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Spectral multipliers

on metabelian groups

Waldemar Hebisch

0. Introduction.

Let G be a Lie group, Xj right invariant vector �elds on G, which

generate (as a Lie algebra) the Lie algebra of G,

L = �

X
X2
j :

Then L is called sublaplacian, and it well-known that L is positive

de�nite and essentially selfadjoint on C1

c (G) � L2(G), where L2(G) is

taken with respect to a left-invariant Haar measure dg. By the spectral

theorem, for any bounded Borel measurable function F : [0;1) 7�! C

the operator F (L)f =
R
1

0
F (�) dE(�) f is bounded on L2(G). We are

interested in the behavior of F (L) on Lp.

This question has a long history. Classical results for polynomial

growth case are [15], [16], [5], [18], [1], [7], [22] for exponential growth

[8], [23], [2], [3]. Newer results show that connection with growth is

more complicated [11], [19], [12], [10], [9], [4], [6], [13], [20], [14], [21],

[17].

In this paper we consider L1(G) boundedness of F (L) for (some)

metabelian G and a distinguished L on G. Of the main interest is that

the group is of exponential growth, and possibly higher rank. Previously

positive results about higher rank groups where only about Iwasawa

type groups. Also, our groups may be unimodular, so it is the second

positive result (after [13]) about unimodular groups, and the �rst giving

a family of examples.
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1. Results.

Let G = R
n
n R

m , adjoint action is semisimple, L = L0 + L1, L0
lives on R

n , L1 lives on R
m and is a sum of (squares of) eigenvectors

for adjoint action. More precisely, assume that �j , j = 1; : : : ;m are

linear forms on R
n , ej , j = 1; : : : ;m is the canonical basis of Rm , linear

operator A(x) : Rm 7�! R
m is given by the formula A(x) ej = �j(x) ej

and

(x1; y1) (x2; y2) = (x1 + x2; exp (A (�x2)) y1 + y2) :

The right-invariant vector �elds are:

Xj = @xj

and

Yj = exp (��j(x)) @yj :

We assume that

L = �

X
X2
j �

X
Y 2
j = L0 + L1 :

We can transform general L0 to our form, but for L1 the assumption is

somewhat restrictive.

In this paper we identify convolution operators with functions:

exp (�tL) f = exp (�tL) � f :

Theorem 1.1. If G and L are as above, then there exists C such that

k exp (�(1 + i s)L)kL1 � C (1 + jsj3m+n) :

Thorem 1.2. For every compactly supported F 2 C3m+n+1 the opera-

tor F (L) is bounded on L1(G).

Theorem 1.2 is a straightforward consequence of Thorem 1.1.

Before the proof of Thorem 1.1 we need a lemma about \symbols".

We consider it as well-known, but the form given below is adjusted to

our needs.
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Lemma 1.3. There is C such that if E is a normed space, f : R 7�! E,

jf j is integrable, b � 1,

sup jf̂ j � a ;

sup j! @! bf(!)j � a b ;

sup j!2 @2!
bf(!)j � a b2 ;

then

jf(x)j �
C a b

jxj
:

Remark. The lemma remains valid as long as f̂ is reasonably de�ned

(like f 2 S(R; E�)�, where S(R; E�) consists of E� valued Schwartz

class functions).

Proof. Let � 2 C1(R) be such that �(x) = 1 for jxj � 1 and �(x) = 0

for jxj � 2. Fix x0 6= 0 and let r = b=jx0j. Put bf1(!) = �(!=r) bf(!)

and bf2(!) = (1� �(!=r)) bf(!). We have

jf1(x)j �

Z
j
bf1j d! �

Z 2r

�2r

a d! = 4 a r ;

and

jx2f2(x)j �

Z
j@2!

bf2(!)j d! :

By the Leibnitz formula

@2!
bf2(!) =

�
1��

�!
r

��
@2!
bf(!)�2 r�1 �0

�!
r

�
@! bf(!)+r�2 �00

�!
r

� bf(!)

so Z
j@2!

bf2(!)j d! �

Z
j!j>r

a b2

!2
d! +

Z
2r>j!j>r

2C r�1 a b !�1 d!

+

Z
2r>j!j>r

C r�2 a d!

� a b2 r�1 + 4C a b r�1 + 2C a r�1

� C 0 a b2 r�1 :
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Now

jf(x0) � jf1(x0)j+ jf2(x0)j

� 4 a r + C 0 a b2 r�1 jx0j
�2

= (4 + C 0) a b jx0j
�1

= C 00 a b jx0j
�1 :

Proof of Theorem 1.1. We decompose the regular representation

of G using Fourier transform in y variable. In coordinates

L = ��x �

X
exp (�2�j(x)) @2yj ;

where �x =
P

@2xj .

If we denote by Hz the Fourier transform (in y variable) of L at z,

then

Hz = ��x +
X

z2j exp (�2�j(x)) :

ReHz � 0, provided that Re zj > Im zj , j = 1; : : : ;m, so z 7�!

exp (�tHz) is bounded holomorphic in the area given by the inequali-

ties.

Considering (t+ i s)Hz we see that exp (�(t+ i s)Hz) is bounded

and holomorphic as long as Re (t+ i s) z2j � 0, j = 1; : : : ;m. Moreover,

we can estimate the integral kernels

k exp (�(2 t+i s)Hz) �0kL2 � k exp (�(t+i s)Hz)k k exp (�tHz) �0kL2 :

By the Feynmann-Kac formula

k exp (�tHz) �0kL2 � kqtkL2 = c t�n=4 ;

where qt is ordinary euclidean heat kernel.

Consequently, by the Cauchy integral formula (for real z)

k@�z exp (�(t+i s)Hz) �0kL2 � C� jz1j
��1

� � � jzmj
��m

�
1+

jsj

t

�j�j
t�n=4 :

Applying Lemma 1.3 m times we get

k exp (�(t + i s)L)(�; y)kL2 � C 00 (jy1j � � � jymj)
�1
�

1 +
jsj

t

�m
t�n=4 :
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In [14] (as the �rst step in proof of Theorem 1.1) we proved that

(1.4)

Z
j exp (�(1 + i s)L)(g)j ed(g;0) dg � C exp(C s2) ;

where d(x; y) is the optimal control distance associated to L. One easily

checks that

fg : d(g; 0) < rg � f(x; y) : jxj < r; jyj < cd exp (cd r)g :

To estimate L1 norm we put r = C s2, c = cd C, Aj = f(x; y) : jxj <

C s2; jyj j < exp (�mc s2); jylj < exp (c s2); l 6= jg. Note jAjj � C s2n.

We have

k exp(�(1 + i s)L)kL1

�

Z
d(g;0)>r

j exp (�(1 + i s)L)(g)j dg

+

Z
jxj<cs2

exp(�mcs2)�jyj j�exp(cs
2)

j exp (�(1 + i s)L)((x; y))j dx dy

+
X
j

Z
Aj

j exp (�(1 + i s)L)j(g) dg

= I1 + I0 +
X

Ij :

For I1 we use exponential estimate (1.4)

Z
d(g;0)>r

j exp (�(1 + i s)L)(g)j dg

� e�r
Z
j exp (�(1 + i s)L)(g)j exp(d(g; 0)) dg

� exp (�C s2)C exp (C s2) = C :

Next

Ij � jAj j
1=2

k exp (�(1 + i s)L)kL2 � C jsjn :
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Finally

I0 =

Z
exp(�mcs2)�jyj j�exp(cs2)

Z
jxj<Cs2

j exp (�(1 + i s)L)(x; y)j dx dy

�

Z
exp(�mcs2)�jyj j�exp(cs2)

jfx : jxj < c s2gj1=2

� k exp (�(1 + i s)L)(�; y)kL2 dy

�

Z
exp(�mcs2)�jyj j�exp(cs2)

c snC 00(jy1j � � � jymj)
�1 (1 + jsj)m dy

� C jsjn(1 + jsj)m
�

2

Z exp(cs2)

exp(�mcs2)

jy1j
�1 dy1

�m
� C jsjn (1 + jsj)m ((m + 1) c s2)m

� C 0 (1 + jsjn+3m) :

2. Final remarks.

Our goal was to present the idea, so we used simple arguments

even though we got weaker end result. If the estimates are done in a

more involved way one may replace n+3m in Theorem 1.1 by a smaller

number (we checked that (n + 3m)=2 is enough), however we expect

that in Thorem 1.2 it is enough to have more than n=2 +m derivatives

in L2, and getting this requires new ideas. Also, constants in Theorem

1.2 grow exponentially with the diameter of support of F . We may

get polynomial growth, but we would like to have a uniform bound on

kF (tL)kL1.
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