An elliptic semilinear equation with source term involving boundary measures: the subcritical case

Marie-Francoise Bidaut-Véron and Laurent Vivier

Abstract. We study the boundary behaviour of the nonnegative solutions of the semilinear elliptic equation in a bounded regular domain Ω of $\mathbb{R}^{N}(N \geq 2)$,

$$
\begin{cases}\Delta u+u^{q}=0, & \text { in } \Omega \\ u=\mu, & \text { on } \partial \Omega\end{cases}
$$

where $1<q<(N+1) /(N-1)$ and μ is a Radon measure on $\partial \Omega$. We give a priori estimates and existence results. They lie on the study of the superharmonic functions in some weighted Marcinkiewicz spaces.

1. Introduction.

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with a C^{2} boundary $\partial \Omega$. Here we study the behaviour near the boundary of the nonnegative solutions of the semilinear elliptic equation

$$
\begin{equation*}
-\Delta u=u^{q}, \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

where $1<q<(N+1) /(N-1)$. By solution of (1.1) we mean any function u such that $u^{q} \in L_{\mathrm{loc}}^{1}(\Omega)$ and satisfying the equation in $\mathcal{D}^{\prime}(\Omega)$.

We denote by $\rho(x)$ the distance from any point $x \in \Omega$ to $\partial \Omega$, and by $B(x, r)$ the open ball of center x and radius $r>0$. Let \mathcal{G} be the Green function of the Laplacian in Ω, defined on the set $\{(x, y) \in$ $\bar{\Omega} \times \bar{\Omega}: \quad x \neq y\}$. Let \mathcal{P} be the Poisson kernel defined on $\Omega \times \partial \Omega$ by $\mathcal{P}(x, z)=-\partial \mathcal{G}(x, z) / \partial n$. We call $\mathcal{M}(\Omega)$ and $\mathcal{M}(\partial \Omega)$ the spaces of Radon measures on Ω and $\partial \Omega$, and $\mathcal{M}^{+}(\Omega)$ and $\mathcal{M}^{+}(\partial \Omega)$ the cones of nonnegative ones.

Observe that any nonnegative and superharmonic function U in Ω satisfies $U \in L_{\text {loc }}^{1}(\Omega)$. From the Herglotz theorem, there exist some unique $\varphi \in \mathcal{M}^{+}(\Omega)$ and $\mu \in \mathcal{M}^{+}(\partial \Omega)$ such that U admits the integral representation

$$
\begin{equation*}
U=G(\varphi)+P(\mu) \tag{1.2}
\end{equation*}
$$

where, for almost any $x \in \Omega$,

$$
\begin{equation*}
G(\varphi)(x)=\int_{\Omega} \mathcal{G}(x, y) d \varphi(y), \quad P(\mu)(x)=\int_{\partial \Omega} \mathcal{P}(x, z) d \mu(z) \tag{1.3}
\end{equation*}
$$

moreover $\int_{\Omega} \rho d \varphi<+\infty$. Reciprocally, for any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho d|\varphi|<+\infty$ and $\mu \in \mathcal{M}(\partial \Omega)$, the function U defined by (1.2) lies in $L_{\text {loc }}^{1}(\Omega)$, and satisfies

$$
-\Delta U=\varphi, \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

see for example [12]. We shall say that U is the integral solution of problem

$$
\begin{cases}-\Delta U=\varphi, & \text { in } \Omega \tag{1.4}\\ U=\mu, & \text { on } \partial \Omega\end{cases}
$$

Hence any solution u of (1.1) in Ω satisfies $\int_{\Omega} \rho u^{q} d x<+\infty$, and there exists a measure $\mu \in \mathcal{M}^{+}(\partial \Omega)$ such that

$$
\begin{cases}-\Delta u=u^{q}, & \text { in } \Omega \tag{1.5}\\ u=\mu, & \text { on } \partial \Omega\end{cases}
$$

in the integral sense. Our aim is to give a priori estimates for any solution of equation (1.1) near the boundary, and also to obtain existence results for a given measure μ on $\partial \Omega$.

The problem with the other sign

$$
\begin{cases}\Delta u=u^{q}, & \text { in } \Omega \tag{1.6}\\ u=\mu, & \text { on } \partial \Omega\end{cases}
$$

has been studied in [20] and [24] in the subcritical case $1<q<(N+$ $1) /(N-1)$, and in the supercritical case in [25]. Another approach coming from the probabilistic point of view is done in [14], [15], [22], which gives results in agreement with the previous ones in the case $1<q \leq 2$. It seems that the probabilistic techniques do not apply to our case. Our approach has to be compared to the methods of P. L. Lions used in [23] for the problem of an interior isolated singularity. Our proofs lie essentially on the study of the superharmonic functions in some weighted Marcinkiewicz spaces.

Let us recall some classical results for the interior problem for a better understanding. Let $x_{0} \in \Omega$ and consider any nonnegative solution $w \in C^{2}\left(\Omega \backslash\left\{x_{0}\right\}\right)$ of the equation

$$
\begin{equation*}
-\Delta w=w^{q}, \quad \text { in } \Omega \backslash\left\{x_{0}\right\} \tag{1.7}
\end{equation*}
$$

When $1<q<N /(N-2)$, one can give upper and lower bounds by using Serrin's methods of [28], see for example [4, Lemma 6.4]. The precise behaviour of w was obtained in [23]. First $w^{q} \in L_{\mathrm{loc}}^{1}(\Omega)$, and there exists some $\gamma \geq 0$ such that

$$
\begin{equation*}
-\Delta w=w^{q}+\gamma \delta_{0}, \quad \text { in } \mathcal{D}^{\prime}(\Omega) \tag{1.8}
\end{equation*}
$$

from the Brézis-Lions Lemma, see [9]. Then the following estimates hold near x_{0}

$$
\begin{equation*}
\gamma E\left(x_{0}, x\right) \leq w(x) \leq \gamma E\left(x_{0}, x\right)(1+o(1)) \tag{1.9}
\end{equation*}
$$

when $\gamma>0$, where E is the fundamental solution of the Laplace equation. And the remaining term can be precised according to the values of N, q, see [23]. The function w can be extended as a function $w \in C^{2}(\Omega)$ if $\gamma=0$. Concerning the existence of solutions of (1.8) for a given γ, there exists some finite positive γ^{*} such that the equation (1.8) admits a solution $w \geq 0$, with $w=0$ on $\partial \Omega$, if and only if $\gamma \in\left[0, \gamma^{*}\right]$. If $q \geq N /(N-2)$, then $\gamma=0$, see again [23]. If moreover $q \leq(N+2) /(N-2)$, we have the estimate near x_{0}

$$
\begin{equation*}
w(x) \leq C\left|x-x_{0}\right|^{-2 /(q-1)} \tag{1.10}
\end{equation*}
$$

with $C=C(N, q)$, see [17] and [11].
Now let us come back to the boundary problem. As in [20] we can define another concept of solution. Let $C_{0}^{1,1}(\bar{\Omega})$ be the space of C^{1} functions vanishing on $\partial \Omega$ with Lipschitz continuous gradient. For any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho d|\varphi|<+\infty$ and any $\mu \in \mathcal{M}(\partial \Omega)$, we shall say that a function U is weak solution of problem (1.4) if $U \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\int_{\Omega} U(-\Delta \xi) d x=\int_{\Omega} \xi d \varphi-\int_{\partial \Omega} \frac{\partial \xi}{\partial n} d \mu \tag{1.11}
\end{equation*}
$$

for any $\xi \in C_{0}^{1,1}(\bar{\Omega})$. In Section 2, we first verify that the integral solution coincides with the weak one, and hence is in $L^{1}(\Omega)$. Then we give regularity results of the general weak solution U of (1.4) in some Marcinkiewicz spaces with a weight of the form $\rho^{\beta}(\beta \in \mathbb{R})$. They lie on precise estimates of the Green and Poisson kernel. Up to our knowledge, most of them are new, more especially as the measure φ may be unbounded, and can present an interest in themselves. They are fundamental to obtain a priori estimates and existence results for the problem (1.5), above all in the most delicate case $N /(N-1) \leq q<$ $(N+1) /(N-1)$.

In Section 3, we give an a priori estimate for the function $G\left(P^{q}(\mu)\right)$, for any $\mu \in \mathcal{M}^{+}(\partial \Omega)$:

Theorem 1.1. Assume that $1<q<(N+1) /(N-1)$. Then $P^{q}(\mu) \in$ $L^{1}(\Omega, \rho d x)$ for any $\mu \in \mathcal{M}^{+}(\partial \Omega)$, and there exists a constant $K=$ $K(N, \Omega, q)$ such that,

$$
\begin{equation*}
G\left(P^{q}(\mu)\right) \leq K \mu(\partial \Omega)^{q-1} P(\mu), \quad \text { in } \Omega \tag{1.12}
\end{equation*}
$$

This result is interesting from two points of view. Above all it allows to construct supersolutions, hence to get existence results. Concerning the a priori estimates for (1.5), setting $u=P(\mu)+v$, the function v satisfies

$$
v=G\left(u^{q}\right) \leq 2^{q-1}\left(G\left(P^{q}(\mu)\right)+G\left(v^{q}\right)\right), \quad \text { almost everywhere in } \Omega
$$

hence any estimate on $G\left(P^{q}(\mu)\right)$ gives informations on v.
In Section 4 we prove our main result, which is an a priori estimate of any solution of (1.5) in terms of the solution $P(\mu)$ of the associated
linear problem. It lies on the results of Section 2. It also uses the estimate (1.12), which in fact can be shown almost as a necessary condition of existence of solutions, by using recent techniques of [8].

Theorem 1.2. Assume that $1<q<(N+1) /(N-1)$. Let $\mu \in$ $\mathcal{M}^{+}(\partial \Omega)$, and u be any nonnegative solution of (1.5). Then there exists a constant $C=C(N, q, \Omega, \mu(\partial \Omega))$, such that

$$
\begin{equation*}
P(\mu) \leq u \leq C(P(\mu)+\rho), \quad \text { in } \Omega \tag{1.13}
\end{equation*}
$$

(and $u \in C^{\infty}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$ for any $\alpha \in(0,1)$ if $\mu=0$).
More precisely, if $\mu=\sigma \delta_{a}$ for some $a \in \partial \Omega$ and $\sigma>0$, then near the point a,

$$
\begin{equation*}
\sigma P\left(\delta_{a}\right)(x) \leq u(x) \leq \sigma P\left(\delta_{a}\right)(x)\left(1+O\left(|x-a|^{N+1-(N-1) q}\right)\right) \tag{1.14}
\end{equation*}
$$

This result applies in particular to any solution u of (1.1), such that $u \in C(\bar{\Omega} \backslash\{a\})$ and $u=0$ on $\partial \Omega \backslash\{a\}$, since its trace is necessarily of the form $\mu=\sigma \delta_{a}$ for some $\sigma \geq 0$. Notice also that in case $q<$ $(N+1) /(N-1)$, Theorem 1.2 extends some a priori estimates of [13], [18] to the case of unbounded boundary data.

In Section 5, we use for proving our second main theorem, which gives existence results.

Theorem 1.3. Assume that $1<q<(N+1) /(N-1)$. Let $\mu \in \mathcal{M}^{+}(\partial \Omega)$ with $\mu(\partial \Omega)=1$, and $\sigma \geq 0$. Then there exists some finite positive σ^{*} such that the problem

$$
\mathcal{S}_{\sigma} \equiv \begin{cases}-\Delta u=u^{q}, & \text { in } \Omega \tag{1.15}\\ u=\sigma \mu, & \text { on } \partial \Omega\end{cases}
$$

admits a solution if and only if $\sigma \in\left[0, \sigma^{*}\right]$.
The existence of solutions for small σ is a direct consequence of Theorem 1.1. The existence of an interval $\left[0, \sigma^{*}\right]$ is an adaptation of some results of [8].

In conclusion, in the subcritical case we have completely extended the results of an interior punctual singularity to any boundary measure singularity. The next step, that is the study of the case $q \geq(N+$ $1) /(N-1)$, is still open.

Note added in proof. In the moment this article was in printing, we received a preprint of H. Amann and P. Quittner [1], where they consider more general problems with interior and boundary bounded measures, and use duality methods. In case of problem (1.5), they get a regularity result in $W^{1-\varepsilon, 1}(\Omega)$ for any $\varepsilon \in(0,1)$, and prove the existence of at least two solutions, under the condition $q<N /(N-1)$.

2. Regularity of the weak solutions.

2.1. About the Green and Poisson kernels.

Here we recall and complete some classical estimates for the Green function and the Poisson kernel. For almost any $y \in \Omega$ and $z \in \partial \Omega$, the functions $\mathcal{G}(\cdot, y)$ and $\mathcal{P}(\cdot, z)$ are the integral solutions of

$$
\left\{\begin{array} { l l }
{ - \Delta \mathcal { G } (\cdot , y) = \delta _ { y } , } & { \text { in } \Omega , } \\
{ \mathcal { G } (\cdot , y) = 0 , } & { \text { on } \partial \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
-\Delta \mathcal{P}(\cdot, z)=0, & \text { in } \Omega \\
\mathcal{P}(\cdot, z)=\delta_{z}, & \text { on } \partial \Omega
\end{array}\right.\right.
$$

where δ_{y}, δ_{z} are the Dirac masses at points $y \in \Omega$, and $z \in \partial \Omega$.
Proposition 2.1. There exists a constant $c_{N}=c_{N}(N, \Omega)$ such that:
i) For any $(x, y) \in \Omega \times \Omega$ with $x \neq y$,

$$
\begin{gather*}
\mathcal{G}(x, y) \leq \begin{cases}c_{N}|x-y|^{2-N}, & \text { if } N \geq 3, \\
c_{2}(1+|\ln | x-y| |), & \text { if } N=2,\end{cases} \tag{2.1}\\
\mathcal{G}(x, y) \leq c_{N} \rho(x)|x-y|^{1-N}, \tag{2.2}\\
\mathcal{G}(x, y) \leq c_{N} \rho(x) \rho(y)|x-y|^{-N}, \tag{2.3}\\
\mathcal{G}(x, y) \leq \begin{cases}c_{N} \frac{\rho(x)}{\rho(y)}|x-y|^{2-N}, & \text { if } N \geq 3, \\
c_{2} \frac{\rho(x)}{\rho(y)}(1+|\ln | x-y| |), & \text { if } N=2,\end{cases} \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\nabla_{x} \mathcal{G}(x, y)\right| \leq c_{N}|x-y|^{1-N}, \tag{2.5}
\end{equation*}
$$

$$
\begin{align*}
\left|\nabla_{x} \mathcal{G}(x, y)\right| \leq c_{N} \rho(y)|x-y|^{-N} \tag{2.6}\\
\left|\nabla_{x} \mathcal{G}(x, y)\right| \leq c_{N} \frac{\rho(y)}{\rho(x)}|x-y|^{1-N} \tag{2.7}
\end{align*}
$$

ii) For any $(x, z) \in \Omega \times \partial \Omega$,

$$
\begin{align*}
c_{N}^{-1} \rho(x)|x-z|^{-N} & \leq \mathcal{P}(x, z) \\
& \leq c_{N} \rho(x)|x-z|^{-N} \tag{2.8}\\
& \leq c_{N}|x-z|^{1-N} \\
\left|\nabla_{x} \mathcal{P}(x, z)\right| & \leq c_{N}|x-z|^{-N} . \tag{2.9}
\end{align*}
$$

Proof. But for (2.4) and (2.7), all these estimates are well known. They are deduced from the explicit expression of \mathcal{G} in an half-space, and extended to any C^{2} bounded open set. For the lower estimate of (2.8), see [21]. Let us prove (2.4): it is a consequence of (2.1) and (2.2). Indeed that is true in the set $\{\rho(y) \leq 2 \rho(x)\}$. Now suppose $\rho(y)>2 \rho(x)$. Let $x^{*} \in \partial \Omega$ such that $\left|x-x^{*}\right|=\rho(x)$. Then

$$
|x-y| \geq\left|x^{*}-y\right|-\left|x^{*}-x\right| \geq \rho(y)-\rho(x) \geq \frac{\rho(y)}{2}
$$

hence (2.2) implies if $N \geq 3$

$$
\mathcal{G}(x, y) \leq c_{N} \frac{\rho(x)}{|x-y|}|x-y|^{2-N} \leq 2 c_{N} \frac{\rho(x)}{\rho(y)}|x-y|^{2-N},
$$

thus (2.4) holds with a new constant c_{N}; likewise if $N=2$. Similarly (2.5) and (2.6) imply (2.7).

Remark 2.1. Notice that (2.2) can be deduced from (2.1) and (2.5) when $N \geq 3$. Indeed (2.1) implies (2.2) in the set $\{|x-y| \leq 2 \rho(x)\}$. Now suppose that $|x-y|>2 \rho(x)$. Defining x^{*} as above, we have $\left[x, x^{*}\right) \subset \Omega$, and from (2.5),

$$
\begin{aligned}
\mathcal{G}(x, y) & =\left|\mathcal{G}(x, y)-\mathcal{G}\left(x^{*}, y\right)\right| \\
& \leq\left|x-x^{*}\right| \sup _{t \in\left[x, x^{*}\right)}\left|\nabla_{x} \mathcal{G}(t, y)\right| \\
& \leq c_{N} \rho(x) \sup _{t \in\left[x, x^{*}\right)}|y-t|^{1-N} \leq 2^{N-1} c_{N} \rho(x)|x-y|^{1-N},
\end{aligned}
$$

since $|y-t| \geq|y-x|-|t-x| \geq|y-x|-\rho(x) \geq|x-y| / 2$. Hence (2.2) holds. Similarly (2.2) and (2.6) imply (2.3) for any $N \geq 2$. And (2.6) also implies the upper estimate (2.8), since $\mathcal{P}(x, z)=-\partial \mathcal{G}(x, y) / \partial n$ and \mathcal{G} is of class C^{1} in the set $\{(x, y) \in \bar{\Omega} \times \bar{\Omega}: x \neq y\}$. The estimates (2.2), (2.5) and (2.6) are proved in [33] in the more general framework of a Lyapounov open set. And (2.9) is proved in a $C^{1, \alpha}$ open set in [26].

As a consequence we can compare the integral and weak solutions of (1.4):

Corollary 2.2. For any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho d|\varphi|<+\infty$ and any $\mu \in \mathcal{M}(\partial \Omega)$, a function U is weak solution of problem (1.4) if and only if it is given by the representation (1.2). Consequently, (1.4) has a unique weak solution U in $L^{1}(\Omega)$, and

$$
\begin{equation*}
\|U\|_{L^{1}(\Omega)} \leq C\left(\int_{\Omega} \rho d|\varphi|+\int_{\partial \Omega} d|\mu|\right) \tag{2.10}
\end{equation*}
$$

for some constant $C=C(N, \Omega)$.
Proof. By considering the positive and negative parts of φ and μ, we can assume that the two measures are nonnegative. Let us prove that the integral solution U is a weak solution. The main point is to prove that $U \in L^{1}(\Omega)$. From (2.2) and (2.8),

$$
\begin{align*}
\int_{\Omega \times \Omega} \mathcal{G}(x, y) d x d \varphi(y) & \leq c_{N} \int_{\Omega}\left(\int_{\Omega}|x-y|^{1-N} d x\right) \rho(y) d \varphi(y) \tag{2.11}\\
& \leq C \int_{\Omega} \rho d \varphi,
\end{align*}
$$

with another constant $C=C(N, \Omega)$, and

$$
\begin{align*}
\int_{\Omega \times \partial \Omega} \mathcal{P}(x, z) d x d \mu(z) & \leq c_{N} \int_{\Omega}\left(\int_{\partial \Omega}|x-z|^{1-N} d x\right) d \mu(z) \tag{2.12}\\
& \leq C \int_{\partial \Omega} d \mu
\end{align*}
$$

hence $U \in L^{1}(\Omega)$ and

$$
\int_{\Omega} U(x) d x \leq C\left(\int_{\Omega} \rho d \varphi+\int_{\partial \Omega} d \mu\right)
$$

Now for any $\xi \in C_{0}^{1,1}(\bar{\Omega})$, we have

$$
\begin{gathered}
\mathcal{G}(x, y) \Delta \xi(x) \in L^{1}(\Omega \times \Omega, d x d \varphi(y)) \\
\mathcal{P}(x, z) \Delta \xi(x) \in L^{1}(\Omega \times \partial \Omega, d x d \mu(z))
\end{gathered}
$$

from (2.11) and (2.12). Then U is a weak solution from the Fubini theorem, and (2.10) follows. Reciprocally, if U is a weak solution of problem (1.4), then $-\Delta U=\varphi$ in $\mathcal{D}^{\prime}(\Omega)$, and there exists a unique measure $\widetilde{\mu} \in \mathcal{M}^{+}(\partial \Omega)$ such that $U=G(\varphi)+P(\widetilde{\mu})$. Then U is a weak solution for the problem with data φ and $\widetilde{\mu}$. Hence for any $\xi \in C_{0}^{1,1}(\bar{\Omega})$,

$$
\int_{\partial \Omega} \frac{\partial \xi}{\partial n} d \mu=\int_{\partial \Omega} \frac{\partial \xi}{\partial n} d \widetilde{\mu}
$$

which implies $\widetilde{\mu}=\mu$. Then U is the integral solution of (1.4), and (2.10) follows again.

Remark 2.2. Thus for any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho d|\varphi|<+\infty$ and any $\mu \in \mathcal{M}(\partial \Omega)$, the problem (1.4) is well posed in $L^{1}(\Omega)$. We find again in a very short way the result of [7] where φ is a measurable function with $\rho \varphi \in L^{1}(\Omega)$ and $\mu \in L^{1}(\partial \Omega)$.

The lower estimate of the Poisson kernel (2.8) also shows that the value $q=(N+1) /(N-1)$ is a natural barrier for the problem (1.5):

Corollary 2.3. Assume that $q \geq(N+1) /(N-1)$. Then problem (1.5) has no solution for a positive measure concentrated at some point $a \in \partial \Omega$.

Proof. For any $\mu \in \mathcal{M}^{+}(\partial \Omega)$, if (1.5) has a solution u, then $u \geq$ $P(\mu)$, but $\rho u^{q} \in L^{1}(\Omega)$, hence also $\rho P^{q}(\mu)$. Suppose that $\mu>0$ with $\operatorname{supp} \mu=\{a\}$, that means $\mu=\sigma \delta_{a}$ for some $\sigma>0$. From (2.8), we have

$$
\begin{aligned}
\int_{\Omega} P^{q}\left(\delta_{a}\right) \rho d x & \geq c_{N}^{-q} \int_{\Omega}|x-a|^{-N q} \rho^{q+1} d x \\
& \geq 2^{-(q+1)} c_{N}^{-q} \int_{\{x \in \Omega|\rho(x) \geq|x-a| / 2\}}|x-a|^{q+1-N q} d x
\end{aligned}
$$

But the set $\{x \in \Omega: \rho(x) \geq|x-a| / 2\}$ contains the intersection of a cone of vertex a and angle $\pi / 3$ with a small ball of center a. Hence the
integral is divergent, since $q \geq(N+1) /(N-1)$. Then we arrive to a contradiction.

2.2. Regularity of $G(\varphi)$ and $P(\mu)$.

Now we are going to complete the estimate (2.10) by much more precise estimates of the functions $G(\varphi)$ and $P(\mu)$ in Marcinkiewicz weighted spaces, with a power of the distance ρ as a weight function. Let us recall their definition. For any $k \in \mathbb{R}$ with $k \geq 1$, and any positive weight function $\eta \in C(\Omega)$, we denote by $L^{k}(\Omega, \eta d x)$ the space of measurable functions v on Ω such that

$$
\|v\|_{L^{k}(\Omega, \eta d x)}=\left(\int_{\Omega}|v|^{k} \eta d x\right)^{1 / k}<+\infty
$$

and the Marcinkiewicz space $M^{k}(\Omega, \eta d x)$ is the space of measurable functions v on Ω such that

$$
\sup _{\lambda>0} \lambda\left(\int_{\{x \in \Omega:|v(x)| \geq \lambda\}} \eta d x\right)^{1 / k}<+\infty
$$

And for any $k>1, M^{k}(\Omega, \eta d x)$ is also the normed space of the v such that

$$
\|v\|_{M^{k}(\Omega, \eta d x)}=\sup \frac{\int_{\omega}|v| \eta d x}{\left(\int_{\omega} \eta d x\right)^{1-1 / k}}<+\infty
$$

where the supremum is taken over the measurable subsets ω of Ω such that $\int_{\omega} \eta d x$ is finite. We have $L^{k}(\Omega, \eta d x) \subset M^{k}(\Omega, \eta d x)$. If $\eta \in L^{1}(\Omega)$ (in particular $\eta=\rho^{\beta}$ with $\beta>-1$), then

$$
M^{k}(\Omega, \eta d x) \subset L^{m}(\Omega, \eta d x), \quad \text { for any } m \in[1, k)
$$

If $\eta \equiv 1, L^{k}(\Omega, \eta d x)=L^{k}(\Omega)$, and $M^{k}(\Omega, \eta d x)=M^{k}(\Omega)$.
Recall that the solution w of the interior problem (1.7) lies in $M_{\mathrm{loc}}^{N /(N-2)}(\Omega)$ if $N \geq 3$, and in $L_{\mathrm{loc}}^{p}(\Omega)$ for any $p \geq 1$ if $N=2$, see [9]. On the other part, from [20] and Corollary 2.2, for any nonnegative $\mu \in$ $L^{1}(\partial \Omega)$, the function $P(\mu)$ lies in $M^{N /(N-1)}(\Omega) \cap M^{(N+1) / N-1)}(\Omega, \rho d x)$. The following Lemma extends the techniques used in [2] and [20]:

Lemma 2.4. Let ν be a nonnegative bounded Radon measure on $D=$ Ω or $\partial \Omega$, and $\eta \in C(\Omega)$ be a positive weight function. Let \mathcal{H} be a continuous nonnegative function on $\{(x, t) \in \Omega \times D: x \neq t\}$. For any $\lambda>0$, we set

$$
\begin{gather*}
A_{\lambda}(t)=\{x \in \Omega \backslash\{t\}: \mathcal{H}(x, t)>\lambda\}, \tag{2.13}\\
m_{\lambda}(t)=\int_{A_{\lambda}(t)} \eta d x . \tag{2.14}
\end{gather*}
$$

Suppose that for some $C \geq 0$ and $k>1$

$$
\begin{equation*}
m_{\lambda}(t) \leq C \lambda^{-k}, \quad \text { for all } \lambda>0 \tag{2.15}
\end{equation*}
$$

Then the function

$$
\begin{equation*}
x \in \Omega \longmapsto H(x)=\int_{D} \mathcal{H}(x, t) d \nu(t) \tag{2.16}
\end{equation*}
$$

is in $M^{k}(\Omega, \eta d x)$ and

$$
\begin{equation*}
\|H\|_{M^{k}(\Omega, \eta d x)} \leq\left(1+\frac{k}{k-1} C\right) \nu(D) \tag{2.17}
\end{equation*}
$$

Proof. Let ω be any measurable subset of Ω such that $\int_{\omega} \eta d x$ is finite. Then for any $\lambda>0$, and any $t \in D$,

$$
\int_{\omega} \mathcal{H}(x, t) \eta(x) d x \leq \int_{A_{\lambda}(t)} \mathcal{H}(x, t) \eta(x) d x+\lambda \int_{\omega} \eta(x) d x
$$

with

$$
\begin{aligned}
\int_{A_{\lambda}(t)} \mathcal{H}(x, t) \eta(x) d x & =-\int_{\lambda}^{+\infty} \theta d m_{\theta}(t)=\lambda m_{\lambda}(t)+\int_{\lambda}^{+\infty} m_{\theta}(t) d \theta \\
& \leq \frac{k}{k-1} C \lambda^{1-k}
\end{aligned}
$$

Choosing $\lambda=\left(\int_{\omega} \eta d x\right)^{-1 / k}$, we get

$$
\int_{\omega} \mathcal{H}(x, t) \eta(x) d x \leq\left(1+\frac{k}{k-1} C\right)\left(\int_{\omega} \eta d x\right)^{1-1 / k}
$$

and by integration over D with respect to the measure ν,

$$
\begin{aligned}
\int_{\omega} H(x) \eta(x) d x & =\int_{\omega} \int_{D} \mathcal{H}(x, t) \eta(x) d x d \nu(t) \\
& \leq\left(1+\frac{k}{k-1} C\right) \nu(D)\left(\int_{\omega} \eta d x\right)^{1-1 / k},
\end{aligned}
$$

hence the conclusion.

Let us first complete the estimates of [20] for the function $P(\mu)$:
Theorem 2.5. For any $\mu \in \mathcal{M}(\partial \Omega)$, let $\Psi=P(\mu)$ be the solution of the problem

$$
\begin{cases}-\Delta \Psi=0, & \text { in } \Omega \tag{2.18}\\ \Psi=\mu, & \text { on } \partial \Omega\end{cases}
$$

Then

$$
\begin{equation*}
\Psi \in M^{(N+\beta) /(N-1)}\left(\Omega, \rho^{\beta} d x\right) \tag{2.19}
\end{equation*}
$$

for any $\beta>-1$, and

$$
\begin{equation*}
|\nabla \Psi| \in M^{(N+\gamma) / N}\left(\Omega, \rho^{\gamma} d x\right) \tag{2.20}
\end{equation*}
$$

for any $\gamma>0$. Moreover there exists constants $C=C(\Omega, N, \beta)>0$ and $C^{\prime}=C^{\prime}(\Omega, N, \gamma)>0$ such that

$$
\begin{align*}
&\|\Psi\|_{M^{(N+\beta) /(N-1)}\left(\Omega, \rho^{\beta} d x\right)} \leq C|\mu|(\partial \Omega) \tag{2.21}\\
&\||\nabla \Psi|\|_{M^{(N+\gamma) / N}\left(\Omega, \rho^{\gamma} d x\right)} \leq C^{\prime}|\mu|(\partial \Omega) . \tag{2.22}
\end{align*}
$$

Proof. First step: estimate of the function. We can suppose that μ is nonnegative. Let β be a real parameter. We shall apply Lemma 2.4 with

$$
\begin{equation*}
D=\partial \Omega, \quad \eta=\rho^{\beta}, \quad \nu=\mu, \quad \text { and } \quad \mathcal{H}(x, t)=\mathcal{P}(x, t) . \tag{2.23}
\end{equation*}
$$

From (2.8), for any $t \in \partial \Omega$, and any $\lambda>0$, and any $x \in A_{\lambda}(t)$,

$$
\lambda \leq c_{N} \rho(x)|x-t|^{-N} \leq c_{N}|x-t|^{1-N} .
$$

Hence if $\beta \geq 0$,

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-1)}\right)} \rho^{\beta} d x \\
& \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-1)}\right)}|x-t|^{\beta} d x \\
& \leq C \lambda^{-(N+\beta) /(N-1)}
\end{aligned}
$$

If $\beta<0$, then

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-1)}\right)} \rho^{\beta} d x \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-1)}\right)}\left(\lambda \frac{|x-t|^{N}}{c_{N}}\right)^{\beta} d x \\
& \leq C \lambda^{\beta} \int_{0}^{\left.\left(c_{N} / \lambda\right)^{1 /(N-1)}\right)} r^{N-1+N \beta} d r \\
& \leq C \lambda^{-(N+\beta) /(N-1)},
\end{aligned}
$$

under the condition $\beta>-1$. Then Lemma 2.4 gives (2.19) and (2.21).
Second step: estimate of the gradient. Let $i \in\{1, \ldots, N\}$. Here we use Lemma 2.4 with

$$
\begin{equation*}
D=\partial \Omega, \quad \eta=\rho^{\gamma}, \quad \nu=\mu, \quad \text { and } \quad \mathcal{H}(x, t)=\frac{\partial \mathcal{P}(x, t)}{\partial x_{i}} . \tag{2.24}
\end{equation*}
$$

From (2.9), for any $t \in \partial \Omega$, and any $\lambda>0$, and any $x \in A_{\lambda}(t)$,

$$
\lambda \leq c_{N}|x-t|^{-N} .
$$

Then if $\gamma \geq 0$,
$m_{\lambda}(t) \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 / N}\right)} \rho^{\gamma} d x \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 / N}\right)}|x-t|^{\gamma} d x \leq C \lambda^{-(N+\gamma) / N}$.
Hence if $\gamma>0$, the function

$$
Q_{i}(x)=\int_{\partial \Omega} \frac{\partial \mathcal{P}(x, t)}{\partial x_{i}} d \mu(t)
$$

lies in $M^{(N+\gamma) / N}\left(\Omega, \rho^{\gamma} d x\right)$. But $Q_{i}=\partial P(\mu) / \partial x_{i}$ from the derivation theorem, so that (2.20) and (2.22) hold.

Let us now give precise estimates of $G(\varphi)$. They are one of the keys of Theorem 1.2.

Theorem 2.6. For any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho^{\alpha} d|\varphi|<+\infty$, with $\alpha \in[0,1]$, let $\Phi=G(\varphi)$ be the solution of problem

$$
\begin{cases}-\Delta \Phi=\varphi, & \text { in } \Omega, \tag{2.25}\\ \Phi=0, & \text { on } \partial \Omega .\end{cases}
$$

i) Then if $N \geq 3$,

$$
\begin{equation*}
\Phi \in M^{(N+\beta) /(N-2+\alpha)}\left(\Omega, \rho^{\beta} d x\right) \tag{2.26}
\end{equation*}
$$

for any $\beta \in(-N /(N+\alpha-1), \alpha N /(N-2))$ if $\alpha \neq 0$, for any $\beta \in$ $(-N /(N-1), 0]$ if $\alpha=0$. In any case, there exists some $C=C(\Omega, N$, $\alpha, \beta)>0$ such that

$$
\begin{equation*}
\|\Phi\|_{M^{(N+\beta) /(N-2+\alpha)}\left(\Omega, \rho^{\beta} d x\right)} \leq C \int_{\Omega} \rho^{\alpha} d|\varphi| \tag{2.27}
\end{equation*}
$$

If $N=2$, and $\alpha \in(0,1]$,

$$
\begin{equation*}
\Phi \in M^{(2+\beta-\varepsilon) / \alpha}\left(\Omega, \rho^{\beta} d x\right), \tag{2.28}
\end{equation*}
$$

for any $\beta \in(-2 /(1+\alpha),+\infty)$ and $\varepsilon>0$ small enough; if $\alpha=0$, then

$$
\begin{equation*}
\Phi \in M^{p}\left(\Omega, \rho^{\beta} d x\right), \tag{2.29}
\end{equation*}
$$

for any $\beta \in(-2,0]$ and $p \in(\max \{1,-\beta\},+\infty)$; with similar continuity properties in those spaces.
ii) For any $N \geq 2$,

$$
\begin{align*}
& |\nabla \Phi| \in M^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right), \\
& \frac{\Phi}{\rho} \in M^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right), \tag{2.30}
\end{align*}
$$

for any $\gamma \in[0, \alpha N /(N-1))$ if $\alpha \in(0,1)$, any $\gamma \in(0, N /(N-1))$ if $\alpha=1$, and $\gamma=0$ if $\alpha=0$, and there exists some $C^{\prime}=C(\Omega, N, \alpha, \gamma)>0$ such that

$$
\begin{equation*}
\left\||\nabla \Phi|+\frac{\Phi}{\rho}\right\|_{M^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right)} \leq C^{\prime} \int_{\Omega} \rho^{\alpha} d|\varphi| . \tag{2.31}
\end{equation*}
$$

Proof. First step: estimate of the function. Here also we can assume that φ is nonnegative. Let $\alpha \in[0,1]$ be fixed, and β be a real parameter. We have

$$
G(\varphi)(x)=\int_{\Omega} \frac{\mathcal{G}(x, y)}{\rho^{\alpha}(y)} \rho^{\alpha}(y) d \varphi(y) .
$$

We shall apply Lemma 2.4 with

$$
\begin{equation*}
D=\Omega, \quad \eta=\rho^{\beta}, \quad \nu=\rho^{\alpha} \varphi, \quad \text { and } \quad \mathcal{H}(x, t)=\frac{\mathcal{G}(x, t)}{\rho^{\alpha}(t)} \tag{2.32}
\end{equation*}
$$

i) First assume $N \geq 3$. From (2.1) and (2.2), for any $x, t \in \Omega$ with $x \neq t$,

$$
\begin{align*}
\mathcal{G}(x, t) & \leq c_{N}|x-t|^{(2-N)(1-\alpha)}\left(\rho(t)|x-t|^{1-N}\right)^{\alpha} \tag{2.33}\\
& \leq c_{N} \rho^{\alpha}(t)|x-t|^{2-N-\alpha} .
\end{align*}
$$

Moreover, from (2.1) and (2.4),

$$
\begin{align*}
\mathcal{G}(x, t) & \leq c_{N}|x-t|^{(2-N)(1-\alpha)}\left(\frac{\rho(t)}{\rho(x)}|x-t|^{2-N}\right)^{\alpha} \\
& \leq c_{N} \frac{\rho^{\alpha}(t)}{\rho^{\alpha}(x)}|x-t|^{2-N} \tag{2.34}
\end{align*}
$$

and from (2.2) and (2.3),

$$
\begin{align*}
\mathcal{G}(x, t) & \leq c_{N}\left(\rho(x)|x-t|^{1-N}\right)^{(1-\alpha)}\left(\rho(x) \rho(t)|x-t|^{-N}\right)^{\alpha} \\
& \leq c_{N} \rho(x) \rho^{\alpha}(t)|x-t|^{1-N-\alpha} . \tag{2.35}
\end{align*}
$$

Then for any $\lambda>0$, and any $x \in A_{\lambda}(t)$, from (2.33)

$$
\begin{equation*}
\lambda \leq c_{N}|x-t|^{2-N-\alpha}, \tag{2.36}
\end{equation*}
$$

and from (2.34) and (2.35),
(2.37) $\quad \rho^{\alpha}(x) \leq \frac{c_{N}}{\lambda}|x-t|^{2-N} \quad$ and $\quad \rho(x) \geq \frac{\lambda}{c_{N}}|x-t|^{N-1+\alpha}$.

First suppose that $\alpha>0$ and $\beta>0$. Then

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-2+\alpha)}\right)} \rho^{\beta} d x \\
& \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-2+\alpha))}\right.}\left(\left(\frac{c_{N}}{\lambda}\right)|x-t|^{2-N}\right)^{\beta / \alpha} d x \\
& \leq C \lambda^{-\beta / \alpha} \int_{0}^{\left(c_{N} / \lambda\right)^{1 /(N-2+\alpha)}} r^{N-1-(N-2) \beta / \alpha} d r \\
& \leq C \lambda^{-(N+\beta) /(N-2+\alpha)},
\end{aligned}
$$

under the condition $\beta<\alpha N /(N-2)$. Now suppose that $\beta \leq 0$. Then

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-2+\alpha)}\right)} \rho^{\beta} d x \\
& \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-2+\alpha)}\right)}\left(\left(\frac{\lambda}{c_{N}}\right)|x-t|^{N-1+\alpha}\right)^{\beta} d x \\
& \leq C \lambda^{\beta} \int_{0}^{\left(c_{N} / \lambda\right)^{1 /(N-2+\alpha)}} r^{N-1+(N-1+\alpha) \beta} d r \\
& \leq C \lambda^{-(N+\beta) /(N-2+\alpha)},
\end{aligned}
$$

under the condition $\beta>-N /(N-1+\alpha)$. Hence Lemma 2.4 applies and gives the estimates (2.26) and (2.27) for Φ.
ii) Now assume $N=2$. Then (2.33) and (2.34) are replaced by

$$
\begin{gather*}
\mathcal{G}(x, t) \leq c_{2}(1+|\ln | x-t| |)^{(1-\alpha)}\left(\rho(t)|x-t|^{-1}\right)^{\alpha}, \tag{2.38}\\
\mathcal{G}(x, t) \leq c_{2} \frac{\rho^{\alpha}(t)}{\rho^{\alpha}(x)}(1+|\ln | x-t| |), \tag{2.39}
\end{gather*}
$$

and (2.35) is still valid. Then (2.36) and (2.37) become

$$
\begin{gather*}
\lambda \leq c_{2}|x-t|^{-\alpha}(1+|\ln | x-t| |)^{(1-\alpha)} \tag{2.40}\\
\rho^{\alpha}(x) \leq \frac{c_{2}}{\lambda}(1+|\ln | x-t| |) \quad \text { and } \quad \rho(x) \geq \frac{\lambda}{c_{2}}|x-t|^{1+\alpha} . \tag{2.41}
\end{gather*}
$$

First suppose $\alpha \in(0,1]$. Notice that (2.40) and (2.41) imply for any $\varepsilon>0$,

$$
\lambda \leq C_{\varepsilon}|x-t|^{-\alpha-\varepsilon}, \quad \rho^{\alpha}(x) \leq \frac{C_{\varepsilon}}{\lambda}|x-t|^{-\varepsilon},
$$

with $C_{\varepsilon}=C_{\varepsilon}(N, \Omega, \varepsilon)$, since Ω is bounded. If $\beta>0$, then

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t,\left(C_{\varepsilon} / \lambda\right)^{1 /(\alpha+\varepsilon)}\right)} \rho^{\beta} d x \\
& \leq \int_{B\left(t,\left(C_{\varepsilon} / \lambda\right)^{1 /(\alpha+\varepsilon)}\right)}\left(\left(\frac{C_{\varepsilon}}{\lambda}\right)|x-t|^{-\varepsilon}\right)^{\beta / \alpha} d x
\end{aligned}
$$

so that for any small $\varepsilon>0$,

$$
m_{\lambda}(t) \leq C_{\varepsilon}^{\prime} \lambda^{-(2+\beta-\varepsilon) / \alpha}
$$

with $C_{\varepsilon}^{\prime}=C_{\varepsilon}^{\prime}(\Omega, \alpha, \beta, \varepsilon)$, hence $\Phi \in M^{(2+\beta-\varepsilon) / \alpha}\left(\Omega, \rho^{\beta} d x\right)$. In case $\beta \leq 0$, we find

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t,\left(C_{\varepsilon} / \lambda\right)^{1 /(\alpha+\varepsilon)}\right)} \rho^{\beta} d x \\
& \leq C_{\varepsilon} \lambda^{\beta} \int_{0}^{\left(C_{\varepsilon} / \lambda\right)^{1 /(\alpha+\varepsilon)}} r^{1+(1+\alpha) \beta} d r \\
& \leq C_{\varepsilon}^{\prime \prime} \lambda^{\beta-(2+(1+\alpha) \beta) /(\alpha+\varepsilon)}
\end{aligned}
$$

with $C_{\varepsilon}^{\prime \prime}=C_{\varepsilon}^{\prime \prime}(\Omega, \alpha, \beta, \varepsilon)$, under the condition $\beta>-2 /(1+\alpha)$, hence the same conclusion holds. Now suppose $\alpha=0$ and $-2<\beta \leq 0$. Observe that the condition (2.40) implies $|x-t| \leq C_{\Omega} e^{-\lambda / c_{2}}$, with for example $C_{\Omega}=e\left(1+(\operatorname{diam} \Omega)^{2}\right)$. Then from (2.41),

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t, C_{\Omega} e^{\left.-\lambda / c_{2}\right)}\right.} \rho^{\beta} d x \\
& \leq C \lambda^{\beta} \int_{0}^{C_{\Omega} e^{-\lambda / c_{2}}} r^{1+\beta} d r \\
& \leq C \lambda^{\beta} e^{-(\beta+2) \lambda / c_{2}} \\
& \leq C_{p} \lambda^{-p}
\end{aligned}
$$

for any $p>-\beta$, hence $\Phi \in M^{p}\left(\Omega, \rho^{\beta} d x\right)$ for any $p \in(\max \{1,-\beta\},+\infty)$.
Second step: estimate of the gradient and of Φ / ρ. In the same way, we take

$$
\begin{align*}
& D=\Omega, \quad \eta=\rho^{\gamma}, \quad \nu=\rho^{\alpha} \varphi, \quad \text { and } \\
& \mathcal{H}(x, t)=\frac{\partial \mathcal{G}(x, t)}{\partial x_{i}} \frac{1}{\rho^{\alpha}(t)} \quad \text { or } \quad \mathcal{H}(x, t)=\frac{\mathcal{G}(x, t)}{\rho(x)} \frac{1}{\rho^{\alpha}(t)} . \tag{2.42}
\end{align*}
$$

As above, for any $N \geq 2$, from (2.5) and (2.6), for any $x, t \in \Omega$ with $x \neq t$,

$$
\begin{equation*}
\left|\frac{\partial \mathcal{G}(x, t)}{\partial x_{i}}\right| \leq c_{N} \rho^{\alpha}(t)|x-t|^{1-N-\alpha}, \tag{2.43}
\end{equation*}
$$

and similarly from (2.2) and (2.3),

$$
\begin{equation*}
\frac{\mathcal{G}(x, t)}{\rho(x)} \leq c_{N} \rho^{\alpha}(t)|x-t|^{1-N-\alpha} . \tag{2.44}
\end{equation*}
$$

And from (2.5) and (2.7),

$$
\begin{equation*}
\left|\frac{\partial \mathcal{G}(x, t)}{\partial x_{i}}\right| \leq c_{N} \frac{\rho^{\alpha}(t)}{\rho^{\alpha}(x)}|x-t|^{1-N}, \tag{2.45}
\end{equation*}
$$

and similarly from (2.2), which is symmetrical in x and y,

$$
\begin{equation*}
\frac{\mathcal{G}(x, t)}{\rho(x)} \leq \frac{\rho^{\alpha}(t)}{\rho^{\alpha}(x)}|x-t|^{1-N} . \tag{2.46}
\end{equation*}
$$

Then for any $\lambda>0$, and any $x \in A_{\lambda}(t)$, from (2.43) and (2.45), or from (2.44) and (2.46),

$$
\lambda \leq c_{N}|x-t|^{1-N-\alpha}, \quad \text { and } \quad \rho^{\alpha}(x) \leq \frac{c_{N}}{\lambda}|x-t|^{1-N}
$$

First assume that $\alpha>0$ and $\gamma \geq 0$. Then

$$
\begin{aligned}
m_{\lambda}(t) & \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-1+\alpha)}\right)} \rho^{\gamma} d x \\
& \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-1+\alpha)}\right)}\left(\left(\frac{c_{N}}{\lambda}\right)|x-t|^{1-N}\right)^{\gamma / \alpha} d x \\
& \leq C \lambda^{-\gamma / \alpha} \int_{0}^{\left(c_{N} / \lambda\right)^{1 /(N-1+\alpha)}} r^{N-1-(N-1) \gamma / \alpha} d r \\
& \leq C \lambda^{-(N+\gamma) /(N-1+\alpha)},
\end{aligned}
$$

under the condition $\gamma<\alpha N /(N-1)$. Then Lemma 2.4 applies if $\gamma>\alpha-1$, that is $\gamma>0$ in case $\alpha=1$. Now assume $\alpha=\gamma=0$. Then we get directly

$$
m_{\lambda}(t) \leq \int_{B\left(t,\left(c_{N} / \lambda\right)^{1 /(N-1)}\right)} d x \leq C \lambda^{-N /(N-1)}
$$

Hence the functions Φ / ρ and

$$
R_{i}(x)=\int_{\partial \Omega} \frac{\partial \mathcal{G}(x, y)}{\partial x_{i}} d \varphi(y)
$$

lie in $M^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right)$, and satisfy

$$
\left\|\frac{\Phi}{\rho}+\left|R_{1}\right|+\cdots+\left|R_{N}\right|\right\|_{M^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right)} \leq C^{\prime} \int_{\Omega} \rho^{\alpha} d|\varphi| .
$$

In order to obtain (2.30) and (2.31), it remains to prove that $\partial G(\varphi) / \partial x_{i}$ $=R_{i}$ in $\mathcal{D}^{\prime}(\Omega)$. The result is true when $\varphi \in L^{\infty}(\Omega)$: in that case, following the proof of [19, Lemma 4.1], we have $G(\varphi) \in C^{1}(\Omega)$ and $\partial G(\varphi) / \partial x_{i}=R_{i}$ in Ω. In the general case where $\varphi \in \mathcal{M}^{+}(\Omega)$ with

$$
\int_{\Omega} \rho^{\alpha} d \varphi<+\infty
$$

we consider a sequence of nonnegative functions $f_{n} \in L^{\infty}(\Omega)$, bounded in $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$, converging weakly to φ, Then the sequence $\left\{G\left(f_{n}\right)\right\}$ converges in $L^{1}(\Omega)$ to $G(\varphi)$ from (2.10). And $\left\{\partial G\left(f_{n}\right) / \partial x_{i}\right\}$ converges in $L^{1}(\Omega, \rho d x)$ to R_{i}. Hence $\partial G(\varphi) / \partial x_{i}=R_{i}$ in $\mathcal{D}^{\prime}(\Omega)$, and in fact in $L_{\text {loc }}^{1}(\Omega)$.

REmark 2.3. As a consequence, we get estimates of Ψ and Φ in weighted Sobolev spaces. Recall that for any $k>1$, and any real γ,

$$
W^{1, k}\left(\Omega, \rho^{\gamma} d x\right)=\left\{v \in L^{k}\left(\Omega, \rho^{\gamma} d x\right):|\nabla v| \in L^{k}\left(\Omega, \rho^{\gamma} d x\right)\right\}
$$

endowed with the norm

$$
\|v\|_{W^{1, k}\left(\Omega, \rho^{\gamma} d x\right)}=\|v\|_{L^{k}\left(\Omega, \rho^{\gamma} d x\right)}+\|\mid \nabla v\|_{L^{k}\left(\Omega, \rho^{\gamma} d x\right)},
$$

and $W_{0}^{1, k}\left(\Omega, \rho^{\gamma} d x\right)$ is the closure of $\mathcal{D}(\Omega)$ in $W^{1, k}\left(\Omega, \rho^{\gamma} d x\right)$. From [16], it is also given by

$$
W_{0}^{1, k}\left(\Omega, \rho^{\gamma} d x\right)=\left\{u \in L^{k}\left(\Omega, \rho^{\gamma-k} d x\right):|\nabla u| \in L^{k}\left(\Omega, \rho^{\gamma} d x\right)\right\},
$$

if $k \neq \gamma+1$, and

$$
\begin{gathered}
W_{0}^{1, k}\left(\Omega, \rho^{\gamma} d x\right)=\left\{u \in L^{k}\left(\Omega, \rho^{\gamma-k}\left(\ln \left(\frac{R}{\rho}\right)\right)^{-k} d x\right):\right. \\
\left.|\nabla u| \in L^{k}\left(\Omega, \rho^{\gamma} d x\right)\right\},
\end{gathered}
$$

if $k=\gamma+1$, where $R>\max \left\{e^{2}, \operatorname{diam} \Omega\right\}$. And

$$
W_{0}^{1, k}\left(\Omega, \rho^{\gamma} d x\right)=W^{1, k}\left(\Omega, \rho^{\gamma} d x\right), \quad \text { if } \gamma+1 \leq 0 \text { or } \gamma+1>k .
$$

Then one verifies that, for any $\mu \in \mathcal{M}(\partial \Omega)$,

$$
\begin{equation*}
\Psi=P(\mu) \in W^{1, s}\left(\Omega, \rho^{\gamma} d x\right) \tag{2.47}
\end{equation*}
$$

for any $\gamma>0$ and $s \in[1,(N+\gamma) / N)$. And for any $\alpha \in[0,1]$ and any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho^{\alpha} d|\varphi|<+\infty$,

$$
\begin{equation*}
\Phi=G(\varphi) \in W_{0}^{1, s}\left(\Omega, \rho^{\gamma} d x\right) \tag{2.48}
\end{equation*}
$$

for any $\gamma \in[0, N \alpha /(N-1))$ if $\alpha \in(0,1)$, any $\gamma \in(0, N /(N-1))$ if $\alpha=1$, and $\gamma=0$ if $\alpha=0$, and for any $s \in[1,(N+\gamma) /(N-1+\alpha))$. And P and G map bounded subsets into bounded sets in those spaces. For any measure $\varphi \in \mathcal{M}(\Omega)$, one finds again the well-known result $\Phi=G(\varphi) \in W_{0}^{1, s}(\Omega)$ for any $s \in[1, N /(N-1))$.

If $\alpha \in(0,1)$, we can improve the estimates (2.26) and (2.30) by using interpolation in weighted spaces. These results will not be used in the sequel, but they deserve to be mentionned.

Theorem 2.7. Assume that $\alpha \in(0,1)$. Then for any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho^{\alpha} d|\varphi|<+\infty$, and any $N \geq 3$,

$$
\begin{equation*}
G(\varphi) \in L^{(N+\beta) /(N-2+\alpha)}\left(\Omega, \rho^{\beta} d x\right) \tag{2.49}
\end{equation*}
$$

for any $\beta \in(-N /(N-1+\alpha), \alpha N /(N-2))$, and

$$
\begin{equation*}
\|G(\varphi)\|_{L^{(N+\beta) /(N-2+\alpha)}\left(\Omega, \rho^{\beta} d x\right)} \leq C \int_{\Omega} \rho^{\alpha} d|\varphi| \tag{2.50}
\end{equation*}
$$

And for any $N \geq 2$,

$$
\begin{equation*}
|\nabla G(\varphi)|+\frac{G(\varphi)}{\rho} \in L^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right) \tag{2.51}
\end{equation*}
$$

for any $\gamma \in[0, \alpha N /(N-1))$, and

$$
\begin{equation*}
\left\||\nabla G(\varphi)|+\frac{G(\varphi)}{\rho}\right\|_{L^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right)} \leq C^{\prime} \int_{\Omega} \rho^{\alpha} d|\varphi|, \tag{2.52}
\end{equation*}
$$

hence

$$
\begin{equation*}
G(\varphi) \in W_{0}^{1,(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right), \tag{2.53}
\end{equation*}
$$

for any $\gamma \in[0, \alpha N /(N-1))$, and

$$
\begin{equation*}
\|G(\varphi)\|_{W_{0}^{1,(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right)} \leq C \int_{\Omega} \rho^{\alpha} d|\varphi| \tag{2.54}
\end{equation*}
$$

Proof. For a given $k>0$, and any $\alpha_{1}, \alpha_{2} \in[0,1]$ and $\beta_{i, k}>k+\alpha_{i}-N$, $\gamma_{i}>\alpha_{i}-1$, for $i=1,2$, and any $\theta \in(0,1)$ we can verify that the spaces of interpolation are given by

$$
\begin{gathered}
{\left[L^{1}\left(\Omega, \rho^{\alpha_{1}} d x\right), L^{1}\left(\Omega, \rho^{\alpha_{2}} d x\right)\right]_{\theta}=L^{1}\left(\Omega, \rho^{\alpha} d x\right)} \\
{\left[M^{\left(N+\beta_{1}\right) /\left(k+\alpha_{1}\right)}\left(\Omega, \rho^{\beta_{1}} d x\right), M^{\left(N+\beta_{2}\right) /\left(k+\alpha_{2}\right)}\left(\Omega, \rho^{\beta_{2}} d x\right)\right]_{\theta}} \\
=M^{(N+\beta) /(k+\alpha)}\left(\Omega, \rho^{\beta} d x\right),
\end{gathered}
$$

where α, β are given by the relations

$$
\begin{gather*}
\alpha=(1-\theta) \alpha_{1}+\theta \alpha_{2}, \quad \frac{1}{p}=\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{2}}, \tag{2.55}\\
p_{i}=\frac{N+\beta_{i}}{k+\alpha_{i}} \quad \text { and } \quad p=\frac{N+\beta}{k+\alpha} . \tag{2.56}
\end{gather*}
$$

From the Marcinkiewicz theorem, if a transformation maps continuously $L^{1}\left(\Omega, \rho^{\alpha_{i}} d x\right)$ into $M^{\left(N+\beta_{i}\right) /\left(k+\alpha_{i}\right)}\left(\Omega, \rho^{\beta_{i}} d x\right)$ for $i=1,2$, it also maps continuously $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ into $L^{(N+\beta) /(k+\alpha)}\left(\Omega, \rho^{\beta} d x\right)$, see [29]. Let us show that the estimates (2.49) and (2.51) can be obtained by interpolation of the estimates $(2.26),(2.27)$ and $(2.30),(2.31)$ for $\alpha_{1}=0$ and $\alpha_{2}=1$, with the exception of the case $\beta=0$ for (2.51). First take $k=N-2$, and observe that

$$
\beta_{i} \in\left(-\frac{N}{N-1+\alpha_{i}}, \frac{\alpha_{i} N}{N-2}\right)
$$

if and only if

$$
\begin{equation*}
\frac{1}{p_{i}} \in\left(\frac{N-2}{N}, \frac{N-1+\alpha_{i}}{N}\right), \tag{2.57}
\end{equation*}
$$

so that from (2.55) and (2.56), if $\beta_{i} \in\left(-N /\left(N-1+\alpha_{i}\right), \alpha_{i} N /(N-2)\right)$, then

$$
\begin{equation*}
\beta \in\left(-\frac{N}{N-1+\alpha}, \frac{\alpha N}{N-2}\right) . \tag{2.58}
\end{equation*}
$$

Reciprocally, for any $\alpha \in(0,1)$ and β satisfying (2.58), taking $\alpha_{1}=0$ and $\alpha_{2}=1$ and defining p by (2.56) with $k=N-2$, we set

$$
\begin{gathered}
p_{1}=p_{2}=p, \quad \text { if } \frac{1}{p} \leq \frac{N-2+\alpha}{N} \\
\frac{1}{p_{1}}=\frac{1}{p}-\frac{\alpha}{N}, \quad \frac{1}{p_{2}}=\frac{1}{p}+\frac{1-\alpha}{N}, \quad \text { if } \frac{1}{p}>\frac{N-2+\alpha}{N} .
\end{gathered}
$$

Then p_{1} and p_{2} satisfy (2.57), and we can interpolate between these values, with β_{1}, β_{2} given by (2.56). Thus G maps continuously $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ into $L^{(N+\beta) /(N-2+\alpha)}\left(\Omega, \rho^{\beta} d x\right)$ and (2.50) follows on $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$. Now take $k=N-1$, replace $\beta_{1}, \beta_{2}, \beta$ by $\gamma_{1}, \gamma_{2}, \gamma$ in (2.56): now

$$
\begin{equation*}
p_{i}=\frac{N+\gamma_{i}}{N-1+\alpha_{i}} \quad \text { and } \quad p=\frac{N+\gamma}{N-1+\alpha} . \tag{2.59}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\gamma_{2} \in\left[0, \frac{N}{N-1}\right) \quad \text { if and only if } \quad \frac{1}{p_{2}} \in\left(\frac{N-1}{N}, 1\right] \tag{2.60}
\end{equation*}
$$

so that from (2.55) and (2.56), if $\gamma_{2} \in(0, N /(N-1))$,

$$
\begin{equation*}
\gamma \in\left(0, \alpha \frac{N}{N-1}\right) \tag{2.62}
\end{equation*}
$$

Reciprocally, for any $\alpha \in(0,1)$ and γ satisfying (2.62), taking $\alpha_{1}=0$ and $\alpha_{2}=1$ and defining p by (2.59), we set

$$
\frac{1}{p_{1}}=\frac{N-1}{N}, \quad \frac{1}{p_{2}}=\frac{\frac{1}{p}-\frac{1-\alpha}{p_{1}}}{\alpha} .
$$

Then p_{1} and p_{2} satisfy (2.60), (2.61), and we can interpolate between these values, with γ_{1}, γ_{2} given by (2.59). Hence (2.51) and (2.52) follow on $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ when $\gamma \neq 0$. In case $\gamma=0$, we interpolate between $\alpha_{1}=\alpha-\varepsilon$ and $\alpha_{2}=\alpha+\varepsilon$ for $\varepsilon>0$ small enough, with $\gamma_{1}=\gamma_{2}=0$, and get again (2.51) and (2.52).

Now consider any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho^{\alpha} d|\varphi|<+\infty$. Then there exists a bounded sequence of functions $f_{n} \in L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ converging weakly to φ. The sequence $\left\{G\left(f_{n}\right)\right\}$ is bounded in $W_{0}^{1, s}(\Omega)$ for any $s \in[1, N /(N-1+\alpha))$, from (2.48). After an extraction it converges to some function Φ strongly in $L^{s}(\Omega)$ and almost everywhere in Ω. Then Φ is a weak solution of problem (2.25), hence $\Phi=G(\varphi)$. Moreover $\left\{G\left(f_{n}\right)\right\}$ is bounded in $L^{(N+\beta) /(N-2+\alpha)}\left(\Omega, \rho^{\beta} d x\right)$ for any $\beta \in(-N /(N-1+\alpha), \alpha N /(N-2))$. And $\left\{\left|\nabla G\left(f_{n}\right)\right|\right\}$ is bounded in $L^{(N+\gamma) /(N-1+\alpha)}\left(\Omega, \rho^{\gamma} d x\right)$ for any $\gamma \in[0, \alpha N /(N-1))$. Since those spaces are reflexive, we get (2.49) and (2.50), (2.51) and (2.52) by going to the weak limit after a new extraction. Then (2.53) and (2.54) follow.

Remark 2.4. Let us mention that the result $\Phi \in W_{0}^{1, s}(\Omega)$ with $s=$ $N /(N-1+\alpha)$ can be proved by duality, see [12]. Notice that the value of s given in [12] is not correct, due to a small error in the parameters of the Sobolev injection.

Remark 2.5. Assume $N \geq 2$. From (2.48), we deduce that G is compact from $L^{1}\left(\Omega, \rho^{\alpha} d x\right)$ into $L^{p}\left(\Omega, \rho^{\beta} d x\right)$,
for any $\alpha \in(0,1], \beta \in(-N /(N+\alpha-1), N \alpha /(N-2))$ or $\alpha=\beta=0$, and $p \in[1,(N+\beta) /(N+\alpha-2))$ and $p>-\beta$. It comes from the compactness of the Sobolev injection

$$
W_{0}^{1, s}\left(\Omega, \rho^{\gamma} d x\right) \subset L^{p}\left(\Omega, \rho^{\beta} d x\right),
$$

when $1 \leq s \leq p<+\infty$ and $N / p-N / s+1>0$ and $(N+\beta) / p-(N+$ $\gamma) / s+1>0$, with $\gamma+1 \neq s$, see [27]. In the case $\alpha=1$ and $\beta=0$, we find again a result cited in [10].

2.3. Application to the problems 1.1 and 1.4.

Combining theorems 2.5 and 2.6, we deduce regularity results for the problem (1.4). In particular, taking $\alpha=1$, we get the following:

Corollary 2.8. For any $\varphi \in \mathcal{M}(\Omega)$ such that $\int_{\Omega} \rho d|\varphi|<+\infty$ and any $\mu \in \mathcal{M}(\partial \Omega)$, the solution U of problem (1.4) satisfies

$$
\left\{\begin{array}{l}
U \in M^{(N+\beta) /(N-1)}\left(\Omega, \rho^{\beta} d x\right), \tag{2.63}\\
\quad \text { for any } \beta \in\left(-1, \frac{N}{N-2}\right), \text { if } N \geq 3, \\
U \in L^{k}\left(\Omega, \rho^{\beta} d x\right), \\
\quad \text { for any } \beta \in(-1,+\infty) \text { and } k \in[1,2+\beta), \text { if } N=2,
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
|\nabla U| \in M^{(N+\gamma) / N}\left(\Omega, \rho^{\gamma} d x\right), \\
\quad \text { for any } \gamma \in\left(0, \frac{N}{N-1}\right), \text { if } N \geq 2,
\end{array}\right.
$$

(hence $U \in W_{0}^{1, s}\left(\Omega, \rho^{\gamma} d x\right)$ for any $\gamma \in(0, N /(N-1))$ and $s \in[1,(N+$ $\gamma) / N)$). And in any case,

$$
\begin{equation*}
\|U\|_{M^{(N+\beta) /(N-1)}\left(\Omega, \rho^{\beta} d x\right)} \leq C\left(\int_{\Omega} \rho d|\varphi|+|\mu|(\partial \Omega)\right), \tag{2.65}
\end{equation*}
$$

if $N \geq 3$,

$$
\begin{equation*}
\||\nabla U|\|_{M^{(N+\gamma) / N}\left(\Omega, \rho^{\gamma} d x\right)} \leq C\left(\int_{\Omega} \rho d|\varphi|+|\mu|(\partial \Omega)\right), \tag{2.66}
\end{equation*}
$$

if $N \geq 2$.

This gives an interior regularity result for problem (1.5):

Corollary 2.9. If $1<q<(N+1) /(N-1)$, then any solution u of (1.1) is a classical solution in Ω.

Proof. Applying Corollary 2.8 to u we get in particular

$$
u \in M^{(N+1) /(N-1)}(\Omega, \rho d x), \quad \text { if } N \geq 3
$$

(and $u \in M^{3-\varepsilon}(\Omega, \rho d x)$ if $\left.N=2\right)$. Then $u^{q} \in L_{\text {loc }}^{k_{0}}(\Omega)$ for some $k_{0}>1$, since $q<(N+1) /(N-1)$. If $N=2$, then from Schauder estimates, $u \in C^{\infty}(\Omega)$. In case $N \geq 3$ and $k_{0}<N / 2$, we can make a usual bootstrapp: from the L^{p} regularity theory, $u \in W_{\text {loc }}^{2, k_{0}}(\Omega)$, hence from
the Sobolev injection $u^{q} \in L_{\text {loc }}^{k_{1}}(\Omega)$ for $k_{1}=N k_{0} / q\left(N-2 k_{0}\right)>k_{0}$, since $q<N /(N-2)$. By induction $u^{q} \in L_{\text {loc }}^{k_{n}}(\Omega)$ for

$$
\begin{equation*}
k_{n}=N \frac{k_{n-1}}{q} \frac{1}{N-2 k_{n-1}}>k_{n-1} \tag{2.67}
\end{equation*}
$$

till $k_{n}<N / 2$. But if $k_{n}<N / 2$ for any $n \in \mathbb{N}$, then $k_{n} \longrightarrow \ell=$ $N(q-1) / 2 q<1$, which is impossible. Then changing slightly k_{0} if necessary, we find some $n_{0} \in \mathbb{N}$ such that $k_{n_{0}}>N / 2$, hence $u \in C^{\infty}(\Omega)$.

3. Estimate of $G\left(P^{q}(\mu)\right)$.

Now we assume that $1<q<(N+1) /(N-1)$, and we prove Theorem 1.1. First observe that for any $\mu \in \mathcal{M}^{+}(\partial \Omega)$, we have $P(\mu) \in$ $M^{(N+1) /(N-1)}(\Omega, \rho d x)$ from Theorem 2.5. In particular,

$$
P^{q}(\mu) \in L^{1}(\Omega, \rho d x)
$$

since $q<(N+1) /(N-1)$, hence $G\left(P^{q}(\mu)\right)$ is well defined and lies in $L^{1}(\Omega)$ from Corollary 2.2. And $P(\mu) \in C^{0}(\Omega)$, since \mathcal{P} is continuous, hence also $G\left(P^{q}(\mu)\right) \in C^{0}(\Omega)$.

We first consider the case where $\mu=\delta_{a}$ is a Dirac mass at a point a of $\partial \Omega$, hence $P(\mu)(\cdot)=P\left(\delta_{a}\right)(\cdot) \mathcal{P}(\cdot, a)$. Here we can give a more precise estimate near the point a :

Theorem 3.1. Assume that $1<q<(N+1) /(N-1)$. Let $a \in \partial \Omega$, and let $W=G\left(P^{q}\left(\delta_{a}\right)\right)$ be the solution of

$$
\begin{cases}-\Delta W=\mathcal{P}^{q}(\cdot, a), & \text { in } \Omega \tag{3.1}\\ W=0, & \text { on } \partial \Omega\end{cases}
$$

Then there exists a constant $C=C(N, \Omega, q)$ such that

$$
\begin{equation*}
W(x) \leq C \mathcal{P}(x, a)|x-a|^{N+1-(N-1) q}, \quad \text { in } \Omega . \tag{3.2}
\end{equation*}
$$

Proof. From (2.8), we can majorize $\mathcal{P}^{q}(\cdot, a)$ by

$$
\mathcal{P}^{q}(x, a) \leq c_{N}^{q} \rho^{q}(x)|x-a|^{-N q} \leq c_{N}^{q} \rho(x)|x-a|^{-1-(N-1) q} .
$$

Then for any $x \in \Omega$, from (1.3),
$W(x)=\int_{\Omega} \mathcal{G}(x, y) \mathcal{P}^{q}(y, a) d y \leq c_{N}^{q} \int_{\Omega} \mathcal{G}(x, y) \rho(y)|y-a|^{-1-(N-1) q} d y$.
Now from (2.2) and (2.3),

$$
W(x) \leq c_{N}^{q+1} \rho(x) \int_{\Omega} f(x, y) d y
$$

where

$$
f(x, y)=|y-a|^{-(N-1) q}|x-y|^{-N} \min \{|x-y|,|y-a|\}
$$

since $\rho(y) \leq|y-a|$. Now we divide Ω in three parts

$$
\begin{gathered}
\Omega_{1}=\Omega \cap B\left(x, \frac{|x-a|}{2}\right), \\
\Omega_{2}=\Omega \cap B\left(a, \frac{|x-a|}{2}\right), \\
\Omega_{3}=\Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right),
\end{gathered}
$$

and integrate separately on each part. In the sequel C denotes constants which only depend on N, q and Ω. In Ω_{1} we have $|x-a| \leq 2|y-a|$, and

$$
\begin{aligned}
\int_{\Omega_{1}} f(x, y) d y & \leq \int_{\Omega_{1}}|y-a|^{-(N-1) q}|x-y|^{1-N} d y \\
& \leq 2^{(N-1) q}|x-a|^{-(N-1) q} \int_{B(x,|x-a| / 2)}|x-y|^{1-N} d y \\
& \leq C|x-a|^{1-(N-1) q}
\end{aligned}
$$

In Ω_{2} we have $|x-a| \leq 2|x-y|$, and

$$
\begin{aligned}
\int_{\Omega_{2}} f(x, y) d y & \leq \int_{\Omega_{2}}|y-a|^{1-(N-1) q}|x-y|^{-N} d y \\
& \leq 2^{N}|x-a|^{-N} \int_{B(a,|x-a| / 2)}|y-a|^{1-(N-1) q} d y \\
& \leq C|x-a|^{-N} \int_{0}^{|x-a| / 2} r^{N-(N-1) q} d r \\
& \leq C|x-a|^{1-(N-1) q}
\end{aligned}
$$

since $q<(N+1) /(N-1)$.
In Ω_{3}, we have $|x-a| \leq 2 \min \{|y-a|,|y-x|\}$, hence $|y-a| \leq$ $3|y-x|$. Then we get

$$
\begin{aligned}
\int_{\Omega_{3}} f(x, y) d y & \leq \int_{\Omega_{3}}|y-a|^{1-(N-1) q}|x-y|^{-N} d y \\
& \leq 3^{-N} \int_{\Omega_{3}}|y-a|^{1-N-(N-1) q} d y \\
& \leq C \int_{|x-a| / 2}^{+\infty} r^{-(N-1) q} d r \\
& \leq C|x-a|^{1-(N-1) q} .
\end{aligned}
$$

Then

$$
W(x) \leq C \rho(x)|x-a|^{1-(N-1) q},
$$

and from the lower estimate of the Poisson kernel (2.8) we deduce (3.2).
Now we come to the general case.

Proof of Theorem 1.1. Let $\mu \in \mathcal{M}^{+}(\partial \Omega)$. We can reduce to the case $\mu(\partial \Omega)=1$ by linearity of P and G. From (1.2), we have

$$
P(\mu)(x)=\int_{\partial \Omega} \mathcal{P}(x, z) d \mu(z)=\int_{\partial \Omega} P\left(\delta_{z}\right)(x) d \mu(z), \quad \text { in } \Omega .
$$

Then from the Jensen inequality,

$$
P^{q}(\mu)(x) \leq \int_{\partial \Omega} P^{q}\left(\delta_{z}\right)(x) d \mu(z), \quad \text { in } \Omega
$$

And from the maximum principle,

$$
G\left(P^{q}(\mu)\right)(x) \leq G\left(\int_{\partial \Omega} P^{q}\left(\delta_{z}\right)(x) d \mu(z)\right)=\int_{\partial \Omega} G\left(P^{q}\left(\delta_{z}\right)\right)(x) d \mu(z)
$$

Hence from (3.2),

$$
\begin{aligned}
G\left(P^{q}(\mu)\right)(x) & \leq C \int_{\partial \Omega} \mathcal{P}(x, z)|x-z|^{N+1-(N-1) q} d \mu(z) \\
& \leq C P(\mu)(x), \quad \text { in } \Omega,
\end{aligned}
$$

since $N+1-(N-1) q>0$ and Ω is bounded.

4. A priori estimates.

Here we study the behaviour of the solutions of (1.5) for a given measure $\mu \in \mathcal{M}^{+}(\partial \Omega)$. First notice as in [13] that for any $q>1$, for any solution u of (1.5), $\left\|u^{q}\right\|_{L^{1}(\Omega, \rho d x)}$ is majorized independently of u : we have the estimate

$$
\begin{equation*}
\left\|u^{q}\right\|_{L^{1}(\Omega, \rho d x)} \leq C(1+\mu(\partial \Omega)), \tag{4.1}
\end{equation*}
$$

with $C=C(N, q, \Omega)$. Indeed consider a positive eigenvector Φ_{1} for the first eigenvalue λ_{1} of $(-\Delta)$ with Dirichlet conditions on $\partial \Omega$. Since u is a weak solution of (1.5), we have

$$
\int_{\Omega} u\left(-\Delta \Phi_{1}\right) d x=\lambda_{1} \int_{\Omega} u \Phi_{1} d x=\int_{\Omega} u^{q} \Phi_{1} d x+\int_{\partial \Omega} \frac{\partial \Phi_{1}}{\partial n} d \mu
$$

hence from Young inequality

$$
\int_{\Omega} u^{q} \Phi_{1} d x \leq \frac{1}{2} \int_{\Omega} u^{q} \Phi_{1} d x+\left(2 \lambda_{1}^{q}\right)^{1 /(q-1)} \int_{\Omega} \Phi_{1} d x+\int_{\partial \Omega}\left|\frac{\partial \Phi_{1}}{\partial n}\right| d \mu,
$$

which implies (4.1), since $C^{-1} \rho \leq \Phi_{1} \leq C^{-1} \rho$ in Ω, for some $C=$ $C(N, \Omega)>0$.

Now we prove Theorem 1.2. We follow the technique of the interior problem, given in [23]. Once we have obtained the estimate (1.12), the proof goes quickly in case $q<N /(N-1)$. The main difficulty comes when $q \geq N /(N-1)$: in that case we really need the precise estimates of $G(\varphi)$ and $P(\mu)$ in Marcinkiewicz weighted spaces, proved in Section 2.2. We begin by the easiest case.

Proof of Theorem 1.2.
i) The simple case: $q<N /(N-1)$.

Let $\mu \in \mathcal{M}^{+}(\partial \Omega)$, and let u be any nonnegative solution of (1.5). Let us set

$$
\begin{equation*}
u=P(\mu)+v_{1} \tag{4.2}
\end{equation*}
$$

where $v_{1}=G\left(u^{q}\right)$. Now

$$
\begin{equation*}
u \in M^{N /(N-1)}(\Omega), \text { if } N \geq 3, \quad u \in M^{2-\varepsilon}(\Omega), \text { if } N=2 \tag{4.3}
\end{equation*}
$$

from Corollary 2.8. Since $q<N /(N-1), u^{q} \in L^{k_{0}}(\Omega)$ for some $k_{0}>1$. Now $u^{q} \leq 2^{q-1}\left(P^{q}(\mu)+v_{1}^{q}\right)$, hence from the maximum principle and from the estimate (1.12),

$$
v_{1} \leq 2^{q-1}\left(G\left(P^{q}(\mu)\right)+v_{2}\right) \leq C_{1}\left(P(\mu)+v_{2}\right)
$$

where $v_{2}=G\left(v_{1}^{q}\right)$, hence

$$
u \leq C_{1}^{\prime}\left(P(\mu)+v_{2}\right)
$$

By induction for any $n \geq 2$, we can define the solution $v_{n}=G\left(v_{n-1}^{q}\right)$ of problem

$$
\begin{cases}-\Delta v_{n}=v_{n-1}^{q}, & \text { in } \Omega \\ v_{n}=0, & \text { on } \partial \Omega\end{cases}
$$

such that

$$
v_{n} \leq C_{n}\left(P(\mu)+v_{n+1}\right), \quad u \leq C_{n}^{\prime}\left(P(\mu)+v_{n+1}\right),
$$

where C_{n}, C_{n}^{\prime} only depend on N, q, Ω and $\mu(\partial \Omega)$. And $v_{n} \in L^{k_{n}}(\Omega)$ with k_{n} given by (2.67), hence there exists some $n_{0}=n_{0}(N, q)$ such that $v_{n_{0}} \in C^{0}(\bar{\Omega})$. Then

$$
\begin{equation*}
u \leq C_{n_{0}}^{\prime}\left(P(\mu)+v_{n_{0}+1}\right), \quad \text { in } \Omega \tag{4.4}
\end{equation*}
$$

with $v_{n_{0}+1}=0$ on $\partial \Omega$. Hence there exists a constant $C_{0}>0$ such that

$$
\begin{equation*}
v_{n_{0}+1}(x) \leq C_{0} \rho(x), \quad \text { in } \Omega, \tag{4.5}
\end{equation*}
$$

and C_{0} depends on $N, q, \Omega, \mu(\partial \Omega)$ and $\left\|u^{q}\right\|_{L^{1}(\Omega, \rho d x)}$, from the continuity properties given in Corollary 2.8, hence $C_{0}=C_{0}(N, q, \Omega, \mu(\partial \Omega))$ from (4.1). Then (1.13) follows from (4.4) and (4.5). If $\mu=0$, then $u \in C^{\infty}(\bar{\Omega})$ from Schauder estimates.

In case $\mu=\sigma \delta_{a}$ for some $a \in \partial \Omega$ and $\sigma>0$, we get more precisely from Theorem 3.1

$$
v_{1} \leq 2^{q-1}\left(\sigma^{q} G\left(P^{q}\left(\delta_{a}\right)\right)+v_{2}\right) \leq C_{1}\left(P\left(\delta_{a}\right)|x-a|^{N+1-(N-1) q}+v_{2}\right)
$$

By induction we find

$$
v_{n} \leq C_{n}\left(G\left(P^{q}\left(\delta_{a}\right)\right)+v_{n+1}\right) \leq C_{n}^{\prime}\left(P\left(\delta_{a}\right)|x-a|^{N+1-(N-1) q}+v_{n+1}\right)
$$

and

$$
u \leq P\left(\delta_{a}\right)+C_{n}^{\prime \prime}\left(P\left(\delta_{a}\right)|x-a|^{N+1-(N-1) q}+v_{n+1}\right) .
$$

Then we deduce (1.14).
ii) The case: $N /(N-1) \leq q<(N+1) /(N-1)$.

Let $p \geq 2$ be some fixed integer such that

$$
\frac{1}{p}<N+1-(N-1) q
$$

Now for any $n \in[0, p]$, let $\beta_{n}=1-n / p \in[0,1]$. Now we start from the fact that

$$
\begin{align*}
& u \in M^{(N+1) /(N-1)}(\Omega, \rho d x), \quad \text { if } N \geq 3, \\
& u \in M^{3-\varepsilon}(\Omega, \rho d x), \quad \text { if } N=2, \tag{4.6}
\end{align*}
$$

from Corollary 2.8. Let $v_{0}=u$, hence

$$
v_{0}^{q} \in L^{r_{0}}\left(\Omega, \rho^{\beta_{0}} d x\right), \quad \text { with } 1<r_{0}<\frac{N+\beta_{0}}{(N-1) q}
$$

Here again we define v_{1} by (4.2), and $v_{1} \leq u$. So that we can define $v_{2}=G\left(v_{1}^{q}\right)$ in $L^{1}(\Omega)$. From Theorem 2.6, we have, for any $N \geq 2$ and $\varepsilon>0$ small enough,

$$
v_{1} \in L^{(N+\beta) /\left(N-2+\beta_{0}\right)-\varepsilon}\left(\Omega, \rho^{\beta} d x\right),
$$

for any $\beta \in(-1, N /(N-2))$. Taking $\beta=\beta_{1}=1-1 / p \in(0,1)$, we get

$$
\begin{equation*}
v_{1}^{q} \in L^{r_{1}}\left(\Omega, \rho^{\beta_{1}} d x\right), \quad \text { with } 1<r_{1}<\frac{N+\beta_{1}}{\left(N-2+\beta_{0}\right) q} \tag{4.7}
\end{equation*}
$$

since $N+\beta_{1}-\left(N-2+\beta_{0}\right) q=N+1-(N-1) q-1 / p>0$. For any $n \leq p$, assume by induction that $v_{n-1}=G\left(v_{n-2}^{q}\right)$ in $L^{1}(\Omega)$, and that

$$
v_{n-1}^{q} \in L^{r_{n-1}}\left(\Omega, \rho^{\beta_{n-1}} d x\right), \quad \text { with } 1<r_{n-1}<\frac{N+\beta_{n-1}}{\left(N-2+\beta_{n-2}\right) q}
$$

then we can define $v_{n}=G\left(v_{n-1}^{q}\right)$ in $L^{1}(\Omega)$, and we get

$$
v_{n} \in L^{(N+\beta) /\left(N-2+\beta_{n-1}\right)-\varepsilon}\left(\Omega, \rho^{\beta} d x\right),
$$

for any $\beta \in\left(-1, \beta_{n-1} N /(N-2)\right)$. Taking $\beta=\beta_{n} \geq 0$, we have $\left(N+\beta_{n}\right)-\left(N-2+\beta_{n-1}\right) q>(n-1)(q-1) / p>0$, hence

$$
\begin{equation*}
v_{n}^{q} \in L^{r_{n}}\left(\Omega, \rho^{\beta_{n}} d x\right), \quad \text { with } 1<r_{n}<\frac{N+\beta_{n}}{\left(N-2+\beta_{n-1}\right) q} \tag{4.8}
\end{equation*}
$$

Now in case $n=p$, we have $\beta_{p}=0$. This proves that $v_{p}^{q} \in L^{r_{p}}(\Omega)$, with $r_{p}>1$ and we are reduced to the first case: there exists an integer $n_{0}=n_{0}(N, q)$ such that $v_{n_{0}+p} \in C^{0}(\bar{\Omega})$. We deduce (1.13) and (1.14) as above.

In this proof we have used the estimate (1.12). In fact it is not really needed for getting a priori estimates, since we require that the problem admits a solution: the existence assumption in turn implies a condition of type (1.12). Adapting the arguments of [8] for the interior nonhomogeneous problem

$$
\begin{cases}-\Delta u=u^{q}+f, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

with $f>0$, we get the following:
Lemma 4.1. Let $q>1$ and $\mu \in \mathcal{M}^{+}(\partial \Omega)$. If the problem (1.5) admits a solution, then

$$
\begin{equation*}
G\left(P^{q}(\mu)\right) \leq \frac{1}{q-1} P(\mu), \quad \text { in } \Omega \tag{4.9}
\end{equation*}
$$

Proof. We can assume $\mu \neq 0$. For any $v, w \in C^{2}(\Omega)$ with v positive and harmonic, and any concave function F of class C^{2} on the closure of the range of w / v, we have

$$
\begin{equation*}
-\Delta\left(v F\left(\frac{w}{v}\right)\right) \geq F^{\prime}\left(\frac{w}{v}\right)(-\Delta w), \quad \text { in } \Omega \tag{4.10}
\end{equation*}
$$

Suppose that problem (1.5) admits a solution u. Then we apply (4.10) with $v=P(\mu)$ and $w=u \geq v$, and

$$
F(s)=\frac{1-s^{1-q}}{q-1}, \quad \text { on }[1,+\infty)
$$

It comes

$$
P^{q}(\mu)=\left(\frac{u}{P(\mu)}\right)^{-q} u^{q} \leq-\Delta\left(P(\mu) F\left(\frac{u}{P(\mu)}\right)\right)
$$

and

$$
G\left(P^{q}(\mu)\right) \leq P(\mu) F\left(\frac{u}{P(\mu)}\right) \leq \frac{1}{q-1} P(\mu),
$$

from the maximum principle.
REmARK 4.1. In the supercritical case $q \geq(N+1) /(N-1)$, any solution u of (1.1), such that $u \in C(\bar{\Omega} \backslash\{a\})$ and $u=0$ on $\partial \Omega \backslash\{a\}$, satisfies necessarily $u=0$ on $\partial \Omega$, from Corollary 2.3. Considering the known behaviours for the problems (1.7) and (1.6), one can ask if an estimate of the type

$$
u(x) \leq C \rho(x)|x-a|^{-(q+1) /(q-1)}
$$

is true near the point a, at least if $q<(N+1) /(N-3)$. The question is entirely open.

5. Existence results.

Here we study the existence of solutions of problem (1.15). It is is based on the estimate of $G\left(P^{q}(\mu)\right)$, which gives supersolutions.

Proof of Theorem 1.3 .
First step: Existence of solutions for small σ. Let $\mu \in$ $\mathcal{M}^{+}(\partial \Omega)$ with $\mu(\partial \Omega)=1$ and $\sigma>0$. The function $\sigma P(\mu)$ is a subsolution of (1.15). We search a supersolution of (1.15) of the form

$$
y=\sigma P(\mu)+a G\left(P^{q}(\sigma \mu)\right)
$$

with $a>0$, and

$$
a P^{q}(\sigma \mu) \geq y^{q}
$$

Since $q<(N+1) /(N-1)$, from Theorem 1.1, there exists a constant $K=K(N, \Omega, q)$ such that

$$
\begin{equation*}
y \leq \sigma\left(1+a \sigma^{q-1} K\right) P(\mu), \quad \text { in } \Omega \tag{5.1}
\end{equation*}
$$

and y is a supersolution as soon as $a^{1 / q} \geq 1+a \sigma^{q-1} K$. As a consequence, taking the best value $a=(q /(q-1))^{q}$, if

$$
\begin{equation*}
\sigma \leq(q K)^{-1 /(q-1)} \frac{q-1}{q}, \tag{5.2}
\end{equation*}
$$

then \mathcal{S}_{σ} has a solution.
SECOND STEP: interval of Existence. Let

$$
\Lambda=\left\{\sigma>0: \mathcal{S}_{\sigma} \text { has a solution }\right\} \quad \text { and } \quad \sigma^{*}=\sup \Lambda
$$

Then from (4.9),

$$
\begin{equation*}
\left(\sigma^{*}\right)^{q-1} G\left(P^{q}(\mu)\right) \leq \frac{1}{q-1} P(\mu), \quad \text { in } \Omega \tag{5.3}
\end{equation*}
$$

hence σ^{*} is finite. For any $\sigma \in \Lambda, \mathcal{S}_{\sigma}$ has a solution u_{σ}. For any $\tau \in[0, \sigma), u_{\sigma}$ is a supersolution of (1.1) such that $u_{\sigma} \geq \tau P(\mu)$, hence \mathcal{S}_{τ} has a solution $u_{\tau} \leq u_{\sigma}$. Then Λ is an interval. At last, let us show that $\mathcal{S}_{\sigma^{*}}$ has a solution: let $\left\{\sigma_{n}\right\}$ be an increasing sequence with limit σ^{*}. Now $u_{\sigma_{n}}$ is a weak solution of $\mathcal{S}_{\sigma_{n}}$; we use as a test function the unique solution $\xi>0$ of problem $\xi=G\left(\xi^{1 / q}\right)$, introduced in [8], and get

$$
\begin{align*}
\int_{\Omega} u_{\sigma_{n}}(-\Delta \xi) d x & =\int_{\Omega} u_{\sigma_{n}} \xi^{1 / q} d x \tag{5.4}\\
& =\int_{\Omega} u_{\sigma_{n}}^{q} \xi d x-\sigma_{n} \int_{\partial \Omega} \frac{\partial \xi}{\partial n} d \mu
\end{align*}
$$

And $\partial \xi / \partial n<0$, hence

$$
\int_{\Omega} u_{\sigma_{n}}^{q} \xi d x \leq \frac{1}{q} \int_{\Omega} u_{\sigma_{n}}^{q} \xi d x+\frac{q-1}{q}|\Omega|,
$$

so that $\left\{u_{\sigma_{n}}^{q}\right\}$ is bounded in $L^{1}(\Omega, \rho d x)$. And $u_{\sigma_{n}} \leq \sigma^{*} P(\mu)$ on $\partial \Omega$. Now $\left\{u_{\sigma_{n}}\right\}$ is bounded in $M^{N /(N-1)}(\Omega) \cap M^{(N+1) /(N-1)}(\Omega, \rho d x)$, from Corollary 2.8. Then we can go to the limit in the weak formulation of $\mathcal{S}_{\sigma_{n}}$, and construct a weak solution of $\mathcal{S}_{\sigma^{*}}$.

Remark 5.1. Replacing K by $K_{\mu}=\left\|G\left(P^{q}(\mu)\right) / P(\mu)\right\|_{L^{\infty}(\Omega)}$, we can estimate σ^{*} from (5.2) and (5.3)

$$
\sigma^{*} \in\left[\left(q K_{\mu}\right)^{-1 /(q-1)} \frac{q-1}{q},\left((q-1) K_{\mu}\right)^{-1 /(q-1)}\right] .
$$

REmark 5.2. Now assume $q \geq(N+1) /(N-1)$. We shall say that a measure $\mu \in \mathcal{M}^{+}(\partial \Omega)$ with $\mu(\partial \Omega)=1$ is admissible if

$$
\begin{aligned}
& P^{q}(\mu) \in L^{1}(\Omega, \rho d x) \\
& \quad \text { and } \mu \text { satisfies the condition (1.12) for some } K>0 .
\end{aligned}
$$

Then in the same way Theorem 1.3 applies to any admissible measure. Moreover, for such an admissible measure, following the techniques of [8], for any $\sigma \in\left[0, \sigma^{*}\right)$, we can construct a solution u_{σ} of \mathcal{S}_{σ} satisfying the a priori estimate

$$
\begin{equation*}
\sigma P(\mu) \leq u_{\sigma} \leq C P(\mu), \quad \text { in } \Omega \tag{5.5}
\end{equation*}
$$

for some constant $C=C(\sigma)$. Indeed let $\tau \in\left(\sigma, \sigma^{*}\right)$ such that \mathcal{S}_{τ} admits a solution u_{τ}. Let us apply the inequality (4.10) with $v=\tau P(\mu)$ and $w=u_{\tau} \geq v$, and
$F(s)=s\left(1+\varepsilon s^{q-1}\right)^{-1 /(q-1)} \quad$ and $\quad \varepsilon=\left(\frac{\tau}{\sigma}\right)^{q-1}-1$, on $[1,+\infty)$,
so that $F(1)=\sigma / \tau$ and $F^{\prime}(s)=F^{q}(s) / s^{q}$. We obtain

$$
-\Delta\left(v F\left(\frac{u_{\tau}}{v}\right)\right) \geq F^{\prime}\left(\frac{u_{\tau}}{v}\right)\left(-\Delta u_{\tau}\right)=\left(v F\left(\frac{u_{\tau}}{v}\right)\right)^{q}, \quad \text { in } \Omega
$$

Hence $z=v F\left(u_{\tau} / v\right)$ is a supersolution of (1.1). Then

$$
z \geq \sigma P(\mu), \text { in } \Omega, \quad \text { and } z=\sigma \mu, \text { on } \partial \Omega
$$

and \mathcal{S}_{σ} has a solution

$$
u_{\sigma} \leq z \leq \varepsilon^{-1 /(q-1)} \tau P(\mu),
$$

so that u_{σ} satisfies (5.5). Now for any $\tau \in\left(\sigma, \sigma^{*}\right), \mathcal{S}_{\tau}$ admits a solution u_{τ}. Choosing $\tau=\left(\sigma+\sigma^{*}\right) / 2$, we deduce that u_{σ} satisfies (5.5) with $\left.C(\sigma)=\sigma^{*}\left(\left(\sigma+\sigma^{*}\right) / 2 \sigma\right)^{q-1}-1\right)^{-1 /(q-1)}$. At last considering as above
an increasing sequence $\left\{\sigma_{n}\right\}$ with limit σ^{*}, we prove that $\mathcal{S}_{\sigma^{*}}$ admits a solution $u_{\sigma^{*}}$.

An open question is to describe precisely those admissible measures.

References.

[1] Amann, H., Quittner, P., Elliptic boundary value problems involving measures: existence, regularity and multiplicity. Advances in Diff. Equations 3 (1998), 753-813.
[2] Benilan, P., Brézis, H., Crandall, M. G., A semilinear elliptic equation in $L^{1}\left(\mathbb{R}^{N}\right)$. Ann. Scuola Norm. Sup. Pisa 2 (1975), 523-555.
[3] Bidaut-Véron, M.-F., Local and global behaviour of solutions of quasilinear equations of Emden-Fowler type. Arch. Rational Mech. Anal. 107 (1989), 293-324.
[4] Bidaut-Véron, M.-F., Local behaviour of solutions of a class of nonlinear elliptic systems. Advances in Diff. Equations 5 (2000).
[5] Bidaut-Véron, M.-F., Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math. 106 (1991), 489-539.
[6] Brézis, H., Une équation semilinéaire avec conditions aux limites dans L^{1}. Unpublished work.
[7] Brézis, H., Cabré, X., Some simple nonlinear PDE's without solutions. Boll. Unione Mat. Italiana 8 (1998), 223-262.
[8] Brézis, H., Lions, P. L., A note on isolated singularities for linear elliptic equations. Math. Anal. Appl. Adv. Math. Suppl. Stud. 7A (1981), 263-266.
[9] Cabré, X., Martel, Y., Weak eigenfunctions for the linearization of extremal elliptic problems. J. Funct. Anal. 156 (1998), 30-56.
[10] Caffarelli, L. A., Gidas, B., Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42 (1989), 271-297.
[11] Dautray, R., Lions, J. L., Analyse mathématique et calcul numérique. Masson ed., 1987.
[12] De Figuereido, D. G., Lions, P. L., Nussbaum, R. D., A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures et Appl. 61 (1982), 41-63.
[13] Dynkin, E. B., A probabilistic approach to one class of nonlinear differential equations. Probab. Theor. Relat. Fields 89 (1991), 89-115.
[14] Dynkin, E. B., Kuznetzov, S. E., Superdiffusion and removable singularities for quasilinear partial differential equations. Comm. Pure Appl. Math. 49 (1996), 125-176.
[15] Geymonat, G., Grisvard, P., Problemi ai limiti lineari ellittici negli spazi di Sobolev con peso. Le Matematiche 22 (1967), 1-38.
[16] Gidas, B., Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34 (1981), 525-598.
[17] Gidas, B., Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Diff. Equations 6 (1981), 883-901.
[18] Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second order. Springer-Verlag, 1983.
[19] Gmira, A., Véron, L., Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J. 64 (1991), 271-324.
[20] Krantz, S. G., Function theory of several complex variables. 2nd ed., Wadsworth, 1992.
[21] Le Gall, J. F., Solutions positives de $\Delta u=u^{2}$ dans le disque unité. C. R. Acad. Sci. Paris 317 Série I (1993), 873-878.
[22] Lions, P. L., Isolated singularities in semilinear problems. J. Diff. Equations 38 (1980), 441-450.
[23] Marcus, M., Véron, L., The boundary trace of positive solutions of semilinear elliptic equations: The subcritical case. Arch. Rational Mech. Anal. 144 (1998), 201-231.
[24] Marcus, M., Véron, L., The boundary trace of positive solutions os semilinear elliptic equations: The supercritical case. J. Math. Pures et Appl. 77 (1998), 481-524.
[25] Maz'ja, V. G., Beurling's theorem on a minimum principle for positive harmonic functions. J. Sov. Math. 4 (1975), 367-379.
[26] Opic, B., Kufner, A., Hardy type inequalities. Pitman Research in Math. Series, Longman Scientific Technical, 1990.
[27] Serrin, J., Isolated singularities of solutions of quasilinear equations. Acta Math. 1134 (1964), 247-302.
[28] Triebel, H., Interpolation Theory, Function Spaces, Differential Equations. North-Holland, 1978.
[29] Véron, L., Singularities of solutions of second order quasilinear equations. Pitman Research Notes in Math. Longman Sci. \& Tech. 353, 1996.
[30] Véron, L., Singular solutions of some nonlinear elliptic equations. Nonlinear Anal. 5 (1981), 225-242.
[31] Widman, K. O., Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21 (1967), 17-37.

Recibido: 4 de febrero de 1.999

Marie-Francoise Bidaut-Veron
Laboratoire de Mathématiques et Physique Théorique CNRS UPRES-A 6083

Faculté des Sciences
Parc de Grandmont 37200 Tours, FRANCE veronmf@univ-tours.fr
and

Laurent Vivier
U.F.R. Sciences et Techniques

Université de Toulon, BP 132
83957 La Garde, FRANCE
vivier@univ.tln.fr

