estimate for this summand. The

second summand can be estimated by�X
�




 sup
k

��� X
P2P� :jIpj�2k

hf� ; wp|(P )iwp|(P )

��� 


2
2

�1=2
;
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where

f� :=
X
P2P�

hf; wp|(P )iwp|(P ) :

Since the functions f� are orthogonal as � varies, it su�ces to prove for

a �xed �

(21)



 sup

k

��� X
P2P� :jIpj>2k

hf; wp|(P )iwp|(P )

���



2
� C log (�+ 1)2 kfk2 :

We split the set P� further. Let J be an interval in I� . By a trivial

splitting of P� we can assume that all P 2 P� satisfy IP � J . Then,

if P 2 P� , we necessarily have P 2 T for some tree T 2 FI;� with

J � IT . Hence we can �nd a collection of at most � trees T 2 FI;�

such that P� is contained in the union of these trees. For each tree T

in this collection pick a top frequency � 2 !T , and let � be the set of

these frequencies.

For each integer k with 2k < jJ j consider the collection 
k of all

dyadic intervals of length 2�k which have nonempty intersection with

�. Call k an exceptional value if if the cardinality of 
k+4 is larger than

the cardinality of 
k�4. There are at most 8� exceptional values. Pick

a chain of integers k0 < k1 < k2 < � � � < k8� such that all exceptional

values appear in this chain.

We can estimate the left hand side of (21) by


 sup
m

��� X
p2P� :jIP j>2km

hf; wp|(P )iwp|(P )

��� 



2

+



 sup

m
sup

km�1<k�km

��� X
p2P� :2km�jIP j>2k

hf; wp|(P )iwp|(P )

��� 



2
:

Again by Rademacher-Menshov the �rst summand is bounded by

C log (�+ 1) kfk2.

To estimate the second summand it su�ces by a similar argument

as before to prove for each m

(22)




 sup
km�1<k�km

��� X
p2P� :2km�jIP j>2k

hf; wp|(P )iwp|(P )

��� 



2

� C log (�+ 1)2 kfk2 :

If km�1 = km � 1, then this estimate is trivial. Therefore assume that

km�1 < km � 1.
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We claim that for km�1 < k � km we have

X
p2P� :2km�jIP j>2k

hf; wp|(P )iwp|(P )

= �k+k0

X
p2P� :2km�jIP j>2

km�1

hf; wp|(P )iwp|(P ) :

Here �k+k0 denotes the projection onto the subspace of L2(R) corre-

sponding to all points in the Walsh phase plane whose frequency coor-

dinate is contained in the union of intervals in 
k�k0 , where k0 2 f0; 1g

depends only on | and {. For the de�nition and properties of subspaces

associated to sets in the Walsh phase plane (see [11]).

We prove the claim in the case { = 1 and | = 2, the other cases

being similar. In this case we have k0 = 0. Let Fk be the union of all

intervals in 
k. To prove inequality (23) we have to show that for all

P 2 P� with IP = 2k we have !p|(P ) � Fk�1 and !p|(P )\ � Fk = ?.

However it is clear that !p{(P ) contains a � 2 �, hence !{(P ) [ !|(P )
is a dyadic interval of length 2�k+1 having nonempty intersection with

� and therefore being contained in Fk�1. Moreover, !p|(P )\ � Fk =

?, because k is not exceptional and therefore the two neighbouring

intervals !p{(P ) and !p|(P ) can not be both in 
k.

Now the claim (23) shows that inequality (22) is a direct con-

sequence of the following Lemma which is a version of a lemma by

Bourgain (see [11]):

Lemma 5 (Bourgain). Let � � R
+ . For each integer k de�ne 
k

to be the set of dyadic intervals of length 2�k which have nonempty

intersection with �. De�ne �k to be the orthogonal projection onto the

subspace of L2(R) associated to the set of all points in the phase plane

whose frequency coordinate is contained in the union of the intervals in


k. Let k < k0 be two integers such that 
k and 
k0 have the same

cardinality. De�ne

M�f(x) := sup
k<��k0

j��f(x)j :

Then

kM�fk2 � C log (]�)2kfk2 :
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Proof of Lemma 5. Following [1], we present a series of lemmata

that leads to a proof of Lemma 5. The �rst lemma is a version of

Doob's oscillation lemma for martingales and is obtained by methods

of stopping times and square functions

Lemma 6 (Doob). Let 1 < r < 1 and f 2 Lr(R). For each dyadic

interval I let mIf denote the mean of f on I. For � > 0 and x 2 R let

M�(x) be the maximal number such that there is an increasing chain of

dyadic intervals x 2 I1 � I2 � � � � � IM�(x) with

jmIjf �mIj+1f j � � :

Then

k�M
1=2
� kr � Cr kfkr :

For a proof of this Lemma we refer to [10]. With Lemma 6 we

prove the following lemma due to L�epingle (see [9]):

Lemma 7 (L�epingle). Let " be small and 2� " < p < s < 2+ ", 2 < s.

Let f 2 Lp(R). Then

Z
sup

n� JX
j=1

jmIjf �mIj+1f j
s
�1=s

: J 2 N0 ;

x 2 I1 � I2 � � � � � IJ+1

op
dx(24)

� C (s� 2)�1 kfkpp :

Proof. By interpolation it su�ces to prove this for f being the char-

acteristic function of a set A. Using the numbers M�(x) de�ned in

Lemma 6 we can estimate (24) by

Z � 1X
n=0

2�nsM2�n(x)
�p=s

dx :

Now an easy calculation shows that this is bounded by

1X
n=0

2�np 22np=s
Z

2�2np=s (M
1=2

2�n(x))
2p=s dx :
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By Lemma 6 this is bounded by

1X
n=0

2�np(1�2=s) jAj � C
�1
2
�

1

s

�
kfkpp :

This proves Lemma 7.

Next, we prove a vector valued version of Lemma 7.

Lemma 8 (L�epingle, vector valued). Consider the Euclidean space Rn

and let f = (f1; : : : ; fn) 2 L2(R;Rn ). Let 2 < s. For � > 0, x 2 R let

M�(x) denote the minimal number of �-balls necessary to cover the set

fmIfgI dyadic :x2I . Then




 sup
�>0

�
�M

1=s
�

�


2
2
� C (s� 2)�1

nX
�=1

kf�k
2
2 :

For a proof of this lemma we calculate with p = 2 in the previous

lemma

k sup
�>0

(�M
1=s
� )k22

� C

Z
sup

n� JX
j=1

� nX
�=1

jmIjf� �mIj+1f�j
2
�s=2�1=s

:

J 2 N0 ; x 2 I1 � I2 � � � � � IJ+1

o2
dx

� C

nX
�=1

Z
sup

n� JX
j=1

jmIjf� �mIj+1f�j
s
�1=s

:

J 2 N0 ; x 2 I1 � I2 � � � � � IJ+1

o2
dx

� C (s� 2)�1
nX

�=1

kf�k
2
2 :

This proves Lemma 8.

Now we proceed to prove Lemma 5. By passing to a subset of � if

necessary we can assume that 
k and 
k0 have the same cardinality as

�. We enumerate � as �1; : : : ; �n.
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Let x 2 R. We use the following equality, which is an easy result

of Walsh phase plane analysis as in [11]

�kf(x) =

nX
�=1

mk(f w��)w�� ;

where w� is the Walsh function of modulus 1 on R associated to the

frequency � and mk(f)(x) is the mean of f over the dyadic interval of

length 2k which contains x.

Let J be a dyadic interval of length 2k. For s 2 Z pick a minimal

collection Bs;J of 2s-balls covering the set

(25) f(m�f1(x); : : : ;m�fn(x)) : k < � � k0g ;

where x 2 J and the set clearly does not depend on the choice of x.

De�ne the function

G :=
� nX
�=1

(M�(mk(f w��)))
2
�1=2

;

whereM� denotes the dyadic Hardy Littlewood maximal function. The

function G is constant on dyadic inetrvals of length J , and we write GJ

for the value of G on J .

If s is larger that 2 + log2GJ , then the ball of radius 2s centered

at the origin covers the set (25), and we pick Bs;J to just consist of

this ball. For each ball B 2 Bs;J pick a ball B0
2 Bs+1;J which has

nonempty intersection with B. Let d(B) = c(B) � c(B0), where c(B)

denotes the center of B. Clearly the length of the vector d(B) is less

than 2s+2. We write d�(B) for the �-th coordinate of d(B).

For each k < � � k0 we can �nd balls B�;s;J 2 Bs;J such that for

each x 2 J , 1 � � � n

m�(f w��)(x) :=
X
s2Z

d�(B�;s;J) :

Then we have

sup
k<��k0

��� nX
�=1

mk(f w��)w��(x)
���

� sup
k<��k0

��� nX
�=1

X
s2Z

d�(B�;s;J)w��(x)
���
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�

X
s2Z

max
B2Bs;J

��� nX
�=1

d�(B)w��(x)
���

� C
X
s2Z

min
n
2sn1=2;

� X
B2Bs;J

��� nX
�=1

d�(B)w��(x)
���2�1=2o :

Hence we obtain




 sup
k<��k0

��� nX
�=1

m�(f�)w��

��� 



L2(J)

� C
X
s2Z

min
n
2k=2 2sn1=2;

� X
B2Bs;J




 nX
�=1

d�(B)w��




2
L2(J)

�1=2o
:

The functions w�� restricted to J are pairwise orthogonal for 1 � � � n,

hence we can estimate the previously displayed expression by

� C 2k=2
X
s2Z

s�2+log2GJ

min f2s n1=2; 2sjBs;J j
1=2

g

� C



 Z 4GJ

0

min fn1=2;M
1=2
� g d�





L2(J)

:

Hence




 sup
k<��k0

��� nX
�=1

m�(f�)w��

��� 



L2

� C



 Z 4G

0

minfn1=2;M
1=2
� g d�





2
:

Moreover,

Z 4G(x)

0

minfn1=2;M
1=2
� g d�

� G(x) +

Z 4G(x)

n�1=2G(x)

n1=2�1=sM�(x)
1=s d�

� G(x) + C n1=2�1=s log (1 + n) sup
�>0

�M�(x)
1=s :

If we pick s such that 1=2 � 1=s is log (n + 1)�1, then taking the L2

norm in x of the previously displayed expression and using Lemma 8

proves Lemma 5.
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This completes the proof of Proposition 1.

7. Appendix: Interpolation.

So far we have only proved some of the estimates which are claimed

in Theorem 1. Now we prove the remaining estimates by interpolation.

Recall the de�nition of the trilinear form

T�
W : C�(R) � C�(R) � C�(R) �! R ;

T�
W (f1; f2; f3) =

X
P2P

1p
jIP j

hv1;P ; f1i hv2;P ; f2i hv3;P ; f3i :

Also recall that for each permutation � of the set f1; 2; 3g we have the

bilinear operator H
�;�
W de�ned by

Z
H�;�
W (f1; f2)(x) f3(x) dx = T�

W (f��1(1); f��1(2); f��1(3)) :

Let p1; p2; p3 2 R [ f1g. We say that T�
W is of type (p1; p2; p3) if there

is a permutation � such that

(26) 0 < p�(1); p�(2); p�(3)
0
� 1

and there is a constant C such that

(27) kH
�;�
W (f; g)kp0

�(3)
� C kfkp�(1)kgkp�(2) ;

for all functions f; g 2 C�(R). Here p0 denotes the conjugate exponent

of p de�ned by
1

p0
+

1

p
= 1 :

We claim the following theorem, which implies Theorem 1.

Theorem 2. Let � 2 C�(R). If

1

p1
+

1

p2
+

1

p3
= 1 ; �

1

2
<

1

p1
;
1

p2
;
1

p3
< 1 ;

then T�
W is of type (p1; p2; p3).
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The following diagram shows the plane of all points (1=p1; 1=p2;

1=p3) with 1=p1 + 1=p2 + 1=p3 = 1.

(0; 0; 1) (0; 1; 0)

(1; 0; 0)

�
�

1

2
;

1

2
; 1

�

�
1;�

1

2
;

1

2

� �
1;

1

2
;�

1

2

�

�
1

2
; 1;�

1

2

�

�
�

1

2
; 1;

1

2

�

�
1

2
;�

1

2
; 1

�

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TT

T
T
T
T
T
T
T
T
T
T
T
T
T

T
T
T
T
T
T
T
T
T

T
T
T
TT�

�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

b

d

d dr

t

t t

t

t t

r r

Let A be the open interior of the convex hull of the six large �lled

circles in the above diagram. Theorem 2 states that T�
W is of type

(p1; p2; p3) for all (1=p1; 1=p2; 1=p3) 2 A. The closed convex hull B of

the three large empty circles is the region in which condition (26) is

satis�ed for all permutations � and thus the type estimates (27) are

equivalent for all six bilinear operators H
�;�
W . The remainder set A nB

splits into three connected regions D| such that the exponent p| is

negative in the region D| for | = 1; 2; 3. In each of these regions, only

two permutations � satisfy (26) and thus the estimate (27) makes sense

only for the two corresponding bilinear operators H
�;�
W .

Proposition 1 proves the type estimates in each of the three tri-

angles which are spanned by two adjacent large �lled circles and the

adjacent small �lled circle in the above diagram.

Hence Theorem 2 follows from Proposition 1 and the following

convexity lemma:

Lemma 9. Let (1=p1; 1=p2; 1=p3) and (1=q2; 1=q2; 1=q3) be two points

in the region A such that p{ = q{ for some { 2 f1; 2; 3g and assume

that T�
W is of type (p1; p2; p3) and of type (q1; q2; q3). Then T�

W is of

type (u1; u2; u3) for all (1=u1; 1=u2; 1=u3) on the line segment connecting

(1=p1; 1=p2; 1=p3) and (1=q2; 1=q2; 1=q3).

We prove the lemma. The conclusion of the lemma follows im-

mediately by complex interpolation as in [2], if there exists a � such

that type (p1; p2; p3) and type (q1; q2; q3) can be expressed as estimates

for H
�;�
W (i.e., all p{; q{ are in (1;1]. This is the case if there is a
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| 2 f1; 2; 3g such that both (1=p1; 1=p2; 1=p3) and (1=q1; 1=q2; 1=q3) are

contained in the region B [D|.

Therefore we can assume that

� 1

p1
;
1

p2
;
1

p3

�

and � 1

q1
;
1

q2
;
1

q3

�
are in di�erent regions D|. Let � and � be permutations such that

kH
�;�
W (f; g)kp0

�(3)
� Cp kfkp�(1)kgkp�(2) ;(28)

kH
�;�
W (f; g)kq0

�(3)
� Cq kfkq�(1)kgkq�(2) ;(29)

for all functions f; g 2 C�(R). By symmetry we can assume that

�(1) = �(1), and then we necessarily have

p�(1) = q�(1) :

Let Cp and Cq be the optimal constants in the above estimates.

Pick two di�erent points (1=u1; 1=u2; 1=u3) and (1=v1; 1=v2; 1=v3)

on the line segment connecting the points (1=p1; 1=p2; 1=p3) and (1=q1;

1=q2; 1=q3) such that (1=u1; 1=u2; 1=u3) and (1=v1; 1=v2; 1=v3) are both

in the open interior of the region B and the distance between (1=p1;

1=p2; 1=p3) and (1=u1; 1=u2; 1=u3) is smaller than the distance between

the points (1=p1; 1=p2; 1=p3) and (1=v1; 1=v2; 1=v3). It is easy to see

that such points exist, because (1=p1; 1=p2; 1=p3) and (1=q1; 1=q2; 1=q3)

are in di�erent regions D|.

Let f 2 C�(R) be �xed. It is easy to see that there are constants

Cu and Cv, possibly depending on f , such that

kH
�;�
W (f; g)ku0

�(3)
� Cu kfku�(1)kgku�(2) ;(30)

kH
�;�
W (f; g)kv0

�(3)
� Cv kfkv�(1)kgkv�(2) ;(31)

for all functions g 2 C�(R). Let Cu and Cv be the best constants

in these inequalities. Assume to get a contradiction that Cv is larger

than Cp and Cq. Then it follows by interpolation as in [2] between the
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estimates (28) and (31) that Cu is smaller than Cv. However, we have

by duality

kH�;�
W (f; g)ku0

�(3)
� Cu kfku�(1)kgku�(2) ;(32)

kH�;�
W (f; g)kv0

�(3)
� Cv kfkv�(1)kgkv�(2) ;(33)

for all g 2 C�(R), where the same constants Cu and Cv as above are

optimal. Hence it follows by interpolation between the estimates (33)

and (29) that Cv is smaller than Cu or Cq, a contradiction.

Hence Cv is smaller than Cp or Cq, which are independent of f .

Hence T�
W is of type (v1; v2; v3), and now the Lemma follows by inter-

polation between (28) and (31), and by interpolation between (29) and

(33).

This completes the proof of Lemma 9, and therefore also the proof

of theorems 2 and 1.
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